Skip to main content
Log in

A Parallel Finite Element Method for 3D Two-Phase Moving Contact Line Problems in Complex Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Moving contact line problem plays an important role in fluid-fluid interface motion on solid surfaces. The problem can be described by a phase-field model consisting of the coupled Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition (GNBC). Accurate simulation of the interface and contact line motion requires very fine meshes, and the computation in 3D is even more challenging. Thus, the use of high performance computers and scalable parallel algorithms are indispensable. In this paper, we generalize the GNBC to surfaces with complex geometry and introduce a finite element method on unstructured 3D meshes with a semi-implicit time integration scheme. A highly parallel solution strategy using different solvers for different components of the discretization is presented. More precisely, we apply a restricted additive Schwarz preconditioned GMRES method to solve the systems arising from implicit discretization of the Cahn–Hilliard equation and the velocity equation, and an algebraic multigrid preconditioned CG method to solve the pressure Poisson system. Numerical experiments show that the strategy is efficient and scalable for 3D problems with complex geometry and on a supercomputer with a large number of processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, V., Gada, V.H., Sharma, A.: Parallelization methodology and performance study for Level-Set-Method based simulation of a 3-D transient two-phase flow. Numer. Heat Tr. B-Fund. 63, 327–356 (2013)

    Article  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse–interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  4. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang H.: PETSc Users Manual, Argonne National Laboratory (2015)

  5. Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiu, P.H., Lin, Y.T.: A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230, 185–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Croce, R., Griebel, M., Schweitzer, M.A.: A parallel level-set approach for two-phase flow problems with surface tension in three space dimensions, Preprint 157, Sonderforschungsbereich 611, Universität Bonn (2004)

  9. De Sterck, H., Yang, U.M., Heys, J.: Reducing complexity in algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27, 1019–1039 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, H., Spelt, P.D.M., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 2078–2095 (2007)

    Article  MATH  Google Scholar 

  11. Dong, S., Shen, J.: A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J. Comput. Phys. 231(17), 5788–5804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, S.: On imposing dynamic contact-angle boundary conditions for wall-bounded liquid-gas flows. Comput. Methods Appl. Mech. Eng. 247–248, 179–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, S.: An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach. J. Comput. Phys. 266, 47–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, S., Wang, X.: A rotational pressure-correction scheme for incompressible two-phase flows with open boundaries. PLoS One 11(5), e0154565 (2016)

    Article  Google Scholar 

  15. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28, 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dussan, V.E.B., Davis, S.H.: On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65(01), 71–95 (1974)

    Article  MATH  Google Scholar 

  17. Eyre, D.J.: In: Bullard, J.W. et al. (eds.), Computational and Mathematical Models of Microstructural Evolution, The Materials Research Society, pp. 39–46, Warrendale, PA (1998)

  18. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fortmeier, O., Bücker, H.M.: A parallel strategy for a level set simulation of droplets moving in a liquid medium. Lect. Notes Comput. Sci. 6449, 200–209 (2011)

    Article  MATH  Google Scholar 

  20. Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, M., Wang, X.-P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272, 704–718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009)

    Article  MATH  Google Scholar 

  23. Guermond, J., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guermond, J.-L., Salgado, A.: A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228, 2834–2846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, Q., Glowinski, R., Wang, X.-P.: A least-squares/finite element method for the numerical solution of the Navier–Stokes–Cahn–Hilliard system modelling the motion of the contact line. J. Comput. Phys. 230(12), 4991–5009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karypis, G., Kumar, V.: MeTis: Unstructured graph partitioning and sparse matrix ordering system, version 4.0, http://www.cs.umn.edu/~metis, University of Minnesota, Minneapolis, MN, (2009)

  29. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    Article  MathSciNet  Google Scholar 

  30. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  31. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18(01), 1–18 (1964)

    Article  MATH  Google Scholar 

  33. Qian, T.Z., Wang, X.-P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  34. Qian, T.Z., Wang, X.-P., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Salgado, A.J.: A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM Math. Model. Numer. Anal. 47, 743–769 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete. Cont. Dyn. S. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shin, S., Chergui, J., Juric, D.: A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows, arXiv:1410.8568 (2014)

