Skip to main content
Log in

Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An inflow-based gradient is proposed to solve a propagation in a normal direction with a cell-centered finite volume method. The proposed discretization of the magnitude of gradient is an extension of Rouy–Tourin scheme (SIAM J Numer Anal 29:867–884, 1992) and Osher–Sethian scheme (J Comput Phys 79:12–49, 1988) in two cases; the first is that the proposed scheme can be applied in a polyhedron mesh in three dimensions and the second is that its corresponding form on a regular structured cube mesh uses the second order upwind difference. Considering a practical application in three dimensional mesh, we use the simplest decomposed domains for a parallel computation. Moreover, the implementation is straightforwardly and easily combined with a conventional finite volume code. A higher order of convergence and a recovery of signed distance function from a sparse data are illustrated in numerical examples on hexahedron or polyhedron meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep.

References

  1. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formultaions. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2000)

    MATH  Google Scholar 

  4. Sethian, J.A.: Level Set Methods and Fast Marching Methods, Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materical Science. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  5. Perič, M.: Flow simulation using control volumes of arbitrary polyhedral shape. ERCOFTAC Bull. 62, 25–29 (2004)

    Google Scholar 

  6. Zhao, H.K.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qian, J., Zhang, Y.-T., Zhao, H.K.: Fast sweeping methods for Eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Detrixhe, M., Gibou, F., Min, C.: A parallel fast sweeping method for the Eikonal equation. J. Comput. Phys. 237, 46–55 (2013)

    Article  MathSciNet  Google Scholar 

  9. Dapogny, C., Frey, P.: Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49, 193–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tsoutsanis, P., Titarev, V., Drikakis, D.: WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys. 230, 1585–1601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29, 579–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mikula, K., Ohlberger, M.: A new level set method for motion in normal direction based on a semi-implicit forward–backward diffusion approach. SIAM J. Sci. Comput. 32, 1527–1544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frolkovič, P., Mikula, K., Urbán, J.: Semi-implicit finite volume level set method for advective motion of interfaces in normal direction. Appl. Numer. Math. 95, 214–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mikula, K., Ohlberger, M., Urbán, J.: Inflow-implicit/outflow-explicit finite volume methods for solving advection equations. Appl. Numer. Math. 85, 16–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bertolazzi, E., Manzini, G.: A unified treatment of boundary conditions in least-square based finite-volume methods. Comput. Math. Appl. 49, 1755–1765 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tai, X.-C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4, 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, Chi-Wang, Osher, Stanley: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gottlieb, Sigal, Shu, Chi-Wang: Total variation diminishing runge–kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  23. Lv, X., Zou, Q., Zhao, Y., Reeve, D.: A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids. J. Comput. Phys. 229, 2573–2604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ausas, R.F., Dari, E.A., Buscaglia, G.C.: A geometric mass-preserving redistancing scheme for the level set function. Int. J. Numer. Methods Fluids 65, 989–1010 (2011)

    Article  MATH  Google Scholar 

  25. Baerentzen, J.A., Aanaes, H.K.: Signed distance computation using the angle weighted pseudonormal. IEEE Trans. Vis. Comput. Gr. 11, 243–253 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank to Dr. Peter Priesching in AVL LIST GmbH, Graz, Austria and Dr. Kiwan Jeon in National Institute for Mathematical Sciences, Daejeon, South Korea for and to Dr. Peter Sampl and MSc. Dirk Martin in AVL LIST GmbH, Graz, Austria, for generating polyhedron and hexahedron meshes of the Stanford bunny and Dragon examples. We sincerely appreciate valuable comments and feedback from anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyoung Hahn.

Additional information

Karol Mikula was supported by VEGA 1/0808/15 and APVV-15-0522. Peter Frolkovič was supported by VEGA 1/0728/15 and APVV-15-0522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, J., Mikula, K., Frolkovič, P. et al. Inflow-Based Gradient Finite Volume Method for a Propagation in a Normal Direction in a Polyhedron Mesh. J Sci Comput 72, 442–465 (2017). https://doi.org/10.1007/s10915-017-0364-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0364-4

Keywords

Navigation