
Domain decomposition algorithms for two dimensional linear
Schrödinger equation

Christophe Besse∗1 and Feng Xing†2

1Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse; CNRS, UPS IMT,
F-31062 Toulouse Cedex 9, France.

2Maison de la Simulation, CEA Saclay France & Laboratoire Paul Painlevé, Université Lille
Nord de France., Present address: Laboratoire J.A. Dieudonné, Université de Nice & Inria

Sophia Antipolis, France.

October 22, 2018

Abstract

This paper deals with two domain decomposition methods for two dimensional linear Schrödinger
equation, the Schwarz waveform relaxation method and the domain decomposition in space method.
After presenting the classical algorithms, we propose a new algorithm for the Schrödinger equation
with constant potential and a preconditioned algorithm for the general Schrödinger equation. These
algorithms are studied numerically. The experiments show that the two new algorithms improve the
convergence rate and reduce the computation time. Besides the traditional Robin transmission condi-
tion, we also propose to use a newly constructed absorbing condition as the transmission condition.

Keywords. Schrödinger equation, Schwarz waveform relaxation method, domain decomposition in
space method

1 Introduction

The aim of this paper is to apply domain decomposition algorithms to the two dimensional linear
Schrödinger equation defined on (0, T)× Ω with a real potential V (t, x, y)

(1)
{

L u := (i∂t + ∆ + V)u = 0, (t, x, y) ∈ (0, T)× Ω,
u(0, x, y) = u0(x, y), (x, y) ∈ Ω,

where Ω = (xl, xr) × (yb, yu) is a bounded spatial domain of R2 with xl, xr, yb, yu ∈ R and the initial
datum u0 ∈ L2(Ω). The equation is complemented with homogeneous Neumann boundary condition on
bottom and top boundaries and Fourier-Robin boundary conditions in left and right boundaries. They
read:

∂nu = 0, y = yb, yu, ∂nu+ Sbu = 0, x = xl, xr,

∗christophe.besse@math.univ-toulouse.fr
†feng.xing@unice.fr

1

ar
X

iv
:1

50
6.

05
63

9v
2

 [
m

at
h.

N
A

]
 1

0
M

ar
 2

01
6

where ∂n denotes the normal derivative, n being the outwardly unit vector on the boundary ∂Ω, and the
operator Sb is some transmission operator.

We consider in this paper two domain decomposition methods. The first one is the Schwarz waveform
relaxation method without overlap (SWR) [12, 10], which is based on the time-space domain decomposi-
tion. The time-space domain (0, T)×Ω is decomposed into some subdomains (0, T)×Ωj , j = 1, 2, ..., N .
The solution is computed on each subdomain and the time-space boundary values are transmitted via
transmission conditions. The derivation of efficient transmission conditions is one of the key points of the
SWR method. For Schrödinger equation, some transmission conditions are proposed in [11, 3, 5], such as
Robin transmission condition, optimal transmission condition etc..

The second method we consider here is the domain decomposition in space method (DDS) [7, 14]. First
of all, the time dependent equation is semi-discretized in time with an implicit scheme on the entire spatial
domain. This procedure leads to a stationary equation in space. Then standard domain decomposition
methods (such as the optimized Schwarz method [8, 6, 13]) are applied to this stationary equation. The
DDS method demands a conforming time discretization. The use of nonconforming discretization in time
is non standard for the Schrödinger equation and we therefore fulfill this requirement.

We propose in this article to show the effectiveness of new transmissions conditions (expressed in
term of absorbing transparent conditions) when we apply the two classical algorithms to the Schrödinger
equation. The study of the interface problem allows us to introduce some new algorithms which sig-
nificantly reduce both the computational time and the number of iterations. We compare them to the
classical widely used Robin transmission condition with various intensive numerical tests made on parallel
computers with up to 1024 subdomains.

This paper is organized as follows. In Section 2, we present the classical SWR and DDS algorithms.
We show how the classical DDS algorithm can be interpreted as a combination of some classical SWR
algorithms. In Section 3, we construct an interface problem and analyse its properties. The discretization
of the Schrödinger equation is also provided. Based on these properties, we propose new algorithms and
preconditioned algorithms in the two following sections. In Section 6, we provide numerical experiments
which show the efficiency of our new algorithms. A conclusion is drawn in the last section.

2 Domain decomposition algorithms

2.1 Geometric configuration

The interval (xl, xr) is divided into N subintervals (aj , bj) without overlap. The points aj and bj denote
the ends of the subintervals (aj , bj). Thus, the entire domain Ω is decomposed into N non overlapping
subdomains Ωj = (aj , bj) × (yb, yu), j = 1, 2, ..., N (see Figure 1 for N = 3). We denote the normal
derivative on subdomain Ωj by ∂nj .

x

y

n2 n2

xl = a1 b1 = a2 b2 = a3 b2 = xr

Ω1 Ω2 Ω3

Figure 1: Geometric configuration.

There are obviously other ways to decompose the entire domain. One way is illustrated in Figure
2 (left) for N = 4. The intervals (xl, xr) and (yb, yu) are simultaneously decomposed into subintervals

2

in both spatial directions. In this configuration, an artificial cross point appears. It is well known that
the domain decomposition method with cross points is a difficult problem since the problem becomes
singular at this point. Another possibility is illustrated in Figure 2 (right) for N = 3. The entire
domain is decomposed into an ellipsis and some rings. This approach has many disadvantages for parallel
computing. Indeed, we would like to control the number of cells for the meshes of each subdomains. Their
sizes have to be equivalent to insure a good balance between different process. Thus, we restrict ourselves
in this paper to the first description (see Figure 1).

Figure 2: Two other ways of domain decomposition.

2.2 Classical SWR algorithm

The Schwarz methods being iterative, we label the iteration number of the algorithms by k and denotes
by ukj the solution on subdomain (0, T)× Ωj at iteration k = 1, 2,

The classical SWR algorithm is given by

(2)



L ukj = 0, (t, x, y) ∈ (0, T)× Ωj ,

ukj (0, x, y) = u0(x, y), (x, y) ∈ Ωj ,

Bju
k
j = Bju

k−1
j−1 , x = aj ,

Bju
k
j = Bju

k−1
j+1 , x = bj ,

∂nju
k
j = 0, y = yl, yb,

with a special treatment for the two extreme subdomains (0, T)×Ω1 and (0, T)×ΩN since the boundary
conditions are imposed on x = a1 and x = bN

B1u
k
1 = (∂n + Sb)u

k
1 = 0, x = a1, BNu

k
N = (∂n + Sb)u

k
N = 0, x = bN .

The boundary condition at interface nodes aj and bj is given in term of operator Bj defined by

(3) Bj = ∂nj + Sj , j = 1, ..., N,

where Sj is a transmission operator. Various Sj operators can be considered. The classical widely used
Robin transmission condition is given by

(4) Sj = −ip, p ∈ R+, j = 1, 2, ..., N.

