Skip to main content
Log in

Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a class of distributed-order time fractional diffusion equations (DOFDEs) on bounded domains is considered. By L1 method in temporal direction, a semi-discrete variational formulation of DOFDEs is obtained firstly. The stability and convergence of this semi-discrete scheme are discussed, and the corresponding fully discrete finite element scheme is investigated. To improve the convergence rate in time, the weighted and shifted Grünwald difference method is used. By this method, another finite element scheme for DOFDEs is obtained, and the corresponding stability and convergence are considered. And then, as a supplement, a higher order finite difference scheme of the Caputo fractional derivative is developed. By this scheme, an approach is suggested to improve the time convergence rate of our methods. Finally, some numerical examples are given for verification of our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  2. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cascaval, R.C., Eckstein, E.C., Frota, C.L., Goldstein, J.A.: Fractional telegraph equations. J. Math. Anal. Appl. 276, 145–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, F., Meerschaert, M.M., Mcgough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ren, J., Sun, Z.Z.: Efficient numerical solution of the multi-term time fractional diffusion-wave equation. East Asian J. Appl. Math. 5, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, C., Zhao, Z., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, Y., Ma, J.: Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56, 1287–1300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bu, W., Liu, X., Tang, Y., Yang, J.: Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simul. Sci. Comput. 6, 1540001 (2015)

    Article  Google Scholar 

  12. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation II. Applications of Laplace and Fourier transformations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 1893–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ansari, A., Moradi, M.: Exact solutions to some models of distributed-order time fractional diffusion equations via the Fox H functions. SCIENCEASIA 39S, 57–66 (2013)

    Article  Google Scholar 

  20. Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pur. Appl. Anal. 13, 605–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, X., Liu, F., Anh, V., Turner, I.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 55, 464–478 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)

    MathSciNet  Google Scholar 

  26. Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1321 (2016)

    Article  MathSciNet  Google Scholar 

  28. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)

    Article  MathSciNet  Google Scholar 

  29. Li, X., Wu, B.: A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 53, 92–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, 69–93 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1984)

    MATH  Google Scholar 

  33. Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bu, W., Tang, Y., Yang, J.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11671343, 11601460), the Research Foundation of Education Commission of Hunan Province of China (No. 16C1540), and the Starting Research Fund and Scientific Research Program from Xiangtan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, W., Xiao, A. & Zeng, W. Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations. J Sci Comput 72, 422–441 (2017). https://doi.org/10.1007/s10915-017-0360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0360-8

Keywords

Navigation