
Noname manuscript No.
(will be inserted by the editor)

High-Order Accurate Adaptive Kernel Compression Time-Stepping
Schemes for Fractional Differential Equations

Daniel Baffet · Jan S. Hesthaven

February 9, 2017

Abstract High-order adaptive methods for fractional differential equations are proposed. The
methods rely on a kernel compression scheme for the approximation and localization of the history
term. To avoid complications typical to multistep methods, we focus our study on 1-step methods
and approximate the local part of the fractional integral by integral deferred correction to enable
high order accuracy. We study the local truncation error of integral deferred correction schemes
for Volterra equations and present numerical results obtained with both implicit and the explicit
methods applied to different problems.

Keywords fractional differential equations · Volterra equations · kernel compression · high-order
numerical methods · integral deferred correction · local schemes.

1 Introduction

The nonlocal nature of the fractional integral and the singularity of its kernel make the numerical
treatment of fractional differential equations (FDEs) considerably more difficult than that of
standard differential equations. In particular, the design of high-order and adaptive schemes has
proved challenging. The most commonly used methods for FDEs are low-order. For example, the
L1 scheme has been widely used for the approximation of the time fractional diffusion equation,
and has been extended to non-uniform meshes [1,2]. High-order schemes have also been proposed.
Convolution quadratures have been proposed in the 1980’s [3] and later modified [4] to reduce
computational and memory costs. A discontinuous Galerkin time-stepping method has also been
proposed for Volterra equations [5,6]. In this paper we propose high-order adaptive methods that
are based on an efficient kernel compression [7] approximation of the history term.

The history term of the fractional integral Iαf(t+ δ) of a function f at t+ δ has the form of
a Laplace convolution

Iδf(t) = wδ ∗ f(t) =

∫ t

0

wδ(t− s) f(s) ds , (1.1)

where δ > 0 is the distance between the current time t and the reconstruction time t + δ,
wδ(t) = w(t+ δ), and w(t) = t−1+α/Γ (α) is the kernel of the fractional integral. The kernel
compression scheme [7] prescribes an approximation to (1.1) given by a linear combination of
solutions ψ1, . . . , ψJ to initial value problems for standard ordinary differential equations (ODEs)

ψ′j = λjψj + f ψ(0) = 0 , (1.2)

D. Baffet, E-mail: daniel.baffet@epfl.ch · J. S. Hesthaven, E-mail: jan.hesthaven@epfl.ch
SB-MATHICSE-MCSS, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2 Daniel Baffet, Jan S. Hesthaven

where λj ∈ C. In the following we refer to ψ1, . . . , ψJ as the auxiliary variables of the scheme.
This amounts to the approximation, in some sense, of the kernel w by a linear combination of
exponentials

S(Λ, σ; t) =
J∑
j=1

σje
λjt (1.3)

at some positive distance δ from its singularity.
As the auxiliary variables of the scheme are of the same dimension as f , it is important to

reduce their number J as much as possible while maintaing a prescribed error tolerance. The main
result of [7] is the following a priori estimate on J : for T > 0, δ > 0, and an error tolerance ε > 0,
the approximation operator Iδ,r prescribed by the scheme, given by Iδ,rf = S ∗ f , with J = pm,
where

p = O

(
log δ−1T + log log

1− α
ε

)
, m = O

(
log ε−1

)
, (1.4)

satisfies
‖Iδf − Iδ,rf‖L2(0,T) ≤ ε ‖Iδf‖L2(0,T) ∀ f ∈ L2(0, T) . (1.5)

See Theorem 3.16 for a more accurate statement of this result. In practice δ is proportional to the
step size h. Employing the kernel compression scheme thus yields schemes for which the effort of
evaluating the history term is constant, provided h is constant. The cost at each step is that of
O(dJ) operations, where d is the dimension of the problem, and J = pm, with p and m satisfying
(1.4), where δ = h the time step size. The idea to reduce the costs of evaluating the history term
of the fractional integral [8], or more generally [9,4,10] a convolution K ∗ f , by approximating
its kernel by a linear combination of exponentials has been explored in the past. See also [11]
for approximation of some functions by sums of exponentials. As the kernel compression scheme
is not the main focus of this work, we refer the reader to [7] for a qualitative discussion of the
different methods. With relevance to the context of this paper, we mention the following. In [10],
an adaptive step-size scheme is proposed. The method extends the algorithm proposed in [9] to
variable step-size schemes for Volterra equations. In [12] a fast collocation method is proposed.