Traditionally, the optimal transmission operator is given in term of transparent boundary conditions. For
the general linear two dimensional Schrödinger equation, we only have access to approximated version of
the TBCs given by the recently constructed absorbing boundary condition Smpade [1, 2] which we used as
the transmission condition

(5) Sj = −i
√
i∂t + ∆Γj + V , j = 1, 2, ..., N,

3

where Γ1 = {b1} × (yb, yu), Γj = {aj , bj} × (yb, yu), j = 2, 3, ..., N − 1 and ΓN = {aN} × (yb, yu). In
our case, the Laplace–Beltrami operator ∆Γj is ∂2

y . Numerically, this operator is approximated by Padé
approximation of order m√

i∂t + ∆Γj + V u ≈
(m∑
s=0

ams −
m∑
s=1

ams d
m
s (i∂t + ∆Γj + V + dms)−1

)
u.

If the potential V = 0 and the spatial domain is R2, the absorbing boundary condition is actually a
transparent boundary conditions. Then it could be proven that the transmission condition Smpade leads to
an optimal SWR method.

The classical SWR algorithm is initialized by an initial guess of Bju0
j |x=aj ,bj , j = 1, 2, ..., N . The

boundary conditions for any subdomain Ωj at iteration k + 1 involve the knowledge of the values of the
functions on adjacent subdomains Ωj−1 and Ωj+1 at prior iteration k. Thanks to the initial guess, we can
solve the Schrödinger equation on each subdomain, allowing to build the new boundary conditions for
the next step, communicating them to other subdomains. This procedure is summarized in (6) for N = 3
subdomains at iteration k.

(6)


B1u

k
1|x=b1

B2u
k
2|x=a2

B2u
k
2|x=b2

B3u
k
3|x=a3

 Solve−−−→

uk1uk2
uk3

→

B2u

k
1|x=b1

B1u
k
2|x=a2

B3u
k
2|x=b2

B2u
k
3|x=a3

 Comm.−−−−→


B1u

k+1
1 |x=b1

B2u
k+1
2 |x=a2

B2u
k+1
2 |x=b2

B3u
k+1
3 |x=a3

 .

Let us define the flux at iteration k by

gk = (B1u
k
1|x=b1 , · · · , Bjukj |x=aj , Bju

k
j |x=bj , · · · , BNu

k
N |x=aN)>,

"·>" denoting the transpose of the vector. Thanks to this definition, we give a new interpretation to the
algorithm which can be written as

(7) gk+1 = Rcgk,

where Rc is a linear operator. The solution to this iteration process is given as the solution to the
continuous interface problem

(8) (I −Rc)g = 0, g = lim
k→∞

gk.

where I is identity operator.

2.3 Classical DDS algorithm

The other algorithm we consider in this paper is the domain decomposition in space algorithm (DDS).
The equation (1) is first semi-discretized in time on the entire domain (0, T)×Ω. The time interval (0, T)
is discretized uniformly with NT intervals of length ∆t. We denotes un (resp. Vn) an approximation of
the solution u (resp. V) at time tn = n∆t. The Crank-Nicolson scheme on (0, T)× Ω reads

i
un − un−1

∆t
+ ∆

un + un−1

2
+
Vn + Vn−1

2

un + un−1

2
= 0, 1 6 n 6 NT .

By introducing new variables vn = (un + un−1)/2 with v0 = u0 and Wn = (Vn + Vn−1)/2, we get a
stationary equation defined on Ω with unknown vn

(9) Lxvn =
2i

∆t
un−1,

4

where Lx := 2i
∆t + ∆ +Wn. We recover the original unknown by un = 2vn − un−1. Then, the optimized

Schwarz algorithm is applied to the stationary equation (9). We denote by Rj , j = 1, 2, ..., N the restriction
operator from Ω to Ωj . At time tn, the classical algorithm reads

(10)


Lxv

k
n,j = 2i

∆tRjun−1, (x, y) ∈ Ωj ,

∂njv
k
n,j + Sjv

k
n,j = ∂njv

k−1
n,j−1 + Sjv

k−1
n,j−1, x = aj ,

∂njv
k
n,j + Sjv

k
n,j = ∂njv

k−1
n,j+1 + Sjv

k−1
n,j+1, x = bj ,

∂njv
k
n,j = 0, y = yl, yb,

where vkn,j denotes the unknown at time tn, on subdomain Ωj at iteration k and Sj is the semi-discrete
form of Sj given by (4) or (5). A special treatment for the two extreme subdomains is needed and the
boundary conditions read ∂n1v

k
n,1 + S1v

k
n,1 = 0, x = a1, ∂nN v

k
n,N + SNv

k
n,N = 0, x = bN .

Since the interval (tn−1, tn) contains only one time step, the DDS algorithm can be numerically
interpreted as a sequence of some SWR algorithms.

Algorithm 1: DDS algorithm
The initial datum is u0.
for n = 1, 2, ..., NT do

Apply the SWR algorithm to{
L u = 0, (t, x, y) ∈ (tn−1, tn)× Ω,
u(0, x, y) = un−1(x, y), (x, y) ∈ Ω,

where tn = n∆t.

3 Discrete interface problem

We know by (8) that the classical SWR algorithm reduces to the interface problem

(I −Rc)g = 0, g = lim
k→∞

gk.

The aim of this section is discretize this relation and to show that the discrete interface problem can be
written as

(11) (I − Lh)g = d,

where the vector g is the discrete form of g, d is a vector

d = (d>1,r,d
>
2,l,d

>
2,r, · · · ,d>N,l)> ∈ RNy×NT ,

5

and Lh is a block matrix (the notation “MPI j” above the columns of the matrix will be used in section
4)

(12) Lh =



MPI 0︷︸︸︷ MPI 1︷ ︸︸ ︷ MPI 2︷ ︸︸ ︷ MPI N−2︷ ︸︸ ︷ MPI N−1︷︸︸︷
X2,1 X2,2

X1,4

X3,1 X3,2

X2,3 X2,4

· · ·
X3,3 X3,4

XN−1,1 XN−1,2

· · ·
XN,1

XN−1,3 XN−1,4



.

The concrete definitions of dj,l, dj,r, j = 1, 2, ..., N and the bloks in Lh are given in proposition 3.5
and proposition 3.6. The subsection 3.2 is devoted to the derivation of some important properties of Lh,
which give the ground to make the new algorithm given in section 4.

3.1 Preliminaries related to discretization

Without loss of generality, we present the discretization of (1) on (0, T)×Ω with the following boundary
conditions [1, 2] 

∂nu = 0, y = yb, yu,
∂nu+ Su = l(t, y), x = xl,
∂nu+ Su = r(t, y), x = xr,

where l(t, y) and r(t, y) are two functions. The discrete version of (2) follows immediately. Concerning
the semi-discretization with respect to time, we follow the procedure given in section 2.3 for the classical
DDS algorithm. The scheme therefore reads

(13)
2i

∆t
vn + ∆vn +Wnvn =

2i

∆t
un−1.

