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Abstract

We develop an ultra-weak variational formulation of a fractional advection diffusion prob-

lem in one space dimension and prove its well-posedness. Based on this formulation, we define

a DPG approximation with optimal test functions and show its quasi-optimal convergence.

Numerical experiments confirm expected convergence properties, for uniform and adaptively

refined meshes.
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1 Introduction

In this paper we develop a discontinuous Petrov-Galerkin (DPG) method with optimal test
functions for a one-dimensional fractional advection diffusion problem of the form

−DDα−2Du+ bDu+ cu = f on I := (0, 1),

u(0) = u(1) = 0.
(1)

Here, D denotes a single spatial derivative, and Dα−2, for α ∈ (1, 2), represents a fractional
integral operator of order α− 2. Throughout, we assume that c ∈ L∞([0, 1]), b ∈ C1([0, 1]), and
c−Db/2 ≥ 0.
Fractional advection diffusion equations have been receiving increased attention over the past
decade as modeling equations for physical phenomena in such areas as contaminant transport in
ground water flow [3], viscoelasticity [28], turbulent flow [28, 32], and chaotic dynamics [41]. As
most models involving fractional order differential equations do not have closed form solutions
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particular attention has been paid to the development of numerical approximation schemes for
these equations. Two phenomena of fractional order differential equations which impact their
numerical discretization and approximation are: (i) the fractional differential operator is nonlocal
(leading to a dense coefficient matrix), and (ii) the (typical) low regularity of the solution (leading
to slow convergence of the numerical solution to the true solution).
The first approximation methods investigated for fractional order differential equations were
finite difference schemes proposed by Liu, Ahn and Turner [26], and Meerschaert and Tadjeran
[29], (see also [33, 10, 35]). Subsequently, finite element [15, 36, 27, 40, 24] and spectral methods
[25, 38, 42] have been developed for the approximation of fractional order differential equations.
We note that a finite difference approximation using the Grünwald formula on a uniform mesh
leads to a Toeplitz like matrix which significantly reduces the storage required for the coefficient
matrix, and whose linear system can be very efficiently solved using a fast Fourier transform [35].
Fractional diffusion problems are inherently difficult to analyze and with our method we open a
way to deal with singularly perturbed cases (not considered here). In fact, principal objective of
the DPG method is to provide robust discretizations of singularly perturbed problems like convec-
tion diffusion [13, 7, 9, 5] and wave problems [43]. The DPG method with optimal test functions
has been developed by Demkowicz, Gopalakrishnan and co-workers. In its most common form it
combines several ideas. These are ultra-weak variational formulations (cf. [14, 8]) with additional
trace and flux unknowns (cf. [4]), and the utilization of specific test functions which are designed
for stability (cf. the SUPG method in [23] and test functions in [2]). Demkowicz and Gopalakr-
ishnan combine these ideas in a discontinuous setting and by employing problem-tailored norms.
Appropriately combined, the resulting DPG method with optimal test functions delivers robust
error control and also gives access to localized a posteriori error estimation (or rather calcu-
lation). For details we refer to [11, 12]. In this paper we follow precisely these steps to deal
with equations involving fractional diffusion. By writing (1) as a first-order system, cf. (15), we
develop an ultra-weak variational formulation in Section 2.4 below. While a weak formulation
of (1) leads to a non-symmetric, coercive bilinear form, for the DPG method with optimal test
functions the resulting variational formulation is always symmetric, positive definite, implying
existence of a unique solution. This is the central result of the DPG method with optimal test
functions, stated below in Theorem 1. Necessary conditions for its application are the well-known
Babuška-Brezzi conditions (2), which we check in Section 3 for our ultra-weak formulation. A
central step will be to extend Riemann-Liouville fractional integral operators to negative order
Sobolev spaces and prove their ellipticity. To that end, we extend recent results from [24]. In
our main result, Theorem 7, we show well-posedness of the underlying ultra-weak variational
formulation and quasi-optimal convergence of the discrete scheme. In particular, we will gain
access to error control and adaptivity. In Section 4, we report on several numerical experiments
that illustrate convergence orders of variants with uniform meshes and with adaptively refined
meshes.
We note that in [37] the authors propose a simplified Petrov-Galerkin method with optimal test
functions for fractional diffusion. They stick to discrete spaces with continuous functions and
calculate test functions globally. In contrast, we develop the fully discontinuous variant that
allows for local calculations of test functions. This is particularly important for fractional-order
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problems where inner products are defined by double integrals so that global calculations are
prohibitively costly. Let us also mention that there is DPG-technology available for hypersingular
integral equations [22, 21]. Hypersingular operators are of order one with energy spaces of order
1/2. For closed curves/surfaces, DPG theory can be established with integer-order Sobolev spaces
and is then simpler in a certain way. For open curves/surfaces however, one has to return to
non integer-order spaces. The case of hypersingular operators can be seen as a limit of fractional
diffusion operators with orders between one and two, as considered in this paper.

2 Mathematical setting and main results

We use the widespread notation A . B to denote the fact that A ≤ C ·B where C > 0 does not
depend on any quantities of interest. By A ≃ B we mean that both A . B and B . A hold.
Throughout, suprema are taken over the indicated sets except 0.