In addition to the efficient account of the history term, the kernel compression scheme proposed
in [7] has other advantages. One is that the theoretical estimates are uniform in α ∈ (0, 1), and
f ∈ L2(0, T). Another is the following. As the convolution approximation relies on solutions to
standard ODEs, it requires only local information to advance. This is property is shared by the
other kernel compression schemes, however the structure of the approximation proposed in [7]
has an additional advantage. For a given error tolerance, and 0 < δ1 < δ2, the set of poles Λ2

prescribed for δ2 is a subset of the set of poles Λ1 prescribed for δ1. Moreover, the poles that
are in Λ1 and not in Λ2 lie on a “small” number of circles in the left half of the complex plane
Reλ < 0. This property is of particular interest when δ is not constant, as is the case when the
step-size h is not constant, since it allows us to retain auxiliary variables associated with most
of the poles and only add or remove those associated with the “last” circles. Changing δ also
requires computing the reconstruction weights σ1, . . . , σJ . This is in addition to the cost of O(dJ)
operations of evaluating the history term. This added cost of O(J) operations, however, is not
great, as J is small compared to the number of time-steps, and the weights are independent of
the problem dimension d.

To obtain the local information, the time-stepping schemes also require a method for ap-
proximating Volterra equations on short intervals. This may be done in several ways. To avoid
complications typical to multistep methods, we focus our study on 1-step methods. Runge-Kutta
(RK) methods have been proposed [13] for Volterra equations. However, as the number of order
conditions grows to infinity as α tends to zero, their usefulness when α can be any number in (0, 1)
is limited. For the approximation of the local part of the fractional integral, we employ the integral
deferred correction (IDC) method [14]. In the literature on standard ODEs, the method is called
spectral deferred correction (SDC) if Gaussian quadrature nodes are used. We use the Gauss-
Lobatto quadrature nodes, due to their good numerical properties. However, since the present
application involves a non-trivial weight function, we refer to the method as IDC and reserve the
name SDC for methods using the “appropriate” quadrature nodes.

High-Order Adaptive Methods for FDEs 3

The SDC method, introduced in [14] for standard ODEs, relies on an iterative procedure to
recover a prescribed order. In each iteration an inner (low order) scheme is used to compute cor-
rections to the approximation computed previously at the quadrature nodes. Different variations
of the IDC approach have been studied for standard ODEs; see e.g. [15,16] and the references
therein. To reduce the number of correction iterations required to obtain a prescribed order, RK
integrators have been proposed as inner schemes of methods on equidistant quadrature nodes [16].
Unfortunately, this accelerated increase of order does not extend to non-equidistant quadrature
nodes [17] when explicit RK integrators are used.

In this work we propose an extension of the IDC approach to Volterra equations. We prove in
Theorem 5.1 that the IDC method increases the local order by α each correction iteration [18]. The
theorem sets a lower bound on the increase of the order, and leaves room for improved estimates
for specific schemes. We test methods that employ the composite left endpoint and trapezoidal
integration rules (see §4) as inner schemes – of local orders 1 + α and 2 + α, respectively. Our
numerical results for the left endpoint rule are consistent with the conclusion of Theorem 5.1.
The results for the trapezoidal rule, however show an accelerated increase of the order. While
for schemes employing the left endpoint rule, we measure an order increase of α per correction
iteration, for schemes employing the trapezoidal rule, we measure an order increase of 1+α. Since
we do not have a complete analysis of the methods, we can not determine if the order we measure
is indeed the asymptotic order, however, the improvement in accuracy is considerable. This issue
is of particular importance since an increase of order α per correction iteration, implies that the
number of correction iterations required to obtain a prescribed order tends to infinity as α tends
to zero. In contrast, if one can guarantee an increase of the order by 1 + α, a bounded number of
correction iterations will suffice to achieve the prescribed order for all α ∈ (0, 1).

The paper is structured as follows. In §2 we provide an overview of the proposed methods. The
kernel compression method is described in §3, where we also state some relevant results. In §4 we
discuss two standard low order approximations to the fractional integral which are used as inner
schemes in the IDC algorithm. In §5 we discuss the IDC method, propose an extension of the
method to FDEs, and prove Theorem 5.1 which estimates the local truncation error. We discuss
the details of the adaptive error control in §6, and provide further details on the implementation
in §7. Some numerical results are presented in §8, and we conclude with some remarks in §9.