The semi-discrete transmission condition is given by

∂nvn + Svn = ln, x = xl, ∂nvn + Svn = rn, x = xr,

where ln = l(n∆t, y), rn = r(n∆t, y) and S is the semi-discrete form of S. If we consider the Robin
transmission condition (4), we have

(14) Robin : Svn = −ip · vn.

The approximation of the transmission condition (5) is given by

(15) Smpade : Svn = −i
m∑
s=0

ams vn + i

m∑
s=1

ams d
m
s ϕ

n−1/2
s ,

where ams = eiθ/2/(m cos2((2s−1)π
4m)), dms = eiθ tan2((2s−1)π

4m), s = 0, 2, ...,m, θ = π
4 . The auxiliary functions

ϕ
n−1/2
s , s = 1, 2, ...,m are defined as the solutions of the set of equations

(2i

∆t
+ ∆Γ +Wn + dms

)
ϕn−1/2
s − vn =

2i

∆t
ϕn−1
s ,

ϕns = 2ϕn−1/2
s − ϕn−1

s , ϕ0
s = 0.

6

The spatial approximation is realized by the standard Q1 finite element method. The uniform mesh
size of a discrete element is (∆x,∆y). We denote by Nx (resp. Ny) the number of nodes in x (resp. y)
direction on each subdomain. Let us denote by vn (resp. un) the nodal interpolation vector of vn (resp.
un), ln (resp. rn) the nodal interpolation vector of ln (resp. rn), M the mass matrix, S the stiffness
matrix and MWn the generalized mass matrix with respect to

∫
ΩWnvφdx. Let MΓ the boundary mass

matrix, SΓ the boundary stiffness matrix and MΓ
Wn

the generalized boundary mass matrix with respect
to
∫

ΓWnvφdΓ. We denote by Ql (resp. Qr) the restriction operators (matrix) from Ω to {xl} × (yb, yu)
(resp. {xr}× (yb, yu)) and Q> = (Q>l , Q

>
r). The matrix formulation for the transmission condition Robin

is therefore given by

(16) Robin :
(
An + ip ·MΓ

)
vn =

2i

∆t
Mun−1 −MΓQ>

(
ln
rn

)
,

where An = 2i
∆tM− S + MWn . The size of this linear system is Nx ×Ny. If we consider the transmission

condition Smpade, we have


An + i(

∑m
s=0 a

m
s) ·MΓ B1 B2 · · · Bm

C Dn1
C Dn2
...

. . .
C Dnm




vn

ϕ
n−1/2
1

ϕ
n−1/2
2
...

ϕ
n−1/2
m



=


Mj

QMΓQ>

QMΓQ>

. . .
QMΓQ>




un−1

ϕn−1
1

ϕn−1
2
...

ϕn−1
m

−

MΓQ>

(
ln
rn

)
0
...
0

 ,(17)

with

Bs = −iams dms MΓQ>, 1 6 s 6 m,

C = −QMΓ,

Dns = Q(
2i

∆t
MΓ − SΓ + MΓ

Wn
+ dms MΓ)Q>, 1 6 s 6 m.

It is a linear system with unknown (vn,ϕ
n−1/2
1 , ...,ϕ

n−1/2
m) where ϕ

n−1/2
s is the nodal interpolation of

ϕ
n−1/2
s on the boundary.

Remark 3.1. The Smpade transmission condition involves a larger linear system to solve than the one of
the Robin transmission condition. The cost of the algorithm with the Smpade transmission condition is
therefore more expensive.

The equations (16) and (17) are given for a fixed discrete time tn. They however can be written
globally in time by some straightforward calculations.

Proposition 3.2. For the Robin transmission condition, the global form in time of the equation (16) is

(18) (A−B)v = F−MΓQ>g,

7

where B = −ip ·MΓ = −ip · diagNT
{MΓ}, Q>l = diagNT

{Q>l }, Q>r = diagNT
{Q>r } and

A =


A1

− 4i
∆tM A2

4i
∆tM − 4i

∆tM A3
...

...
. . .
− 4i

∆tM ANT

 , v =


v1

v2
...
...

vNT

 ,

F =
2i

∆t


Mu0

−Mu0
...

(−1)NT−1Mu0

 , Q> =


Q>l Q>r

Q>l Q>r
.

Q>l Q>r

 .

Proposition 3.3. If we consider the transmission condition Smpade, then the equation (17) can be written
globally in time as (18)

(A−B)v = F−MΓQ>g,

with B given by

(19) B = −



caMΓ + Y1,1

Y2,1 caMΓ + Y2,2

Y3,1 Y3,1 caMΓ + Y3,3

...
...

. . .

YNT ,1 YNT ,2 YNT ,3 · · · caMΓ + YNT ,NT


,

where ca = i(
∑m

s=0 a
m
s).

Proof. According to (17), for s = 1, 2, ...,m, n = 1, 2, ..., NT , we have

−QMΓvn + Dnsϕn−1/2
s =

2i

∆t
QjMΓQ>ϕn−1

s , n > 1,

where Dns = Q(2i
∆tM

Γ − SΓ + MΓ
Wn

+ dms MΓ)Q>. We therefore obtain

ϕn−1/2
s = (Dns)−1QjMΓvn + (Dns)−1 2i

∆t
QMΓQ>ϕn−1

s ,

and
ϕn−1
s = 2ϕn−3/2

s −ϕn−2
s , ϕ0

s = 0, n > 2.

By induction, ϕn−1/2
s is given by

(20) ϕn−1/2
s =

n∑
p=1

Ln,ps vp,

where Ln,ps are matrix. Replacing ϕ
n−1/2
s by vp in the first row of the equation (17) gives(

An + i(
m∑
s=0

ams) ·MΓ
)
vn +

n∑
p=1

Yn,pvp =
2i

∆t
Mun−1 −MΓQ>

(
ln
rn

)
,(21)

where Yn,p := −i
∑m

s=1 a
m
s d

m
s MΓQ>Ln,ps Then, according to (21), the matrix B is given by (19).

Remark 3.4. Following the same procedure, the equation (2) is discretized on each subdomain (0, T)×Ωj .
Accordingly, we define the matrices Aj , Bj , MΓj , Ln,pj,s associated with the finite element method, the
restriction matrix Qj,l, Qj,r and the solution vector vkj,n. The subscript "j" emphasizes the definition of
the matrices associated to the subdomains (0, T)× Ωj .

8

3.2 Properties of Lh
Let us define the fluxes

lkj (t, y) = ∂njv
k
j + Sjv

k
j , r

k
j (t, y) = ∂njv

k
j + Sjv

k
j , (t, y) ∈ (0, T)× Ωj ,

for j = 1, 2, ..., N with the two special cases lk1 = rkN = 0 corresponding to the left and right boundaries
and

lkn,j = lkj (tn, y), rkn,j = rkj (tn, y).