2.1 DPG method with optimal test functions

We briefly recall the premises and results of the DPG method with optimal test functions,
cf. [11, 12, 43]. Given a Banach space U , a Hilbert space V , and a bilinear form b : U × V → R,
we consider the following three conditions:

b(u,v) = 0 for all v ∈ V =⇒ u = 0; (2a)

there is a positive constant Cinfsup such that

Cinfsup‖v‖V ≤ sup
u∈U

b(u,v)

‖u‖U
for all v ∈ V ; (2b)

there is a positive constant Cb such that

b(u,v) ≤ Cb‖u‖U‖v‖V for all u ∈ U,v ∈ V. (2c)

Define the so-called trial-to-test operator Θ : U → V by

〈Θu ,v〉V = b(u,v) for all v ∈ V. (3)

The following result is central to the DPG method and is, in the end, consequence of the Babuška-
Brezzi theory [1, 6, 39], cf. [11] and related references given in the introduction.

Theorem 1. Suppose that (2a)–(2c) hold for a Banach space U , a Hilbert space V , and a bilinear
form b : U × V → R. Then, an equivalent norm on U is given by

‖u‖E := sup
v∈V

b(u,v)

‖v‖V
, and Cinfsup‖u‖U ≤ ‖u‖E .
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Furthermore, for any ℓ ∈ V ′, the problem

find u ∈ U such that b(u,v) = ℓ(v) for all v ∈ V (4)

has a unique solution, and

‖u‖E ≤ ‖ℓ‖V ′ . (5)

In addition, if Uhp ⊂ U is a finite-dimensional subspace, then the problem

find uhp ∈ Uhp such that b(uhp,vhp) = ℓ(vhp) for all vhp ∈ Θ(Uhp) (6)

has a unique solution, and

‖u− uhp‖E = inf
u
′
hp∈Uhp

‖u− u
′
hp‖E . (7)

2.2 Sobolev spaces

For s ∈ R with s ≥ 0 and an open interval M = (a, b) ⊆ R, the Sobolev spaces Hs(M) are
defined via distributional derivatives and the Sobolev-Slobodeckij seminorm | · |Hs(M) and norm

‖ · ‖Hs(M). The space H̃s(M) is defined as the space of functions whose extension by zero is

in Hs(R). The space H−s(M) denotes the topological dual space of H̃s(M), while H̃−s(M)
denotes the dual of Hs(M). For a finite partition T of I = (0, 1) into open, disjoint, and
connected sets, we define Hs(T ) :=

∏
T∈T H

s(T ), or, likewise, H̃s(T ) :=
∏

T∈T H̃
s(T ), with

product norms ‖v‖2Hs(T ) :=
∑

T∈T ‖v|T ‖
2
Hs(T ). We also write H̃−s(T ) or H−s(T ) for the duals

of product spaces. By N := #T we denote the number of elements in the partition and for
v ∈ Hs(T ), 1/2 < s, we define the jump [v] ∈ R

N+1 as the vector of the differences of the traces
of v on the elements to the right and to the left of all nodes x = T− ∩ T+. For the boundary
nodes (i.e., 0 and 1), we just take traces. For v ∈ Hs(T ), 1/2 < s, we also define the average
{v} as the vector of mean values of the traces of v on the elements to the right and to the left
of all nodes. We will need certain results for this kind of spaces. From now on, we assume that
partitions are quasi-uniform, i.e., for all T ∈ T holds |T | ≃ N−1 for N := #T being the number
of elements in the partition T , and the constant involved is independent of T . We denote by DT

the T -piecewise distributional derivative.

Lemma 2. The following statements hold with constants which only depend on s:

• Let s ∈ (0, 1/2). There holds

‖v‖Hs(I) . N s‖v‖Hs(T ) for all v ∈ Hs(I). (8)

• Let s ∈ (1/2, 1). There holds

‖DT v‖H̃s−1(I) . N1−s|v|Hs(T ) for all v ∈ Hs(T ). (9)
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• Let s ∈ (1/2, 1]. There holds

|[v]| . N1/2‖v‖Hs(T ) for all v ∈ Hs(T ). (10)

Proof. The first statement is seen as follows: First, for T̂ a reference interval with fixed diameter,
there is a constant Cs > 0 such that ‖v̂‖H̃s(T̂ ) ≤ Cs‖v̂‖Hs(T̂ ), cf. [18] and [19, Proof of Lemma 5].

Second, scaling arguments show that ‖v‖
H̃s(T )

. N s‖v‖Hs(T ) for all T ∈ T . Now,

‖v‖2Hs(I) . ‖v‖2
H̃s(I)

.
∑

T∈T

‖v‖2
H̃s(T )

, (11)

where the second estimate follows from [16, Lemma 20]. To show the second statement, we
proceed as before and use an affine transformation on every element T ∈ T ,

‖Dv‖2
H̃s−1(T )

. N‖D̂v̂‖2
H̃s−1(T̂ )

. N‖D̂v̂‖2
Hs−1(T̂ )

.

Here the second estimate follows as the norms involved are dual to norms on which we can
use [18] and [19, Proof of Lemma 5]. A quotient space argument on the reference element T̂ ,
cf. [20], shows

‖D̂v̂‖Hs−1(T̂ ) . inf
c∈R

‖v̂ + c‖Hs(T̂ ) ≃ |v̂|Hs(T̂ ).

The second statement follows by application of the scaling argument |v̂|2
Hs(T̂ )

. N1−2s|v|2Hs(T ).

The third statement follows easily from, e.g.,

|v(x)| ≤ ‖v‖L∞(T̂ ) . ‖v̂‖Hs(T̂ ) . N1/2‖v‖Hs(T+).