2 Overview

In this section we outline the main idea and structure of the methods. For simplicity, we do not
discuss the topic of adaptive error control. This topic is discussed in §6. Thus, we only present
the basic schemes. To keep the discussion as clear and concise as possible we do not elaborate on
the different components of the scheme or state precisely what results are available. Instead we
refer the reader to different sections of this paper where more details are provided. We emphasize,
however, that at this time, there are still open questions regarding the methods.

2.1 Preliminaries

For α > 0, let

Iαf(t) =
1

Γ (α)

∫ t

0

(t− s)−1+αf(s) ds (2.1)

be the fractional integral of f . Consider Iαf(t+ δ), for some t ≥ 0 and δ > 0. We split the
fractional integral into a local term ∫ δ

0

w(δ − s) f(t+ s) ds (2.2)

and a history term

Iδf(t) =

∫ t

0

wδ(t− s) f(s) ds , (2.3)

4 Daniel Baffet, Jan S. Hesthaven

where

wδ(t) = w(t+ δ) w(t) =
t−1+α

Γ (α)
. (2.4)

2.2 Basic schemes

Consider the initial value problem

Dαu = f(t, u) u(0) = u0 (2.5)

in (0, T), where α ∈ (0, 1), f : [0, T] × Π → Rd, T > 0, Π ⊂ Rd open, and Dα is the Caputo
α-derivative

Dαu = I1−αu′ . (2.6)

By applying Iα to (2.5), we get

u = u0 + Iα(f ◦ u) , (2.7)

where f ◦ u(t) = f(t, u(t)). In fact (2.5) is equivalent to (2.7), provided f is continuous [19]. If, in
addition, f is Lipschitz in u, then (2.7) has a unique solution in a neighborhood of t = 0. In the
following we assume (2.7) has a unique solution in [0, T].

A standard approach for the derivation of numerical methods for (2.7), and thus for (2.5), is
as follows. Fix t ≥ 0 and h > 0, and let δ ∈ (0, h]. Owing to (2.7), we have

u(t+ δ) =

∫ δ

0

w(δ − s) f(t+ s, u(t+ s)) ds+H(t, δ) (2.8a)

H(t, δ) = u0 + Iδ(f ◦ u)(t) . (2.8b)

Observing that equation (2.8a) has the form

U(δ) = Iα(F ◦ U)(δ) +H(δ) , (2.9)

where U(δ) = u(t+ δ), F (δ, u) = f(t+ δ, u) and H(δ) substitutes for H(t, δ), we find that two
ingredients are required for the time-stepping scheme. The first is a scheme for the approximation
of (2.9) in (0, h], provided H is known.

Low-order methods approximate (2.9) by single step of a standard 1-step scheme. Two such
schemes are discussed in §4. To obtain high-order we use the IDC method. We postpone the
description of the IDC method for Volterra equation to §5. The method requires a standard (low-
order) method – the inner scheme – and a finite set of quadrature points in [0, h]. We use the
Gauss-Lobatto nodes.

For the approximation of (2.9), it is necessary to have H(t, ·) at the quadrature points in
(0, h]. The approximation to H(t, ·) is obtained by the second component of the methods: the
kernel compression scheme [7] described in §3. This scheme offers an approximation

Iδ(f ◦ u)(t) ≈ Ψ(t)σ(δ) (2.10)

to the history term Iδ(f ◦ u)(t). Here, σ is a δ dependent complex vector of weights, and Ψ :
[0, T] → Cd×J , the matrix of auxiliary variables, is defined as the solution to an initial value
problem

Ψ ′ = ΨΛ+ (f ◦ u) 1J Ψ(0) = 0 (2.11)

where Λ = diag(λ1, . . . , λJ) ∈ CJ×J and 1J = (1, . . . , 1) ∈ RJ .
The number J of columns of Ψ is the effective number of auxiliary variables, and Ψ(t)σ(δ) is

the reconstruction of the history term at t+ δ, or the reconstruction at distance of δ. We exploit
a symmetry in the distribution of the poles λ1, . . . , λJ , prescribed by the present scheme, around
the real line to reduce the number of auxiliary variables in the computation to about half. In the
sequel, we denote the reduced number of auxiliary variables by P and refer to it as the number of

High-Order Adaptive Methods for FDEs 5

auxiliary variables. Thus, J – the effective number of auxiliary variables – determines the accuracy
of the approximation and P determines the computational effort.