We denote by lkj,n (resp. rkj,n) the nodal interpolation vector of lkj,n (resp. rkj,n)

(22)

{
rk+1
j−1,n = −lkj,n + 2Qj,l · S̃jvkj,n, j = 2, 3, ..., N,

lk+1
j+1,n = −rkj,n + 2Qj,r · S̃jvkj,n, j = 1, 2, ..., N − 1,

where we have for the Robin transmission condition

Robin : S̃jv
k
j,n = −ip · vkj,n,

and for the Smpade condition

Smpade : S̃jv
k
j,n = −i(

m∑
s=0

ams)vkj,n + i
m∑
s=1

ams d
m
s ϕ

n−1/2
j,s .

Then, we define the discrete interface vector g by

(23) g = lim
k→∞

gk,

where

gk = (gk,>1 ,gk,>2 , ...,gk,>N)>,

gk1 = (rk,>1,1 , r
k,>
1,2 , · · · , r

k,>
1,NT

)> ∈ CNy×NT ,

gkN = (lk,>N,1, l
k,>
N,2, · · · , l

k,>
N,NT

)> ∈ CNy×NT ,

gkj = (lk,>j,1 , · · · , l
k,>
j,NT

, rk,>j,1 , · · · , r
k,>
j,NT

)> ∈ C2Ny×NT , j = 2, 3, ...N − 1.

Proposition 3.5. If we consider the Robin transmission condition, the discrete form of the interface
problem (8) is given by (11).

Proof. According to (22), and the definitions of gk, it is easy to verify that

(24)

Xj,1 = −I − 2ip ·Qj,l(Aj −Bj)
−1MΓjQ>j,l,

Xj,2 = −2ip ·Qj,l(Aj −Bj)
−1MΓjQ>j,r,

Xj,3 = −2ip ·Qj,r(Aj −Bj)
−1MΓjQ>j,l,

Xj,4 = −I − 2ip ·Qj,r(Aj −Bj)
−1MΓjQ>j,r,

and

dj,l = 2ip ·Qj−1,r(Aj−1 −Bj−1)−1Fj−1, j = 2, 3, ..., N,

dj,r = 2ip ·Qj+1,l(Aj+1 −Bj+1)−1Fj+1, j = 1, 2, ..., N − 1.
(25)

9

Proposition 3.6. If we consider the transmission condition Smpade, then (11) is the discrete form of the
interface problem (8).

Proof. By using (22), we have

S̃jv
k
j,n = −cavkj,n + i

m∑
s=1

ams d
m
s

n∑
p=1

Ln,pj,s v
k
j,p = −cavkj,n + i

n∑
p=1

(m∑
s=1

ams d
m
s L

n,p
j,s

)
vkj,p.

We could easily verify that

(26)

Xj,1 = −I + 2Qj,lB
S
j (Aj −Bj)

−1MΓjQ>j,l,

Xj,2 = 2Qj,lB
S
j (Aj −Bj)

−1MΓjQ>j,r,

Xj,3 = 2Qj,rB
S
j (Aj −Bj)

−1MΓjQ>j,l,

Xj,4 = −I + 2Qj,rB
S
j (Aj −Bj)

−1MΓjQ>j,r,

and

dj,l = Qj−1,rB
S
j−1(Aj−1 −Bj−1)−1Fj−1, j = 2, 3, ..., N,

dj,r = Qj+1,lB
S
j+1(Aj+1 −Bj+1)−1Fj+1, j = 1, 2, ..., N − 1,

(27)

where the matrix BS
j is defined by

BS
j =



−caI + i

m∑
s=1

ams d
m
s L

1,1
j,s

i
m∑
s=1

ams d
m
s L

2,1
j,s −caI + i

m∑
s=1

ams d
m
s L

2,2
j,s

...
...

. . .

i

m∑
s=1

ams d
m
s L

NT ,1
j,s i

m∑
s=1

ams d
m
s L

NT ,2
j,s · · · −caI + i

m∑
s=1

ams d
m
s L

NT ,NT
j,s


.

Let us now study the structure of the subblock of Lh for time independent potential V = V (x, y).
More specifically, we focus on

(28)

X1,4 = {x1,4
n,s}16n,s6NT

,

Xj,1 = {xj,1n,s}16n,s6NT
, Xj,2 = {xj,2n,s}16n,s6NT

,

Xj,3 = {xj,3n,s}16n,s6NT
, Xj,4 = {xj,4n,s}16n,s6NT

, j = 2, 3, ..., N − 1,

XN,1 = {xN,1n,s }16n,s6NT
.

where xj,1n,s, xj,2n,s, xj,3n,s, xj,4n,s ∈ CNy×Ny are submatrices.
Each subblock X1,2,3,4

j are made of submatrices which are set on very specific positions. This structure
is presented in Figure 3 for 3 time steps and 6 nodes on the interface between two subdomains. We see
that each sub-diagonal block is identical. We present this property mathematically in proposition 3.7
with the two transmission condition Robin or Smpade. The demonstration is similar to the one obtained for
one dimensional Schrödinger equation [5]. The formal difference between dimension one and dimension
two is that the flux are scalar in one dimension and vectors in two dimensions.

10

Figure 3: Block structure, NT = 3, Ny = 6.

Proposition 3.7. For the transmission Robin (resp. Smpade), assuming that the linear system (16) (resp.
(17)) is not singular, if the potential is time independent V = V (x, y), then the matrices X1,4, Xj,1,Xj,2,
Xj,3, Xj,4, j = 2, 3, ..., N − 1 and XN,1 are block lower triangular matrices and they satisfy

x1,4
n,s = x1,4

n−1,s−1,

xj,1n,s = xj,1n−1,s−1, x
j,2
n,s = xj,2n−1,s−1,

xj,3n,s = xj,3n−1,s−1, x
j,4
n,s = xj,4n−1,s−1, j = 2, 3, ..., N − 1,

xN,1n,s = xN,1n−1,s−1,

for 2 6 s 6 n 6 NT .

If the potential is constant, the sub-blocks of Lh are simpler and follow the following proposition.

Proposition 3.8. Assuming that the matrix Aj −Bj is not singular with the Robin or the Smpade trans-
mission condition, and that the mesh is uniform and the size of subdomains Ωj are equal, if the potential
V is constant, then the subblocks of Lh satisfy

(29)
X2,1 = X3,1 = · · · = XN,1, X2,2 = X3,2 = · · · = XN−1,2,

X2,3 = X3,3 = · · · = XN−1,3, X1,4 = X2,4 = · · · = XN−1,4.

Proof. Thanks to the hypothesis of the proposition, the geometry of each subdomain is identical. Thus,
the various matrices coming from the assembly of the finite element methods are the same. Therefore,
we have

A1 = A2 = · · · = AN , MΓ1 = MΓ2 = · · · = MΓN ,

and the restrictions matrices satisfy

Q1,l = Q2,l = · · · = QN,l, Q1,r = Q2,r = · · · = QN,r.