Here, for example, x = T−∩T+, the second estimate follows by the Sobolev Embedding theorem,
and the third one again by a scaling argument.

Lemma 3. There holds

‖τ‖L2(I) . ‖DT τ‖L2(I) +N1/2|[τ ]| for all τ ∈ H1(T ),

and the hidden constant is independent of T .

Proof. Let φ ∈ H̃1(I) be the weak solution of −D2φ = τ . Then Dφ ∈ H1(I) with distributional
derivative D2φ = −τ , and integration by parts yields

(τ , τ) = −(τ ,D2φ) = (DT τ ,Dφ) + 〈[τ ] ,Dφ〉.

Cauchy-Schwarz and Lemma 2, eq. (10) imply

‖τ‖2L2(I)
. ‖DT τ‖L2(I)‖Dφ‖L2(I) +N1/2|[τ ]|‖Dφ‖H1(I).

By construction, ‖Dφ‖H1(I) . ‖τ‖L2(I), which concludes the proof.
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We will need the following result on fractional seminorms.

Lemma 4. Let s ∈ (0, 1) be fixed. There holds

|u|Hs(I) . ‖Du‖Hs−1(I) for all u ∈ Hs(I).

where Du is the distributional derivative of u. The hidden constant does not depend on I.

Proof. As u ∈ L2(I), it holds Du ∈ H−1(I). We can write u = Dψ+c with c ∈ R and ψ ∈ H̃1(I),
where ‖ψ‖H̃1(I) . ‖u‖L2(I). Due to the definition of the distributional derivative we see

|(u ,Dψ)| = |(Du,ψ)| . ‖Du‖H−1(I)‖ψ‖H̃1(I) . ‖Du‖H−1(I)‖u‖L2(I)

We conclude that for u ∈ L2(I), it holds

‖u‖2L2(I)
= (u ,Dψ) + (u , c) . ‖Du‖H−1(I)‖u‖L2(I) + (u , c).

Now we apply this estimate to u− u, where u denotes the mean value of u, and obtain

‖u− u‖L2(I) . ‖Du‖H−1(I). (12)

The standard Poincaré inequality states that

‖u− u‖H1(I) . ‖Du‖L2(I). (13)

The Hs(I) norm can equivalently be obtained by the K-method of interpolation, cf. [34], via

‖u− u‖2Hs(I) ≃ ‖u− u‖2[L2(I),H1(I)]s,2
=

∫ ∞

0
t−2s

(
inf

v∈H1(I)
‖u− u− v‖L2(I) + t‖v‖H1(I)

)2 dt

t
.

Using (12) and (13), we obtain

inf
v∈H1(I)

‖u− u− v‖L2(I) + t‖v‖H1(I) ≤ inf
v∈H1(I)

v=0

‖u− u− v‖L2(I) + t‖v‖H1(I)

. inf
v∈H1(I)

v=0

‖Du−Dv‖H−1(I) + t‖Dv‖L2(I)

Next we use that for w ∈ L2(I) there is a ψ ∈ H1(I) with ψ = 0 such that Dψ = w. We conclude

‖u− u‖2Hs(I) .

∫ ∞

0
t−2s

(
inf

w∈L2(I)
‖Du− w‖H−1(I) + t‖w‖L2(I)

)2 dt

t
.

By definition, the right-hand side is ‖Du‖2[H−1(I),L2(I)]s,2
, which is equivalent to ‖Du‖2Hs−1(I).

This concludes the proof for a specific I. The hidden constant does not depend on I, which can
be shown by scaling arguments.

6



2.3 Fractional integral operators

The fractional integral operators that we will use are of so-called Riemann-Liouville type. For
β > 0 we denote by 0D

−β and D−β
1 the left and right-sided versions of these operators, defined

on I = (0, 1) by

0D
−βu(x) :=

1

Γ(β)

∫ x

0
(x− s)β−1u(s) ds and D−β

1 u(x) :=
1

Γ(β)

∫ 1

x
(s− x)β−1u(s) ds.

We also abbreviate D−β := 0D
−β. A standard textbook on this kind of operators is [31].

Recently, classical results regarding boundedness and ellipticity of these operators were extended
in [15, 24]. In order to obtain a variational formulation suited for DPG analysis, we need to
extend these operators to negative order Sobolev spaces and show their ellipticity. To this end,
let F denote the Fourier transforms on the space S ′(R) of tempered distributions, cf. [30, Chapter
7], defined by

Fu(ξ) := (2π)−1/2

∫

R

u(x)e−ixξ dx.

Choosing a space of test functions which is invariant under the action of D−β and D−β, these
operators can be extended to the associated spaces of distributions, cf. [31, §8]. In the present
setting, a different argument can be used.

Lemma 5. For every s ∈ R with −β ≤ s and β > 0, the operator D−β can be extended to a
bounded linear operator D−β : H̃s(I) → Hs+β(I).

Proof. For 0 ≤ s, the statement was shown for 0D
−β and D−β

1 in Theorem 3.1 of [24]. It therefore
remains to consider −β ≤ s < 0. We will show the statement for s = −β, the remaining cases
follow by interpolation. We already know that D−β

1 : L2(I) → Hβ(I) is a linear and bounded
operator. According to [31, Corollary of Thm. 3.5], it holds that

(D−βu , v) = (u ,D−β
1 v) for all u, v ∈ L2(I). (14)

Hence, the right-hand side of (14) extends D−β to a linear, bounded operator D−β : H̃−β →
L2(I).

