Skip to main content
Log in

Superconvergence of Local Discontinuous Galerkin Method for One-Dimensional Linear Schrödinger Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the superconvergence properties of the LDG method for the one-dimensional linear Schrödinger equation. We build a special interpolation function by constructing a correction function, and prove the numerical solution is superclose to the interpolation function in the \(L^{2}\) norm. The order of superconvergence is \(2k+1\), when the polynomials of degree at most k are used. Even though the linear Schrödinger equation involves only second order spatial derivative, it is actually a wave equation because of the coefficient i. It is not coercive and there is no control on the derivative for later time based on the initial condition of the solution itself, as for the parabolic case. In our analysis, the special correction functions and special initial conditions are required, which are the main differences from the linear parabolic equations. We also rigorously prove a \((2k+1)\)-th order superconvergence rate for the domain, cell averages, and the numerical fluxes at the nodes in the maximal and average norm. Furthermore, we prove the function value and the derivative approximation are superconvergent with a rate of \((k+2)\)-th order at the Radau points. All theoretical findings are confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  2. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computer Science Engineering, vol. 11, pp. 2–50. Springer, Berlin (2000)

  3. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53, 1651–1671 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 52, 2555–2573 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cao, W., Zhang, Z.: Point-wise and cell average error estimates for the DG and LDG method for 1D hyperbolic conservation laws and parabolic equations. Sci. China Ser. A 45, 1115–1132 (2015). (in Chinese)

    Google Scholar 

  11. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. Math. Comput. 85, 63–84 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo, L., Xu, Y.: Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with wave operator. J. Sci. Comput. 65, 622–647 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  16. Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun. Comput. Phys. 17, 510–541 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin, Q., Liu, X.: Global superconvergence estimates of finite element method for Schrödinger equation. J. Comput. Math. 16, 521–526 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Reed, W.H, Hill, T.R.: Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  19. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  20. Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems, I: Semidiscrete Error Estimates, Technical Report 01–02. University of Texas, Austin, TX, TICAM (2001)

  21. Rivière, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. Contemp. Math. 329, 271–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shu, C.-W.: Discontinuous Galerkin methods general: approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations. Advanced Courses in Mathematics CRM Barcelona, pp. 149–201. Birkhäuser, Besel, Switzerland (2009)

  23. Shi, D., Wang, P., Zhao, Y.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Phys. D 208, 21–58 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high-order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for Kdv type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, Y., Shu, C.-W.: Analysis of sharp superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Dedicated to Professor Chi-Wang Shu on the occasion of his 60th birthday.

Research of Yan Xu was supported by NSFC Grant Nos. 11371342, 11526212. Research of Zhimin Zhang was supported in part by the NSF Grant DMS-1419040 and NSFC Grants Nos. 91430216 and 11471031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Xu, Y., Zhang, Z. et al. Superconvergence of Local Discontinuous Galerkin Method for One-Dimensional Linear Schrödinger Equations. J Sci Comput 73, 1290–1315 (2017). https://doi.org/10.1007/s10915-017-0362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0362-6

Keywords

Navigation