  41. Stuben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C., Schuller, A. (eds.) Multigrid, pp. 413–532. Academic Press, London (2001)

    Google Scholar 

  42. Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Comput. and Struct. 83, 435–444 (2005)

    Article  Google Scholar 

  43. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse–interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223, 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, Q., Qian, T.Z., Wang, X.-P.: Phase field simulation of a droplet impacting a solid surface. Phys. Fluids 28, 022103 (2016)

  46. Zheng, X., Yang, C., Cai, X.-C., Keyes, D.: A parallel domain decomposition based implicit method for the Cahn–Hilliard–Cook phase-field equation with thermal fluctuation in 3D. J. Comput. Phys. 285, 55–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This publication was supported in part by the Hong Kong RGC-GRF grants 605513, 16302715, RGC-CRF grant C6004-14G, NSFC-REGC joint research scheme N-HKUST620/15 and the Chinese National 863 Plan Program 2015AA01A302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Wang.

Appendix: The Structures of Element Stiffness Matrix and Element Right-Hand Side of the Proposed Discretization Schemes

Appendix: The Structures of Element Stiffness Matrix and Element Right-Hand Side of the Proposed Discretization Schemes

In this appendix we provide some details for the structures of element stiffness matrix and element right-hand side in Step 1, 3, and 4 of the proposed discretization schemes.

In Step 1, we denote \(\{\varphi _i\}^{N_{w_h}}_{i=1}\) as the piecewise linear finite element basis functions for \(W_h\) with \(N_{w_h}\) as its dimension within an element. The structures of the element stiffness matrix and element right-hand side arising from (2.8)–(2.9) are as follows:

$$\begin{aligned} \begin{pmatrix}K^n_{\phi \phi } &{} K^n_{\phi \mu }\\ K^n_{\mu \phi } &{} K^n_{\mu \mu }\end{pmatrix} ~\text {and}~ \begin{pmatrix}F_\phi ^n\\ F_\mu ^n\end{pmatrix}, \end{aligned}$$
(5.1)

where for \(1\le i,j \le N_{w_h}\),

$$\begin{aligned} K^n_{\phi \phi }(i,j)&=\frac{1}{\delta t}({\varphi _i},\varphi _j),\\ K^n_{\phi \mu }(i,j)&={{\mathcal {L}}}_d(\nabla \varphi _i,\nabla \varphi _j),\\ K^n_{\mu \phi }(i,j)&=-\epsilon (\nabla \varphi _i,\nabla \varphi _j)-\frac{s}{\epsilon }(\varphi _i,\varphi _j)-\left( \frac{1}{{{\mathcal {V}}}_s\delta t}+\tilde{\alpha }\right) \langle \varphi _i,\varphi _j \rangle _{\varGamma _w},\\ K^n_{\mu \mu }(i,j)&=(\varphi _i, \varphi _j),\\ F_{\phi }^n(i)&=\frac{1}{\delta t}(\phi _h^n,\varphi _i)-(\mathbf{u}^n_h\cdot \nabla \phi _h^{n},\varphi _i),\\ F_{\mu }^n(i)&=\frac{1}{\epsilon }\left( (\phi _h^n)^3-(1+s)(\phi _h^n), \varphi _i\right) \\&\quad +\,\left\langle \frac{1}{\mathcal {V}_s}\left( {{- \phi _h^n }\over {\delta t}}+u^n_{\tau _1,h}\partial _{\tau _1}\phi _{h}^{n}+u^n_{\tau _2,h}\partial _{\tau _2}\phi _{h}^{n}\right) ,\varphi _i\right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \left( Q\left( \phi ^n_h\right) -\tilde{\alpha }\phi _h^n\right) ,\varphi _i\right\rangle _{\varGamma _w}. \end{aligned}$$