Since V is constant, then M1,Wn = M2,Wn = ... = MN,Wn . Thus by definitions, we have

A1 = A2 = · · · = AN , B1 = B2 = · · · = BN , Q1 = Q2 = · · · = QN ,

and BS
1 = BS

2 = · · · = BS
N for the transmission condition Smpade. The conclusion therefore follows from

(24) and (26).

11

4 New algorithms for the Schrödinger equation with a constant poten-
tial

Thanks to the analysis yielded in previous section, we can build explicitly the interface problem (11).
The main idea of our new algorithm is therefore to explicitly construct the matrix Lh and the vector d.
Following propositions (3.7) and (3.8), it is sufficient to compute four subblocks to explicitly build the
matrix Lh. Without loss of generality, we construct the blocks X2,1, X2,2, X2,3 and X2,4. Furthermore,
only the first Ny columns of each block are necessarily computed.

4.1 New SWR algorithm

We propose here a new SWR algorithm for the Schrödinger equation with a constant potential V . We
always suppose that the size of each subdomain is identical and the mesh is uniform.

Algorithm 2: New SWR algorithm, constant potential V
1: Build Lh and d in relation (I − Lh)g = d explicitly.
2: Solve the linear system (I −Lh)g = d by an iterative method (fixed point method or

Krylov methods).
3: Solve the Schrödinger equation on each subdomain on (0, T)× Ωj using the flux

obtained from step 2.

Mathematically, this new SWR algorithm is identical to the classical one. The main novelty here is that we
construct explicitly the matrix Lh and the vector d (corresponding to the first step), while in the classical
algorithm, Lh remains an abstract operator. It is not usual to build explicitly such huge operator, but as
we will see, its computation is not costly.

We show below the construction of Lh and d for the Robin transmission condition. This is is based
on the formulas (24) and (25). For the transmission condition Smpade, the idea is similar, but involves (26)
and (27). According to the proposition 3.5, the column s of X2,1 and X2,3 are

X2,1es = −es − 2ip ·Q2,lM
Γ2Q>2,lM

Γ2Q>2,les,

X2,3es = −2ip ·Q2,r(A2 −B2)−1MΓ2Q>2,les,

where the vector es = (0, 0, ..., 1, ...0) ∈ CNT×Ny , all its elements being zero to the exception of the s-th,
which is one. The element MΓ2Q>2,les being a vector, it is necessary to compute one time the application
of (A2 −B2)−1 to a vector. Similarly, we have

X2,2es = −2ip ·Q2,l(A2 −B2)−1MΓ2Q>2,res,

X2,4es = −es − 2ip ·Q2,r(A2 −B2)−1MΓ2Q>2,res,

In conclusion, to know the first Ny columns of X2,1, X2,2, X2,3 and X2,4, it is sufficient to compute 2Ny

times the application of (A2 −B2)−1 to a vector. In other words, this amounts to solve the Schrödinger
equation on a single subdomain 2Ny times to build the matrix Lh. Without loss of generality, since the
geometry of each sub domain is identical and the matrix Lh is independent of the initial solution, we focus
here on the domain (0, T) × Ω2. The resolutions being all independent, we can solve them on different
processors using MPI paradigm. We fix one MPI process per domain. To construct the matrix Lh, we
use the N MPI processes to solve the equation on a single subdomain ((0, T)×Ω2) 2Ny times. Each MPI
process therefore solves the Schrödinger equation on a single subdomain maximum

Nmpi := [
2Ny

N
] + 1 times,

12

where [x] denotes the integer part of x. This construction is therefore super-scalable in theory. Indeed, if
N is doubled, then the size of the subdomains is divided by two and Nmpi is also approximately halved.

Concerning the computational phase, the transposed matrix of Lh is stored in a distributed manner
using the PETSc library [4]. As shown by (12), the first block column of Lh lies in MPI process 0. The
second and third blocks columns are in MPI process 1, and so on for other processes. The size of each
block is (NT ×Ny)× (NT ×Ny). Each block contains (NT + 1)×NT /2×N2

y nonzero elements.
The construction of the vector d is similar. According to (25), one needs to apply (Aj − Bj)

−1 to
vector Fj for j = 1, 2, ..., N . In other words, we solve the Schrödinger equation on each subdomain one
time. Again, the vector is stored in a distributed manner using the PETSc library.

d = 2



d1,r
...

dj,l
dj,r
...

dN,l



}
MPI 0, NT ×Ny elements}
MPI j, 2NT ×Ny elements

}
MPI N , NT ×Ny elements

4.2 New DDS algorithm

Since we have interpreted the DDS method as sequence of some SWR methods in Algorithm 1, we can
apply directly the ideas developped in the previous sections to the DDS method. Let us denote the
interface problem of {

i∂tu+ ∆u+ V u = 0, (t, x, y) ∈ (tn−1, tn)× Ω,
u(0, x, y) = un−1(x, y), (x, y) ∈ Ω,

by

(30) (I − Lh,n)gn = dn,

where Lh,n is interface matrix and dn is vector. In the classical algorithm, Lh,n remains an abstract
operator. We propose to build it explicitly in the new DDS algorithm. Actually, thanks to the following
proposition, the computation of the complete operator Lh,n only require to compute Lh,1.

Proposition 4.1. For the transmission Robin and Smpade, the interface matrix satisfies

Lh,1 = Lh,2 = ... = Lh,NT
.

Proof. According to (24) and (26), the interface matrix is independent of the initial datum, thus the
conclusion follows directly.

Algorithm 3: New DDS algorithm, constant potential V
1: Build Lh,1 explicitly.
2: The initial datum is u0.
for n = 1, 2, ..., NT do

2.1: Build dn on time tn,
2.2: Solve the linear system (I − Lh,n)gh,n = dn by an iterative method, where
the initial vector is chosen as gh,n−1.
2.3: Solve the Schrödinger equation on each subdomain (tn−1, tn)×Ωj using the
flux from step 2.2 to compute un.

13

Mathematically, this new DDS algorithm is identical to the classical one. Compared with the new SWR
algorithm, the construction of the interface matrix is less costly since the size of Lh,1 is smaller than that
of Lh.

5 Preconditioned algorithms for general linear potential

In the case of a non constant potential, the proposition 3.8 does not hold. Thus we could not construct
easily the matrix Lh. The aim of this section is to present preconditioned algorithms for the Schrödinger
equation (1) with a non constant potential V = V (t, x, y). Adding a preconditioner to the equation (11)
leads to a preconditioned SWR algorithm

(31) P−1(I − Lh)g = P−1d,

We propose here to use
P = I − L0,

where L0 denotes the interface matrix in (11) defined for the free Schrödinger equation when V = 0.
As mentioned in the previous section, it could be easily constructed numerically and it is stored in a
distributed manner. For any vector y, the vector x := P−1y is computed by solving the linear system

Px = y.

with Krylov methods (for example GMRES or BiCGStab). However, the size of P increases linearly with
the number of subdomains N . Also the number of involved operations for multiplying L0 and a vector
(which is the basic operation of Krylov method) is not negligible compared to the computation of the
solutions to the equations on each subdomain if N is large. Thus, the application of the preconditioner
increases.