The scheme also requires an approximation to (2.11). For this we employ an A-stable diagonally
implicit RK (DIRK) method. Another option is to integrate (2.11) exactly, where f ◦u is replaced
by the polynomial interpolating f at the numerical solution at the quadrature nodes. We have
not explored this approach, however it is more inline with the discretization methods proposed in
[9,4,10]. The reason for requiring the RK method to be A-stable is that some of nodes λ1, . . . , λJ
have large negative real parts which makes (2.11) stiff. Equation (2.11), however, is simple to
approximate by DIRK methods, provided f ◦u is known. To apply the DIRK method, we use the
data computed by the IDC at the Gauss-Lobatto nodes to approximate f ◦u at the RK nodes and
treat it as a given function, independent of Ψ . Since Λ is diagonal, a DIRK step does not require
us to solve a large algebraic equation and is cheap to perform.

To conclude this section, we provide in Algorithm 1 a short description of the procedure to
be performed in a single step of the proposed methods. Let c1, . . . , cµ the RK nodes, δ0, . . . , δNloc

the Gauss-Lobatto nodes of the interval [0, h], vn the numerical approximation to u(tn), V j the
approximation to U(δj) = u(tn + δj), and Φn the approximation to Ψ(tn).

Algorithm 1 Basic high-order 1-step scheme
Input: vn, Φn, tn, h
Output: vn+1, Φn+1

1: For each j = 1, . . . , Nloc, compute approximations Hj ≈ H(tn, δj), where

Hj = u0 + Φnσ(δj) .

2: Apply the IDC method to (2.9) to compute an approximation V j ≈ U
(
δj
)
, j = 1, . . . , Nloc at the Gauss-

Lobatto nodes of the interval [0, h]. In this step, use Hj to substitute for H(δj).
3: Evaluate the Nloc-degree polynomial interpolating the data

(δj , F
(
δj , V

j
)
) j = 0, . . . , Nloc

at ckh to obtain an approximation to f ◦ u(tn + ckh).
4: Advance Φ by an A-stable DIRK method applied to (2.11), where the values computed in step 3 substitute

for the values f ◦ u at tn + ckh.
5: Define vn+1 = V Nloc .

3 Kernel compression

The proposed methods employ a kernel compression scheme [7] for the approximation of the
history term. In this section we describe that scheme and state the available error estimates. The
scheme is an adaptation of the method proposed in [20] to the approximation of the fractional
integral. We denote by either f̂ or L[f] the Laplace transform

f̂(λ) =

∫ ∞
0

e−λtf(t) dt (3.1)

of a function f . Let α ∈ (0, 1), and δ > 0. For the presentation, let us consider f : (0,∞) → Rd.
The history term (2.3) of Iαf(t+ δ), the fractional integral of f at t+δ, has the form of a Laplace
convolution (2.3). Thus, its Laplace transform is given by

L[Iδf](λ) = ŵδ(λ) f̂(λ) . (3.2)

As our goal is to approximate the convolution (2.3), we seek a multipole approximation

r(z) =
J∑
j=1

σ

z − λj
(3.3)

6 Daniel Baffet, Jan S. Hesthaven

to ŵδ that satisfies a uniform estimate of the relative error

|ŵδ(λ)− r(λ) | ≤ ε|ŵδ(λ) | Reλ ≥ η . (3.4)

The reason for requiring (3.4) is that it yields the following estimate of the relative L2-error

‖Iδf − Iδ,rf‖L2(0,T) ≤ εe
ηT ‖Iδf‖L2(0,T) ∀f ∈ L2(0, T) , (3.5)

where Iδ,rf is defined as the inverse Laplace transform of rf̂ . Explicitly, Iδ,rf is given by Iδ,rf =
S ∗ f , where

S(t) =
J∑
j=1

σje
λjt , (3.6)

is the inverse Laplace transform of r.
Given an approximation (3.3) to ŵδ, Iδ,rf may also be expressed in terms of the solution to an

initial value problem for a standard ODE system. Suppose r is a multipole approximation (3.3)
to ŵδ. For each j = 1, . . . , J , define

ψ̂j = (λ− λj)−1
f̂ . (3.7)

Inverting the Laplace transform we recover

ψj(t) =

∫ t

0

eλj(t−s)f(s) ds . (3.8)

To simplify the notation we organize ψ1, . . . , ψJ as the columns of a matrix Ψ = (ψj). Thus the
approximation Iδ,rf of Iδf associated with r is

Iδ,rf =
J∑
j=1

σjψj = Ψσ , (3.9)

where σ = (σ1, . . . , σJ)T . Observing that each ψj is the solution to the ODE ψ′j = λjψ+f satisfying
ψj(0) = 0, we recover

Ψ ′ = ΨΛ+ f1J Ψ(0) = 0 , (3.10)

where 1J = (1, . . . , 1) ∈ RJ , and Λ = diag(λ1, . . . , λJ). Below we specify the multipole approx-
imation r to ŵδ and state the error estimate for the approximation Iδ,rf of the history term
Iδf .