Lemma 6. The operator D−β is elliptic on H−β/2(T ) for 0 < β < 1.

Proof. For a test function ϕ ∈ D(I) holds F(D−βϕ)(ξ) = (iξ)−βF(ϕ)(ξ), cf. [31, Thm. 7.1].
Then, a short computation (cf. [15, Proof of Lemma 2.4]) shows

(D−βϕ,ϕ) = ((iξ)−βF(ϕ) ,F(ϕ)) = ((iξ)−β/2F(ϕ) , (−iξ)β/2F(ϕ))

= cos(−πβ/2)((iξ)−β/2F(ϕ) , (iξ)β/2F(ϕ))

+ i sin(−πβ/2)
(∫ ∞

0
(iξ)−β/2F(ϕ)(iξ)−β/2F(ϕ)dξ

−

∫ 0

−∞
(iξ)−β/2F(ϕ)(iξ)−β/2F(ϕ)dξ

)
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As the left-hand side of this identity is real, the imaginary part on the right-hand side vanishes.
Furthermore, cos(−πβ/2) > 0 for 0 < β < 1. We obtain

(D−βϕ,ϕ) & ‖(ξ2)−β/4F(ϕ)‖2L2(R)
& ‖(1 + ξ2)−β/4F(ϕ)‖2L2(R)

.

The right-hand side is equivalent to the norm ‖ϕ‖H−β/2(R). A density argument shows the

ellipticity on H−β/2(R). Since on H−β/2(T ) it holds ‖ · ‖H−β/2(R) & ‖ · ‖H−β/2(I) & ‖ · ‖H−β/2(T ),
cf. (11), the proof is finished.

2.4 Ultra-weak formulation and main result

We write (1) as first-order system

σ −Du = 0,

−DDα−2σ + bDu+ cu = f.
(15)

Then, we multiply these equations with τ respectively v, integrate by parts piecewise on a
partition T and rename the appearing boundary terms of Dα−2σ and u by σ̂ and û to obtain

(σ , τ) + (u ,DT τ)− 〈û , [τ ]〉 = 0 (16a)

(Dα−2σ ,DT v) + (bσ , v) + (cu , v)− 〈σ̂ , [v]〉 = (f , v). (16b)

The left and right-hand sides of the preceding equations define our bilinear form and linear form
via

b(u,v) := b(σ, u, σ̂, û; τ, v) := (σ , τ +D(α−2)⋆DT v + bv) + (u ,DT τ + cv) − 〈û , [τ ]〉 − 〈σ̂ , [v]〉,

ℓ(v) := ℓ(τ, v) := (f , v).

Here and from now on, D(α−2)⋆ : H̃α/2−1(I) → H1−α/2(I) denotes the conjugate of Dα−2. Define
Uα := H̃α/2−1(I)×L2(I)×R

N+1 ×R
N−1 and Vα := H1(T )×Hα/2(T ), where N is the number

of elements of T , with product norms

‖u‖2Uα
:= ‖σ‖2

H̃α/2−1(I)
+ ‖u‖2L2(I)

+N−3(|σ̂|2 + |û|2), and

‖v‖2Vα
:= ‖τ‖2H1(T ) + ‖v‖2

Hα/2(T )
.

By | · |, we mean the usual Euclidean norm. Our ultra-weak formulation now reads as follows:
given ℓ ∈ V ′

α, we aim to find u ∈ Uα such that

b(u,v) = ℓ(v) for all v ∈ Vα. (17)

For a discrete subspace Uhp ⊂ Uα, the DPG method with optimal test functions is to find
uhp ∈ Uhp such that

b(uhp,vhp) = ℓ(vhp) for all vhp ∈ Θα(Uhp), (18)

where Θα : Uα → Vα is the trial-to-test operator associated with b, cf. (3). The following theorem
is the main result of this work. It states unique solvability and stability of the continuous and
discrete formulations (17) and (18), as well as a best approximation result.
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Theorem 7. For α ∈ (1, 2), f ∈ L2(I), and arbitrary partition T , the variational formula-
tion (17) has a unique solution u ∈ Uα, and

‖u‖Uα . ‖f‖L2(I).

Furthermore, the discrete problem (18) has a unique solution uhp ∈ Uhp, and

‖u− uhp‖Uα . inf
(σ′

hp,u
′
hp,σ̂

′
hp,û

′
hp)∈Uhp

(
N1−α/2‖σ − σ′hp‖H̃α/2−1(I)

+ ‖u− u′hp‖L2(I)

)
.