We could derive straightforwardly a preconditioned DDS algorithm from the point of view of Algorithm
1. The preconditioner for all time steps n = 1, 2, ..., NT is always chosen as

P = I − L0,1,

where L0,1 is the interface matrix of (30) defined for V = 0 and n = 1.
Remark 5.1. The idea of these new algorithm are not limited to the Schrödinger equation. It could also
be applied to some other PDEs, like heat equation etc. The only limitation is that the mesh and the
decomposition should be uniform.

6 Numerical results

The complete domain Ω = (−16, 16) × (−8, 8) is decomposed into N equal subdomains. The size of a
single cell is ∆x×∆y. We consider two different meshes

∆x = 1/128, ∆y = 1/8;

∆x = 1/2048, ∆y = 1/128.

With the first mesh, it is possible to solve the Schrödinger equation (1) on the entire domain on a single
node of a cluster composed of 92 nodes (16 cores/node, Intel Sandy Bridge E5-2670, 32GB memory/node).
Thus we could observe if the parallel algorithms allow to reduce the total computation time of the

14

Figure 4: Initial datum |u0|, u0 = e−x
2−y2−0.5ix.

sequential algorithm. We are interested in the strong scalability up to 1024 subdomains. The initial
datum in this section is

(32) u0(x, y) = e−x
2−y2−0.5ix. (see Figure 4)

This section is composed of two subsections. The first one is devoted to the free Schrödinger equation
(V = 0). In the second, we consider the Schrödinger equation with a linear potential V = x2 + y2.
Remark 6.1. For the DDS algorithm, we consider mostly the convergence properties (for example the
number of iterations) of the first time step. In other words, we only study the evolution between t0 → t1

to compute v1 with the optimized Schwarz method.
Remark 6.2. The theoretical optimal parameter p in the Robin transmission condition is not at hand for
us. We then seek for the best parameter numerically for each case.

6.1 The free Schrödinger equation

In this part, we first compare the SWR method and the DDS algorithm. The DDS algorithm being
more efficient, we next compare the classical DDS and the new DDS algorithms. Finally, the influence of
parameters is studied in Section 6.1.3.

6.1.1 SWR vs. DDS

We compare the SWR and the DDS methods in the framework of the classical algorithm. The time step
is set to ∆t = 0.01. The mesh size is ∆x = 1/128, ∆y = 1/8. Both methods are applied on time-space
domain (0, T) × Ω with various final time T . We denote by NS

iter the number of iterations required to
obtain convergence of the SWR method, ND

iter the number of iterations of the first time step of the DDS
method and TS (resp. TD) the total computation time of the SWR method (resp. DDS method). Table
1 and Table 2 present the numbers of iterations and the computation times of both methods for N = 2
and N = 32, where the transmission conditions are Smpade,m = 5 and Robin respectively. The initial
vector is the zero vector and the GMRES method is used on the interface problem. We could see that
NS

iter increases with the final time T and NS
iter > ND

iter. Thus T
S > TD.

In the next subsections, without special statement, we only consider the DDS method since it does
requires less computation time.

15

Table 1: Number of iterations and computation time of the SWR method and the DDS method for
N = 2, 32 with the transmission condition S5

pade.
T N = 2 N = 32

NS
iter ND

iter TS TD NS
iter ND

iter TS TD

0.05 17 9 17.6 12.3 17 10 1.5 1.9
0.1 25 9 44.5 21.5 25 10 3.5 1.8
0.15 30 9 78.4 30.9 31 10 6.4 2.6
0.2 44 9 147.9 40.0 45 10 11.8 3.4
0.25 51 9 215.0 49.3 52 10 16.9 4.1
0.3 55 9 271.0 58.6 55 10 21.2 4.8
0.35 58 9 332.1 67.9 59 10 26.3 5.6
0.4 61 9 402.9 77.2 62 10 32.0 6.3
0.45 64 9 474.5 86.4 65 10 37.6 7.1
0.5 68 9 557.6 96.1 73 10 46.3 7.8

Table 2: Number of iterations and computation time of the SWR method and the DDS method for
N = 2, 32 with Robin transmission condition.

T N = 2 N = 32

NS
iter ND

iter TS TD NS
iter ND

iter TS TD

0.05 19 11 13.0 15.9 20 11 1.1 0.6
0.1 28 11 32.6 16.8 29 11 2.7 0.6
0.15 44 11 73.3 17.9 47 11 6.1 0.7
0.2 57 11 123.1 18.9 57 11 9.6 0.8
0.25 76 11 204.6 19.9 80 11 16.6 0.9
0.3 85 11 271.4 21.0 89 11 22.1 1.0
0.35 90 11 333.6 21.9 92 11 26.7 1.0
0.4 100 11 425.3 23.0 102 11 33.5 1.2
0.45 109 11 519.4 24.0 208 11 40.0 1.3
0.5 114 11 601.2 25.0 116 11 47.3 1.3

16

6.1.2 Comparison of classical and new algorithms

In this part, we are interested in the performance (number of iterations and computation time) of the
classical and the new algorithms with the two transmission conditions. We observe the strong scalability
of the two algorithms. Both algorithms and transmission conditions are compared in the framework of
the DDS method. The final time is T = 0.5 and the time step is fixed as ∆t = 0.01. The GMRES method
is used on the interface problem. The initial vector is the zero vector. Since there is no theoretical
result for us on the choice of the optimal parameter p in the Robin transmission condition, we make
tests with different p to find the numerically optimal one. However, we will see in the next subsection
that the number of iterations and the computing time are not sensitive to p using the GMRES method
on the interface problem. Thus, it is difficult to choose the optimal one. We take p = 15 for the mesh
∆x = 1/128, ∆y = 1/8 and p = 10 for the mesh ∆x = 1/2048, ∆y = 1/64. For the transmission condition
Smpade, we take m = 5, the numerical optimal according to some tests.

We first consider the mesh ∆x = 1/128, ∆y = 1/8. Figure 5 presents the convergence history of the
first time step for N = 2 and N = 32. We also show the number of iterations of the first time step and the
total computation time in Table 3 for N = 2, 4, 8, 16, 32. The boundary conditions involve the operator Sb
which can be the usual Robin transmission operator or Smpade. The reference computation times for solving
the Schrödinger equation (1) on the entire domain are therefore not the same. We denote respectively
“Robin ref” and “S5

pade ref.” the solution of the Schrödinger equation computed on the whole domain on
a single processor for the Robin transmission condition and for the transmission condition S5

pade.
We see that the new algorithm allows us to reduce the computation time compared with the classical

algorithm. Moreover, the number of iterations is almost independent of the number of subdomains and
the algorithm is scalable. Finally, the algorithm converges faster with the transmission condition Smpade,
but takes more computational time since. Indeed, the application of the transmission condition Smpade is
more expensive than the Robin transmission condition.