In Step 3, we denote \(\{\psi _i\}^{N_{u_h}}_{i=1}\) as the piecewise linear finite element basis functions for \(\mathbf U _h\) with \(N_{u_h}\) as its dimension for each component within an element. The structures of the element stiffness matrix and element right-hand side arising from (2.13) are as follows:

$$\begin{aligned} \begin{pmatrix}K^n_{u_xu_x} &{} K^n_{u_xu_y}&{} K^n_{u_xu_z} \\ K^n_{u_yu_x} &{} K^n_{u_yu_y} &{} K^n_{u_yu_z} \\ K^n_{u_zu_x} &{} K^n_{u_zu_y} &{} K^n_{u_zu_z} \end{pmatrix} ~\text {and}~ \begin{pmatrix}F_{u_x}^n\\ F_{u_y}^n\\ F_{u_z}^n\end{pmatrix}, \end{aligned}$$
(5.2)

where for \(1\le i,j \le N_{u_h}\),

$$\begin{aligned} K^n_{u_xu_x}(i,j)&=\,Re\left( \psi _i,\left( \frac{{\frac{1}{2}}(\rho _h^{n+1}+\rho _h^n)}{\delta t} +\rho _h^{n+1}(\mathbf{u}^n_h\cdot \nabla ) +{\frac{1}{2}}\left( \nabla \cdot (\rho _h^{n+1}\mathbf{u}^n_h)\right) \right) \psi _j\right) \\&\quad +\,(\nabla \psi _i,\eta _h^{n+1}\nabla \psi _j)+(\partial _x\psi _i,\eta _h^{n+1}\partial _x\psi _j)\\&\quad +\,\left\langle \psi _i{\tau _{1,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,x} \right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \psi _i{\tau _{2,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,x} \right\rangle _{\varGamma _w},\\ K^n_{u_xu_y}(i,j)&=(\partial _y\psi _i,\eta _h^{n+1}\partial _x\psi _j)+\left\langle \psi _i{\tau _{1,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,y} \right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \psi _i{\tau _{2,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,y} \right\rangle _{\varGamma _w},\\ K^n_{u_xu_z}(i,j)&=\,(\partial _z\psi _i,\eta _h^{n+1}\partial _x\psi _j)+\left\langle \psi _i{\tau _{1,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,z} \right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \psi _i{\tau _{2,x}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,z} \right\rangle _{\varGamma _w},\\ K^n_{u_yu_x}(i,j)&=\,(\partial _x\psi _i,\eta _h^{n+1}\partial _y\psi _j)+ \left\langle \psi _i{\tau _{1,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,x} \right\rangle _{\varGamma _w}\\&\quad +\, \left\langle \psi _i{\tau _{2,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,x} \right\rangle _{\varGamma _w},\\ K^n_{u_yu_y}(i,j)&=\,Re\left( \psi _i,\left( \frac{{\frac{1}{2}}(\rho _h^{n+1}+\rho _h^n)}{\delta t} +\rho _h^{n+1}(\mathbf{u}^n_h\cdot \nabla ) +{\frac{1}{2}}\left( \nabla \cdot (\rho _h^{n+1}\mathbf{u}^n_h)\right) \right) \psi _j\right) \\&\quad +\,(\nabla \psi _i,\eta _h^{n+1}\nabla \psi _j)+(\partial _y\psi _i,\eta _h^{n+1}\partial _y\psi _j)\\&\quad +\,\left\langle \psi _i{\tau _{1,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,y} \right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \psi _i{\tau _{2,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,y} \right\rangle _{\varGamma _w}, \end{aligned}$$