Proof. We are going to apply Theorem 1, hence we check (2a)–(2c). The condition (2a) follows
from Lemma 9. The condition (2c) follows from Lemma 8. It remains to check condition (2b).
To that end, observe first that

sup
u∈Uα

b(u,v)

‖u‖Uα

=
(
‖τ +D(α−2)⋆DT v + bv‖2

H1−α/2(I)
+ ‖DT τ + cv‖2L2(I)

+N3(|[τ ]|+ |[v]|)2
)1/2

(19)

For given v = (τ, v) ∈ Vα we define τ1 ∈ H1(I) and v1 ∈ H̃α/2(I) as the solution of Lemma 10
with data F := DT τ + cv and G = τ +D(α−2)⋆DT v+ bv, and write τ = τ0 + τ1 and v = v0 + v1.
The functions τ0 and v0 then fulfill the assumptions of Lemma 11. The triangle inequality and
Lemmas 10 and 11 show

‖v‖Vα . ‖τ +D(α−2)⋆DT v + bv‖H1−α/2(I) + ‖DT τ + cv‖L2(I) +N3/2(|[τ ]| + |[v]|). (20)

The equations (19) and (20) show condition (2b). Theorem 1 shows that there are unique
solutions u and uhp of the problems (17) and (18) which fulfill stability (5) and best approxi-
mation (7), and that

Cinfsup‖u‖Uα ≤ ‖u‖Eα := sup
v∈Vα

b(u,v)

‖v‖Vα

.

Lemma 8 shows that

inf
u
′
hp∈Uhp

‖u− u
′
hp‖Eα .

inf
(σ′

hp,u
′
hp,σ̂

′
hp,û

′
hp)∈Uhp

(
N1−α/2‖σ − σ′hp‖H̃α/2−1(I) + ‖u− u′hp‖L2(I)

)
.

Here, owing to the fact that û and σ̂ are just finite-dimensional vectors, the functions σ̂′hp and
û′hp can be omitted on the right-hand side.
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3 Technical results

The first lemma states boundedness of the bilinear form b.

Lemma 8. For α ∈ (1, 2),

|b(u,v)| .
(
N2−α‖σ‖2

H̃α/2−1(I)
+ ‖u‖2L2(I)

+N |û|2 +N |σ̂|2
)1/2

‖v‖Vα ,

with a constant independent of T . In particular, |b(u,v)| ≤ Cb‖u‖Uα‖v‖Vα , where the constant
Cb depends on N .

Proof. By Lemma 2, eq. (10), we have

|〈û , [τ ]〉| . N1/2|û|‖τ‖H1(T ) and |〈σ̂ , [v]〉| . N1/2|σ̂|‖v‖Hα/2(T ).

The triangle inequality, Lemmas 2 and 5, the definition of D(α−2)⋆, c ∈ L∞([0, 1]), b ∈ C1([0, 1]),
and 1 ≤ α show

‖τ +D(α−2)⋆DT v + bv‖H1−α/2(I) . ‖τ‖H1−α/2(I) + ‖DT v‖H̃α/2−1(I)
+ ‖bv‖H1−α/2(I)

. N1−α/2
(
‖τ‖H1(T ) + ‖v‖Hα/2(T )

)

and

‖DT τ + cv‖L2(I) . ‖τ‖H1(T ) + ‖v‖Hα/2(T ).

We finish the proof with the triangle and Cauchy-Schwarz inequalities.

Lemma 9. It holds that

b(u,v) = 0 for all v ∈ V ⇐⇒ u = 0.

Proof. The direction ⇐ is clear, and we proceed with the implication ⇒. Using τ ∈ C∞
0 (I)

in (16a) shows that the distributional derivative of u fulfills Du = σ. As σ ∈ H̃α/2−1(I), we
conclude that u ∈ Hα/2(I). In a second step, using functions τ ∈ C∞(T ) for all T ∈ T in (16a)
and integrating by parts shows that û = u at inner nodes as well as u(a) = u(b) = 0. Hence
u ∈ H̃α/2(I). We plug in σ = Du in (16b) and obtain the variational formulation

(Dα−2Du,Dv) + (bDu , v) + (cu , v) = 0 for all v ∈ H̃α/2(I).

According to [15, Section 3], the bilinear form on the left-hand side of this formulation is elliptic
on H̃α/2(I). We conclude that u = 0 and hence σ = 0. Then, û = 0 and σ̂ = 0 follow
immediately.
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3.1 Analysis of the adjoint problem

Lemma 10. For F ∈ L2(I) and G ∈ H1−α/2(I), there exists a solution τ ∈ H1(I), v ∈ H̃α/2(I)
of

Dτ + cv = F

τ +D(α−2)⋆Dv + bv = G
(21)

such that

‖v‖Hα/2(I) + ‖τ‖H1(I) . ‖F‖L2(I) + ‖G‖H1−α/2(I). (22)

Proof. Consider the variational formulation to find v ∈ H̃α/2(I) such that

(Dv ,Dα−2Dφ) + (bv ,Dφ) + (cv , φ) = (F , φ) − (DG,φ) for all φ ∈ H̃α/2(I).

According to [15, Section. 3], the bilinear form of this formulation is elliptic on H̃α/2(I). The lin-
ear functional on the right-hand side is bounded in H̃α/2(I) with constant ‖F‖L2(I)+‖G‖H1−α/2(I).

Hence, there exists a unique solution v ∈ H̃α/2(I) which satisfies

‖v‖H̃α/2(I) . ‖F‖L2(I) + ‖G‖H1−α/2(I)

Now define τ := −D(α−2)⋆Dv − bv +G. A priori, τ ∈ H1−α/2(I), but the definition of v shows

(τ ,Dφ) = (cv − F , φ) for all φ ∈ C∞
0 (I).

Hence, τ ∈ H1(I) and Dτ = F − cv. The bounds on τ follow immediately.

Lemma 11. Suppose that τ ∈ H1(T ) and v ∈ Hα/2(T ) fulfill

DT τ + cv = 0 (23a)

τ +D(α−2)⋆DT v + bv = 0, (23b)

on I. Then

‖τ‖H1(T ) + ‖v‖Hα/2(T ) . N3/2 (|[v]| + |[τ ]|) .