0 2 4 6 8 10 12
Number of iterations

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin

S 5
pade

0 2 4 6 8 10 12
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin

S 5
pade

Figure 5: Convergence history of the first time step for N = 2 (left) ,N = 32 (right).

Remark 6.3. From the results shown in the following subsection (see Table 5 and Table 6 together), we
can see clearly the different convergence rates with the two kinds of transmission conditions.

Next we make tests with the mesh ∆x = 1/2048 ∆y = 1/64. The entire domain is divided into
N = 128, 256, 512, 1024 subdomains. We present in Figure 6 the convergence history for N = 256, 1024
and in Table 4 the numbers of iterations and the total computation time. We can see that the classical
and the new algorithms are not very scalable since the number of iterations increases with the number of
subdomains. However, the new algorithm takes less computation time. Besides, the number of iterations

17

Table 3: Number of iterations of the first time step and total computation time in seconds, T = 0.5,
∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Robin∗ 11 11 11 11 11Number of iterations
S5
pade 9 9 9 9 10

Robin ref. 16.0
Robin cls. 63.1 32.6 17.5 11.0 5.4
Robin new 30.0 9.7 4.4 2.5 1.3
S5
pade ref. 22.1

S5
pade cls. 96.1 49.8 26.7 15.0 7.8

Computation time

S5
pade new 38.2 14.7 6.6 3.4 1.8

*: p = 15.

required for the transmission condition Smpade is less than the one for the Robin transmission condition.
The computation times are however similar.

0 2 4 6 8 10 12 14 16
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin

S 5
pade

0 5 10 15 20 25 30 35 40
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Robin

S 5
pade

Figure 6: Convergence history of the first time step for N = 256 (left), N = 1024 (right).

Table 4: Number of iterations of the first time step and total computation time in seconds, T = 0.5,
∆t = 0.01, ∆x = 1/2048, ∆y = 1/64.

N 128 256 512 1024
Robin∗ 14 16 22 36

Number of iterations
S5
pade 12 14 19 29

Robin cls. 250.2 143.8 92.5 101.4
Robin new 59.1 38.1 36.2 52.3
S5
pade cls. - 187.5 162.6 127.5

Computation time

S5
pade new - 42.7 36.2 45.0

-: the memory is insufficient; *: p = 10.

6.1.3 Influence of parameters

We study in this part the influence of parameters: m in the transmission condition Smpade and p in the
transmission condition Robin. The time step is fixed as ∆t = 0.01. The mesh is ∆x = 1/128, ∆y = 1/8.
Three different methods are used to solve the the interface problem: fixed point method, GMRES method

18

and BiCGStab method. Two initial vectors are considered: the zero vector and the random vector. In
our tests, the algorithm initialized with the zero vector converges faster than the one with the random
vector. However, in this subsection, our goal is to study the influence of parameters. As explained in
[9], initialization with a zero vector to compute a smooth solution makes that the error contains only low
frequencies and could therefore draw the wrong conclusions. Thus we consider both of the two initial
vectors, but we have no wish to compare them.

The parameter m in the transmission condition Smpade. The numbers of iterations of the first
time step with various m are presented in Table 5. We could see that the number of iterations is not
sensitive to the parameter m if the GMRES method or the BiCGStab method is used on the interface
problem. However, if the fixed point method is used, increasing the order of Smpade does not ensure better
convergence property. The transmission condition Smpade is based on formal Padé approximation of square
root operator, this approximation may deteriorate for large m.

Table 5: Number of iterations for different m, N = 32.
Fixed point GMRES BiCGStab

m Zero Random Zero Random Zero Random
3 34 124 11 30 6 17
4 26 96 10 28 6 16
5 21 79 10 27 5 15
6 18 68 9 26 5 15
7 17 61 9 25 5 14
8 18 56 9 25 5 14
9 19 52 10 25 5 14
10 21 50 10 25 5 14
15 32 46 11 26 6 15
20 43 50 12 28 6 16

The parameter p in the transmission condition Robin. We present in Table 6 the numbers of
iterations with various p for N = 32. From the table, we can see that the algorithm is not sensitive to
p if the GMRES method or the BiCGStab method is used on the interface problem, while it exists an
optimal p (marked with an underline) if the fixed point method is used. Besides, the Krylov methods
could accelerate a lot the convergence.

In conclusion, the difference between the two transmission conditions is clear if the fixed point method
is applied to the interface problem and the initial vector is the random vector (see Tables 5 and 6 together).
The number of iterations for the transmission condition Smpade is less than that for the transmission
condition Robin. But the difference is smaller using the Krylov methods and the zero vector as the initial
vector. From the point of view of computation time, the zero vector and the GMRES method are a good
choice. According to the tests in the previous subsection, the computation time for the two transmission
conditions are similar.

6.2 Case of non-zero potential

The aim of this section is to compare the classical algorithm and the preconditioned algorithm in the
framework of the DDS method with the fixed point method used on the interface problem. We first
consider the potential V = x2 + y2. Let us denote by Nnopc (resp. Npc) the number of iterations required
to obtain convergence of the classical algorithm (resp. the preconditioned algorithm) and Tnopc (resp.

19

Table 6: Number of iterations for different p, N = 32.
Fixed point GMRES BiCGStab

p Zero Random Zero Random Zero Random
5 57 580 11 35 6 21
10 34 315 11 32 6 19
15 32 239 11 31 6 18
20 35 209 11 31 6 19
25 40 200 11 32 6 19
30 46 199 11 32 6 19
35 52 204 12 33 6 19
40 59 209 12 33 6 20
45 65 222 12 34 6 20
15 32
26 198

Tpc) the computation time of the classical algorithm (resp. the preconditioned algorithm).
First, we present in Figure 7 the spectral properties of (I−L) and P−1(I−L) for N = 2, 8 subdomains.

We see that the eigenvalues of P−1(I − L) are closer to 1 + 0i than those of (I − L). The convergence
history is therefore better. The Table 7 shows the number of iterations of the first time step and the
total computation time to realize a complete simulation. The mesh is ∆x = 1/128, ∆y = 1/8. As
mentioned before, it is possible to solve the Schrödinger equation on the entire domain with this mesh.
The computation time is denoted by T ref . We can see that all algorithms are robust and the number of
iterations is independent of the number of subdomains. The classical algorithm and the preconditioned
algorithm are both scalable and the preconditioner allows to reduce the number of iterations and the total
computation time. In addition, the times of computation Tnopc, Tpc are less than the reference time T ref

if N is large.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Real part

0.4

0.2

0.0

0.2

0.4

Im
a
g
in

a
ry

 p
a
rt

Cls.