$$\begin{aligned} K^n_{u_yu_z}(i,j)&=\,(\partial _z\psi _i,\eta _h^{n+1}\partial _y\psi _j)+\left\langle \psi _i{\tau _{1,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,z} \right\rangle _{\varGamma _w}\\&\quad +\, \left\langle \psi _i{\tau _{2,y}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,z} \right\rangle _{\varGamma _w},\\ K^n_{u_zu_x}(i,j)&=\,(\partial _x\psi _i,\eta _h^{n+1}\partial _z\psi _j)+\left\langle \psi _i{\tau _{1,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,x} \right\rangle _{\varGamma _w}\\&\quad +\, \left\langle \psi _i{\tau _{2,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,x} \right\rangle _{\varGamma _w},\\ K^n_{u_zu_y}(i,j)&=(\partial _y\psi _i,\eta _h^{n+1}\partial _z\psi _j)+\left\langle \psi _i{\tau _{1,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,y} \right\rangle _{\varGamma _w}\\&\quad +\, \left\langle \psi _i{\tau _{2,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,y} \right\rangle _{\varGamma _w},\\ K^n_{u_zu_z}(i,j)&=\,Re\left( \psi _i,\left( \frac{{\frac{1}{2}}(\rho _h^{n+1}+\rho _h^n)}{\delta t} +\rho _h^{n+1}(\mathbf{u}^n_h\cdot \nabla ) +{\frac{1}{2}}\left( \nabla \cdot (\rho _h^{n+1}\mathbf{u}^n_h)\right) \right) \psi _j\right) \\&\quad +\,(\nabla \psi _i,\eta _h^{n+1}\nabla \psi _j)+(\partial _z\psi _i,\eta _h^{n+1}\partial _z\psi _j)\\&\quad +\,\left\langle \psi _i{\tau _{1,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{1,z} \right\rangle _{\varGamma _w}\\&\quad +\,\left\langle \psi _i{\tau _{2,z}},\eta _h^{n+1}\left( {{\mathcal {L}}}_s{l_s}_h^{n+1}\right) ^{-1}\psi _j\tau _{2,z} \right\rangle _{\varGamma _w},\\ F_{u_x}^n(i)&=\,\frac{Re}{\delta t}(\rho _h^nu_{x,h}^n,\psi _i) + {{\mathcal {B}}}(\mu _h^{n+1}\partial _x\phi _h^{n+1},\psi _i)-(2\partial _xp_h^n-\partial _xp_h^{n-1},\psi _i)\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _1}\phi _h^{n+1},\psi _i\tau _{1,x}\right\rangle _{\varGamma _w}\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _2}\phi _h^{n+1},\psi _i\tau _{2,x}\right\rangle _{\varGamma _w},\\ F_{u_y}^n(i)&=\,\frac{Re}{\delta t}(\rho _h^nu_{y,h}^n,\psi _i) + {{\mathcal {B}}}(\mu _h^{n+1}\partial _y\phi _h^{n+1},\psi _i)-(2\partial _yp_h^n-\partial _yp_h^{n-1},\psi _i)\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _1}\phi _h^{n+1},\psi _i\tau _{1,y}\right\rangle _{\varGamma _w}\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _2}\phi _h^{n+1},\psi _i\tau _{2,y}\right\rangle _{\varGamma _w},\\ F_{u_z}^n(i)&=\,\frac{Re}{\delta t}(\rho _h^nu_{z,h}^n,\psi _i) + {{\mathcal {B}}}(\mu _h^{n+1}\partial _z\phi _h^{n+1},\psi _i)-(2\partial _zp_h^n-\partial _zp_h^{n-1},\psi _i)\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _1}\phi _h^{n+1},\psi _i\tau _{1,z}\right\rangle _{\varGamma _w}\\&\quad +\,\mathcal {B}\left\langle \left( \epsilon \partial _n\phi _h^{n+1}+Q\left( \phi ^{n+1}_h\right) +\tilde{\alpha }\left( \phi ^{n+1}_h-\phi ^n_h\right) \right) \partial _{\tau _2}\phi _h^{n+1},\psi _i\tau _{2,z}\right\rangle _{\varGamma _w}. \end{aligned}$$

In Step 4, we denote \(\{\chi _i\}^{N_{q_h}}_{i=1}\) as the piecewise linear finite element basis functions for \(M_h\) with \(N_{q_h}\) as its dimension within an element. the element stiffness matrix \(K^n_{p}\) and element right-hand side \(F_p^n\) arising from (2.14) are

$$\begin{aligned}&K^n_{p}(i,j)=(\nabla \chi _i,\nabla \chi _j), \\&F_p^n(i)=-\frac{\bar{\rho }}{\delta t}Re(\nabla \cdot \mathbf{u}_h^{n+1},\chi _i)+ (\nabla p_h^n,\nabla \chi _i). \end{aligned}$$

Here \(1\le i,j \le N_{q_h}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Zhang, Q., Wang, XP. et al. A Parallel Finite Element Method for 3D Two-Phase Moving Contact Line Problems in Complex Domains. J Sci Comput 72, 1119–1145 (2017). https://doi.org/10.1007/s10915-017-0391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0391-1

Keywords

Navigation