Skip to main content
Log in

An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Consider the acoustic wave scattering by an impenetrable obstacle in two dimensions. The model is formulated as a boundary value problem for the Helmholtz equation with a transparent boundary condition. Based on a duality argument technique, an a posteriori error estimate is derived for the finite element method with the truncated Dirichlet-to-Neumann boundary operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of boundary operator which decays exponentially with respect to the truncation parameter. A new adaptive finite element algorithm is proposed for solving the acoustic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Babuška, I., Aziz, A.: Survey lectures on mathematical foundations of the finite element method. In: Aziz, A. (ed.) The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, pp. 5–359. Academic Press, New York (1973)

    Google Scholar 

  2. Bayliss, A., Turkel, E.: Radiation boundary conditions for numerical simulation of waves. Commun. Pure Appl. Math. 33, 707–725 (1980)

    Article  MATH  Google Scholar 

  3. Bao, G.: Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 32, 1155–1169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, G., Chen, Z., Wu, H.: Adaptive finite element method for diffraction gratings. J. Opt. Soc. Am. A 22, 1106–1114 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comp. 79, 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, G., Wu, H.: Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwells equations. SIAM J. Numer. Anal. 43, 2121–2143 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Liu, X.: An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43, 645–671 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collino, F., Monk, P.: The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19, 2061–2090 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  13. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31, 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ernst, O.G.: A finite-element capacitance matrix method for exterior Helmholtz problems. Numer. Math. 75, 175–204 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grote, M., Keller, J.: On nonreflecting boundary conditions. J. Comput. Phys. 122, 231–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grote, M., Kirsch, C.: Dirichlet-to-Neumann boundary conditions for multiple scattering problems. J. Comput. Phys. 201, 630–650 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

  18. Hsiao, G.C., Nigam, N., Pasciak, J.E., Xu, L.: Error analysis of the DtN-FEM for the scattering problem in acoustics via Fourier analysis. J. Comput. Appl. Math. 235, 4949–4965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, X., Li, P., Zheng, W.: Numerical solution of acoustic scattering by an adaptive DtN finite element method. Commun. Comput. Phys. 13, 1227–1244 (2013)

    MathSciNet  Google Scholar 

  20. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (1993)

    MATH  Google Scholar 

  21. Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  22. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Teixeira, F.L., Chew, W.C.: Advances in the theory of perfectly matched layers. In: Chew, W.C., et al. (eds.) Fast and Efficient Algorithms in Computational Electromagnetics, pp. 283–346. Artech House, Boston (2001)

    Google Scholar 

  24. Turkel, E., Yefet, A.: Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Z., Bao, G., Li, J., Li, P., Wu, H.: An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53, 1585–1607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of X.J. was supported in part by China NSF Grant 11401040 and by the Fundamental Research Funds for the Central Universities 24820152015RC17. The research of P.L. was supported in part by the NSF Grant DMS-1151308. The research of J.L. was partially supported by the China NSF Grants 11126040 and 11301214. The author of W.Z. was supported in part by China NSF 91430215, by the Funds for Creative Research Groups of China (Grant 11321061), and by the National Magnetic Confinement Fusion Science Program (2015GB110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, P., Lv, J. et al. An Adaptive Finite Element Method for the Wave Scattering with Transparent Boundary Condition. J Sci Comput 72, 936–956 (2017). https://doi.org/10.1007/s10915-017-0382-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0382-2

Keywords

Mathematics Subject Classification

Navigation