Pd.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Real part

0.4

0.2

0.0

0.2

0.4

Im
a
g
in

a
ry

 p
a
rt

Cls.

Pd.

Figure 7: Eigenvalues of the classical (Cls.) and the preconditioned (Pd.) algorithm, first time step,
∆t = 0.01, ∆x = 1/128, ∆y = 1/8, N = 2 (left), N = 8 (right).

Next, we consider the mesh ∆x = 1/2048,∆y = 1/64. The size of (I−L) is too large to compute all its
spectral values. The convergence history and the computation time are presented in Figure 8 and Table
8. The parameters m used are also presented in Table 8. We can see that the preconditioned algorithm
is more robust and requires much less number of iterations. However the computation time of the two

20

Table 7: Number of iterations of the first time step and total computation time in seconds of the classical
algorithm and the preconditioned algorithm, T = 0.5, ∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Nnopc, m = 7 17 17 17 17 17
Npc, m = 5 5 5 5 5 5

T ref 16.1
Tnopc 142.7 75.3 40.1 23.9 12.1
Tpc 91.3 43.3 22.8 13.1 7.3

algorithms are not quite scalable since for the classical algorithm, the number of iterations increases
with the number of subdomains. Concerning the preconditioned algorithm, the size of preconditioner
is (2N − 2) × NT × Ny. This increases with the number of subdomains N . Thus, the application of
preconditioner takes more computation time with bigger N .

0 5 10 15 20 25 30 35 40
Number of iterations

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

0 10 20 30 40 50 60 70 80
Number of iterations

10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
b
so

lu
te

 R
e
si

d
u
a
l

Classical

Preconditioned

Figure 8: Convergence history of the first time step of the classical algorithm and the preconditioned
algorithm, ∆t = 0.01, ∆x = 1/2048, ∆y = 1/64, N = 256 (left), N = 512 (right).

Table 8: Computation time in seconds of the classical algorithm and the preconditioned algorithm, ∆t =
0.01,∆x = 1/2048,∆y = 1/64.

N 256 512

Classical algorithm
m 8 12

Tnopc 417.9 344.9

Preconditioned algorithm
m 5 6
Tpc 259.9 268.7

We finish this subsection by some numerical tests for a time dependent potential V = 5(x2 + y2)(1 +
cos(4πt)). We get similar conclusion by the results shown in table 9.

In conclusion, the preconditioner allows to reduce significantly the number of iterations and the com-
putation time.

21

Table 9: Number of iterations of the first time step and total computation time in seconds of the classical
algorithm and the preconditioned algorithm, T = 0.5, ∆t = 0.01, ∆x = 1/128, ∆y = 1/8.

N 2 4 8 16 32
Nnopc, p = −10 31 31 31 31 31
Npc, p = −10 9 9 9 9 9

T ref 263.2
Tnopc 272.6 138.5 72.4 40.5 19.5
Tpc 205.6 101.4 52.2 29.4 14.8

7 Conclusion

We applied the SWR method and the DDS method to the two dimensional linear Schrödinger equation
with general potential. We proposed a new algorithm if the potential is a constant and a preconditioned
algorithm for a general linear potential, which allows to reduce the number of iterations and the computa-
tion time compared with the classical one. According to the numerical tests, the preconditioned algorithm
is not sensitive to the transmission conditions (Robin, Smpade) and the parameters in these conditions.

Acknowledgements

We acknowledge Pierre Kestener (Maison de la Simulation Saclay France) for the discussions about the
parallel implementation. This work was partially supported by the French ANR grant ANR-12-MONU-
0007-02 BECASIM (Modèles Numériques call). The first author also acknowledges support from the
French ANR grant BonD ANR-13-BS01-0009-01.

References

[1] X. Antoine, C. Besse, and P. Klein. Absorbing Boundary Conditions for the Two-Dimensional
Schrödinger Equation With an Exterior Potential Part I: Construction and a Priori Estimates. Math.
Model. Methods Appl. Sci., 22(10), Oct. 2012.

[2] X. Antoine, C. Besse, and P. Klein. Absorbing boundary conditions for the two-dimensional
Schrödinger equation with an exterior potential. Part II: Discretization and numerical results. Numer.
Math., 125(2):191–223, 2013.

[3] X. Antoine, E. Lorin, and A. Bandrauk. Domain decomposition method and high-order absorbing
boundary conditions for the numerical simulation of the time dependent schrödinger equation with
ionization and recombination by intense electric field. J. Sci. Comput., pages 1–27, 2014.

[4] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang. PETSc Users Manual. Technical
Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013.

[5] C. Besse and F. Xing. Schwarz waveform relaxation method for one dimensional Schrödinger equation
with general potential. Preprint, arXiv: 1503.02564, 2015.

[6] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decomposition
algorithm for the Helmholtz equation. J. Comput. Phys., 231(2):262–280, 2012.

22

[7] X.-C. Cai. Multiplicative Schwarz methods for parabolic problems. SIAM J. Sci. Comput., pages
1–18, 1994.

[8] M. J. Gander. Optimized Schwarz Methods. SIAM J. Numer. Anal., 44(2):699–731, Jan. 2006.

[9] M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal., 31:228–255,
2008.

[10] M. J. Gander, L. Halpern, and F. Nataf. Optimal Schwarz waveform relaxation for the one dimen-
sional wave equation. SIAM J. Numer. Anal., 41(5):1643–1681, 2003.

[11] L. Halpern and J. Szeftel. Optimized and quasi-optimal Schwarz waveform relaxation for the one
dimensional Schrödinger equation. Math. Model. Methods Appl. Sci., 20(12):2167–2199, Dec. 2010.

[12] V. Martin. An optimized Schwarz waveform relaxation method for the unsteady convection diffusion
equation in two dimensions. Appl. Numer. Math., 52(4):401–428, Mar. 2005.

[13] F. Nataf and F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm.
Math. Model. Methods Appl. Sci., 05(01):67–93, Feb. 1995.

[14] Y. Wu, X.-C. Cai, and D. E. Keyes. Additive Schwarz methods for hyperbolic equations. Contemp.
Math., 218:468–476, 1998.

23

	1 Introduction
	2 Domain decomposition algorithms
	2.1 Geometric configuration
	2.2 Classical SWR algorithm
	2.3 Classical DDS algorithm

	3 Discrete interface problem
	3.1 Preliminaries related to discretization
	3.2 Properties of Lh

	4 New algorithms for the Schrödinger equation with a constant potential
	4.1 New SWR algorithm
	4.2 New DDS algorithm

	5 Preconditioned algorithms for general linear potential
	6 Numerical results
	6.1 The free Schrödinger equation
	6.1.1 SWR vs. DDS
	6.1.2 Comparison of classical and new algorithms
	6.1.3 Influence of parameters

	6.2 Case of non-zero potential

	7 Conclusion