Proof. We proceed in three steps.

Step 1: Let ψ ∈ H̃α/2(I) be the unique variational solution of −DDα−2Dψ + bDψ + cψ = −v,
cf. [15, Section 3], i.e.,

(Dα−2Dψ ,Dφ) + (bDψ , φ) + (cψ , φ) = −(v , φ) for all φ ∈ H̃α/2(I),
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so that ‖ψ‖H̃α/2(I) . ‖v‖L2(I). Due to Lemma 5 and α− 2 ≤ α/2 − 1, it holds

‖Dα−2Dψ‖L2(I) . ‖Dψ‖H̃α−2(I) . ‖Dψ‖H̃α/2−1 . ‖ψ‖H̃α/2(I) . ‖v‖L2(I). (24)

The equation solved by ψ implies that the distributional derivative of Dα−2Dψ is given by
DDα−2Dψ = bDψ + cψ + v ∈ Hα/2−1(I), such that Dα−2Dψ ∈ Hα/2(I). Using Lemma 4, we
see

|Dα−2Dψ|Hα/2(I) . ‖DDα−2Dψ‖Hα/2−1(I) = ‖bDψ + cψ + v‖Hα/2−1(I)

. ‖ψ‖H̃α/2(I) + ‖v‖L2(I) . ‖v‖L2(I).
(25)

We may also integrate by parts and use (23) to obtain

(v , v) = −(Dα−2Dψ ,DT v)− (bDψ , v) − (cψ , v) + 〈Dα−2Dψ , [v]〉

= (Dψ ,−D(α−2)⋆DT v − bv − τ) + 〈ψ , [τ ]〉 + 〈Dα−2Dψ , [v]〉

= 〈ψ , [τ ]〉 + 〈Dα−2Dψ , [v]〉.

Lemma 2, eq. (10), estimates (24), (25), and stability of ψ yield

‖v‖2L2(I)
. N1/2 (|[τ ]| + |[v]|) ‖v‖Hα/2(T ). (26)

Step 2: Piecewise integration by parts shows

(DT (bv) , v) = (vDb , v) + (bDT v , v)

= (vDb , v) − (v ,DT (bv)) − 〈[v] , {bv}〉 − 〈{v} , [bv]〉,

which gives

(DT (bv) , v) = (vDb/2 , v) − 1/2〈[v] , {bv}〉 − 1/2〈{v} , [bv]〉. (27)

Now we multiply (23a) with v and insert (23b) as well as (27). Then, as D(α−2)⋆DT v ∈ Hα/2(T )
by (23b), integration by parts gives

0 = (DT v ,D
α−2DT v) + (v(c −Db/2) , v)

+ 〈[D(α−2)⋆DT v] , {v}〉 + 〈{D(α−2)⋆DT v} , [v]〉 + 1/2〈[v] , {bv}〉 + 1/2〈{v} , [bv]〉

As c−Db/2 ≥ 0 and Dα−2 is elliptic in Hα/2−1(T ) due to Lemma 6, we obtain with the triangle
inequality

‖DT v‖
2
Hα/2−1(T )

. |〈[τ ] , {v}〉| + |〈{τ} , [v]〉| + |〈[v] , {bv}〉| + |〈[bv] , {v}〉|.
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All terms on the right-hand side of this inequality are treated with Lemma 2, eq. (10). For the
second term, we additionally use Lemma 3 and (23a) and get

|〈{τ} , [v]〉| . N1/2‖τ‖H1(T ) · |[v]| . N1/2‖v‖L2(I)|[v]| +N |[τ ]| · |[v]|

. N1/2‖v‖L2(I)|[v]| +N3/2‖v‖Hα/2(T ) · |[τ ]|.

We conclude that

|v|2
Hα/2(T )

. ‖DT v‖
2
Hα/2−1(T )

. N3/2 (|[τ ]|+ |[v]|) ‖v‖Hα/2(T ), (28)

where we have used Lemma 4 for the first estimate. Adding (26) and (28) and dividing by
‖v‖Hα/2(T ) gives

‖v‖Hα/2(T ) . N3/2 (|[τ ]|+ |[v]|) . (29)

Step 3: It remains to show the bound for τ . As τ ∈ L2(I), we can write τ = Dψ + t with
ψ ∈ H̃1(I) and t ∈ R such that ‖ψ‖H1(I) + |t| . ‖τ‖L2(I). Integration by parts, identities (23),
Lemma 2 eq. (10), and Cauchy-Schwarz show

(τ , τ) = (cv , ψ) + 〈[τ ] , ψ〉 − (D(α−2)⋆DT v + bv , t)

.
(
‖v‖L2(I) +N1/2|[τ ]|+ (D(α−2)⋆DT v , 1)

)
‖τ‖L2(I).

(30)

For the last term, we use (Dα−21)(x) = x2−α/Γ(2−α+ 1), cf. [31, Section 2.5], and integration
by parts to compute

(D(α−2)⋆DT v , 1) = −(v , x1−α) +
〈[v] , x2−α〉

Γ(2− α+ 1)

. ‖v‖Hα/2(T ) +N1/2|[v]|.

(31)

Here, the last estimate follows by direct computation. Combining the estimates (30), (31),
and (29), we obtain

‖τ‖L2(I) . N3/2 (|[τ ]| + |[v]|) .

An estimate for DT τ is obtained from (23a) and (29). This concludes the proof.

4 Numerical Examples

4.1 Discretization and approximated optimal test functions

Let us briefly fix some notation: We consider the discrete subspace

Uhp(T ) := Up(T )× U q(T )× R
N+1 × R

N−1 ⊂ Uα,

13



where

Up(T ) := {v ∈ L2(I) : v|T is polynomial of degree at most p ∀T ∈ T }

is the space of T -elementwise polynomials of degree p ∈ N0. Note that dim(Uhp(T )) = (p +
q + 4)N . Given a basis {uj | j = 1, . . . ,dim(Uhp(T ))} of Uhp(T ), the optimal test functions
Θ(uj) ∈ Vα (j = 1, . . . ,dim(Uhp(T )) are computed by solving the problems

〈Θ(uj) ,v〉Vα = b(uj ,v) for all v ∈ Vα = H1(T )×Hα/2(T ). (32)

For v = (τ, v),w = (ρ,w) ∈ Vα the Vα-inner product is given by

〈v ,w〉Vα = (τ, ρ)I + (DT τ,DT ρ)I + (v,w)I +
∑

T∈T

∫

T

∫

T

(v(x)− v(y))(w(x) − w(y))

|x− y|1+α
dy dx,

which induces our chosen local norm ‖v‖2Vα
= ‖τ‖2H1(T )+ ‖v‖2

Hα/2(T )
on Vα. Since the definition

of the optimal test functions (32) involves the infinite-dimensional space Vα, we approximate
Θα(uj) ∈ Vα by Θα,h(uj) ∈ Vhp(T ) := Um(T )× Un(T ) with m,n ∈ N0, i.e., instead of (32) we
solve for j = 1, . . . ,dim(Uhp(T )) the problem

〈Θα,h(uj) ,vk〉Vα = b(uj,vk) k = 1, . . . ,dim(Vhp(T )). (33)

The inner product 〈v ,w〉Vα is computed analytically for functions v,w ∈ Vhp(T ). It is seen
immediately that choosing m and n too small in comparison with p and q leads to a system
which is not well posed. This question is investigated in [17]. The authors show that in the case
of the Poisson equation in R

d and p = q, using polynomial degrees n = m which are higher than
p+ d is sufficient in order to obtain well-posedness and best approximation results.
Altogether we have to assemble the matrices B := (Bkj) and Θ := (Θkℓ) with

Bkj := b(uj,vk) and Θkℓ := 〈vℓ ,vk〉Vα ,

where uj and vk, j = 1, . . . ,dim(Uhp(T )), k = 1, . . . ,dim(Vhp(T )), are the basis functions
described above. Note that Θ has a sparse structure, whereas B contains a dense block cor-
responding to the discretization of the fractional integral operator. With the definition of the
right-hand side vector

fj := ℓ(vj) for all j = 1, . . . ,dim(Vhp(T ))

the computation of the DPG solution (6) consists in solving the linear system

B
T
Θ

−1
Bx = B

T
Θ

−1
f . (34)

An advantage of the DPG method is that, by design, we can evaluate the error in the energy
norm. We define the local contributions of the error in the energy norm on an element T ∈ T ,
est(T ), as

est(T )2 :=
∑

{j : vj |T ′=0 for T ′ 6=T}

(f −Bx)j
(
Θ

−1(f −Bx)
)
j

(35)
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Then, with rh ∈ Vhp denoting the element corresponding to the vector Θ
−1(f −Bx) it holds

est2 :=
∑

T∈T

est(T )2 = (f −Bx)T
(
Θ

−1(f −Bx)
)
= ‖rh‖

2
Vα
. (36)

Let us discuss the convergence rates we can expect. Due to standard approximation results of
the L2-orthogonal projection πp : L2(I) → Up(T ) we have

inf
σ′
hp∈U

p(T )
N1−α/2‖σ − σ′hp‖Hα/2−1(I) ≤ N1−α/2‖σ − πpσ‖Hα/2−1(I)

. ‖σ − πpσ‖L2(I) . N−min(p+1,s)‖σ‖Hs(I)

and

inf
u′
hp∈U

q(T )
‖u− u′hp‖L2(I) . N−min(q+1,r)‖u‖Hr(I).

According to Theorem 7, this yields

‖u− uhp‖Uα . est . N−min(q+1,p+1,r,s)
(
‖σ‖Hs(I) + ‖u‖Hr(I)

)
. (37)

Here, the fact that est can be included in this estimate in this way follows from Theorem 1. For
the numerical examples where the exact solution u = (σ, u, σ̂, û) is known, we can compute the
exact error ‖u‖Uα . For this we define the quantities

err(uh) := ‖u− uh‖L2(I),

err(σh) := N1−α/2‖hα/2−1(σ − σh)‖L2(I),

err(ûh) := N−1/2|û− ûh|,

err(σ̂h) := N−1/2|σ̂ − σ̂h|.

Here, û are the evaluations of the function u at the interior nodes (i.e. without the endpoints of
the interval I = (0, 1)) of the mesh T and σ̂ are the evaluations of D2−αDu at the nodes of T .

We emphasize that the norms err(σh), err(ûh), and (̂σ̂h) to measure the error of approximations
to σ, û, and σ̂ are stronger than those contained in the norm ‖u‖Uα on the left-hand side of (37).
However, the experiments show that we have optimal convergence rates also in these stronger
norms. We emphasize that we even have the rigorous error bound

‖u− uhp‖
2
Uα

. est2 . err(σh)
2 + err(uh)

2.

4.2 Example 1

We consider the following example, see also [15, Section 5, Example 2]: Let I = (0, 1), α = 3/2,
b(x) := 1/2, c(x) := 1/2 for x ∈ I and prescribe the exact solution u(x) = x2 − x3. Then, the
right-hand side is given by

f(x) = −2
Γ(2)

Γ(3− α)
x2−α + 3

Γ(3)

Γ(4− α)
x3−α −

1

2
x3 − x2 + x.
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Furthermore, straightforward calculations show

σ(x) = Du = 2x− 3x2,

D2−ασ(x) = D2−αDu = 2
Γ(2)

Γ(4− α)
x3−α − 3

Γ(3)

Γ(5 − α)
x4−α.

We consider uniform meshes on I with mesh-size h = 1/N and N = #T . Figure 1 shows
results for different values of p, q,m, n. As u and σ are both smooth, we expect from (37)
that est = O(N−min(p+1,q+1)), and the numerical experiments reflect this expectation. We
even see in the experiments the simultaneous approximation orders err(uh) = O(N−(q+1)) and
err(σh) = O(N−(p+1)). The trace errors err(ûh) and err(σ̂h) show higher convergence rates in
all cases. In the case p = 0, q = 1,m = 2, n = 2 (upper right plot), est converges slightly faster
than err(σh) but slower than err(uh).

4.3 Example 2

For the next example we prescribe the exact solution u(x) = xλ − x with 1/2 < λ < 3/2 on
I = (0, 1), see also [15, Section 5, Example 3]. The right-hand side as well as σ are given by

f(x) = −
Γ(λ+ 1)

Γ(λ+ 1− α)
xλ−α +

1

Γ(2− α)
x1−α,

σ(x) = Du = λxλ−1 − 1,

Dα−2Du(x) =
Γ(λ+ 1)

Γ(λ+ 2− α)
xλ+1−α −

1

Γ(3− α)
x2−α.

We have u ∈ Hλ+1/2−ε(I) and σ ∈ Hλ−1/2−ε(I) for all ε > 0, and hence, due to 1/2 < λ < 3/2,
with a view to (37), we expect a convergence rate of est = O(N1/2−λ). However, with a view to
the norm ‖ · ‖Uα , the expected rate, dictated by σ in this case, would be O(N1/2−λ+α/2−1). This
is what we will see for uniform refinement. In order to regain the optimal convergence orders
O(N−min(p+1,q+1)), we utilize an adaptive strategy where we use est(T ) as local refinement
indicators and mark elements M ⊆ T according to Dörfler’s marking criterion

θest2 ≤
∑

T∈M

est(T )2, (38)

where we use θ = 0.4 and M is a set of minimal cardinality. Note that θ = 1 means uniform
refinement, i.e., M = T . Each marked element T ∈ M is bisected such that local quasi-
uniformity

max
T,T ′∈T
T∩T ′ 6=∅

diam(T )

diam(T ′)
≤ 2

is preserved. Figure 2 shows est and the error quantities for the parameters

λ = 0.6, α = 1.2.
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In the upper left plot the results for uniform refinement and p = q = 0, n = m = 2 are given.
We observe the convergence rate est = O(N1/2−λ+α/2−1) = O(N−λ+1/10). As expected, also for
the separated error contributions, we observe reduced convergence rates. Adaptive refinement
recovers the optimal rate O(N−min(p+1,q+1)), as is seen in the three remaining plots. As in
Example 4.2, we see that the traces even have better convergence rates.

4.4 Example 3

In the last experiment we set f(x) := log(x) for x ∈ I = (0, 1) and note that f ∈ L2(I). For this
right-hand side we do not know the explicit form of the solution u. Therefore, we only plot the
error in the energy norm est for different values of p, q, m,n and α, respectively. Throughout, we
set p = q as well as m = n = p+ 2. Figure 3 shows the error in the energy norm est for α = 1.6
(left) and α = 1.8 (right). We compare uniform refinement (θ = 1) and adaptive refinement
with θ = 0.4 for p = q = 0. Moreover, we plot the results in the adaptive case with p = q = 1
resp. p = q = 2. We observe that for adaptive refinement we obtain convergence rates p+1, i.e.,
est = O(N−(p+1)), whereas for uniform refinement we get only the suboptimal rate α/2− 1/2.
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Figure 1: Experimental convergence rates for Example 1 from Section 4.2. Uniform mesh refine-
ment is used througout.
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Figure 2: Experimental convergence rates for Example 2 from Section 4.3. Uniform mesh refine-
ment (upper left) and adaptive mesh refinement (upper right and below).
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Figure 3: Experimental convergence rates for Example 3 from Section 4.4. The choice θ = 1
refers to uniform mesh refinement, while θ = 0.4 refers to adaptive mesh refinement.

23


	1 Introduction
	2 Mathematical setting and main results
	2.1 DPG method with optimal test functions
	2.2 Sobolev spaces
	2.3 Fractional integral operators
	2.4 Ultra-weak formulation and main result

	3 Technical results
	3.1 Analysis of the adjoint problem

	4 Numerical Examples
	4.1 Discretization and approximated optimal test functions
	4.2 Example 1
	4.3 Example 2
	4.4 Example 3