For a given η > 0, we require a multipole r that approximates ŵδ uniformly for all Re z ≥ η.
The present approximation relies on the following integral representation of the Laplace transform
of wδ

ŵδ(z) =
sin (πα)

π

∫ ∞
0

x−αe−δx

z + x
dx , (3.11)

and proceeds as follows. We truncate the integral in (3.11) at a finite xp, write the integral over
the truncated interval (0, xp) as an integral over a contour C in the complex plane, and finally
approximate the contour integral by a quadrature. For α ∈ (0, 1), η > 0, and p,m ∈ N, the
procedure yields the approximation

r(λ) =

p∑
k=1

m−1∑
j=0

σkj
λ− λkj

λkj = ck + rkω
j , (3.12a)

where ω = e2πi/m, for each k = 1, . . . , p and j = 0, . . . ,m− 1,

σkj =
1

m

m−1∑
l=0

ω−jlQkl (3.12b)

Qkl =
sin (πα)

π

∫ xk

xk−1

x−αe−δx
(
−x+ |ck|

rk

)l
dx (3.12c)

High-Order Adaptive Methods for FDEs 7

ηc1c2c3

C

Fig. 3.1 The setup in the complex plane: the half plane Re z ≥ η and the contour C covered by disks of radii
rk centered at ck.

rk = η 2k−2 ck = −η
(

3 · 2k−2 − 1
)

(3.12d)

and

xk(η) = η(2k − 1) k = 0, . . . , p . (3.12e)

Thus, for each k = 0, . . . , p, the poles λk0, . . . , λk,m−1 lie on a circle of radius rk centered at ck.
See Figure 3.1 for an illustration of the setup in the complex plane.

We have the following results [7], estimating the error of the approximation. The first result
estimates the error in the approximation of the Laplace transform ŵδ of wδ.

Theorem 3.1 Let α ∈ (0, 1), η > 0 and δ > 0. Then, r given by (3.12) satisfies

|ŵδ(λ)− r(λ)| ≤ Cmp(α, δη) |ŵδ(λ) | (3.13)

for all Reλ ≥ η, where

Cmp(α, η) = CaAm + CbBp(α, η) (3.14a)

with

Am = 3−m , Bp(α, η) =
Γ (1− α, η(2p − 1))

Γ (1− α)
. (3.14b)

The constants Ca and Cb are positive and independent of α, η, δ, p and m.

Note that for a given error tolerance, the number J = pm of terms in (3.12) is bounded uniformly
for α ∈ (0, 1). Also note the rapid convergence of Am and Bp: Am decays exponentially, and Bp
satisfies an estimate

Bp(α, η) ≤ C (1− α)x−αp (η) e−xp(η) (3.15)

which captures its asymptotic behavior at the limit p→∞.
Theorem 3.2 provides an estimate of the error in the approximation of the convolution.

Theorem 3.2 Let α ∈ (0, 1), T > 0, δ > 0, and m, p ∈ N. Suppose r is given by (3.12), and Iδ,r is

the approximation operator associated with r, i.e., Iδ,rf = S ∗f , where S = L−1[r]. Then, the estimate

‖Iδf − Iδ,rf‖L2(0,T) ≤ eηTCmp(α, δη) ‖Iδf‖L2(0,T) (3.16)

holds for every f ∈ L2(0, T).

As a corollary to Theorem 3.2, we obtain an estimate of the relative pointwise error of the kernel
approximation. An estimate of the type obtained for the methods in [11,21].

Corollary 3.1 Let α ∈ (0, 1), T > 0, δ > 0, and m, p ∈ N. Suppose r is given by (3.12) and

S = L−1[r], then the estimate

|wδ(t)− S(t) | ≤ eηTCmp(α, δη) |wδ(t) | (3.17)

holds for all t ∈ [0, T].

8 Daniel Baffet, Jan S. Hesthaven

For computations the number of auxiliary variables may be reduced further. We exploit that
the poles are distributed symmetrically around the real line and thus remove poles with negative
imaginary parts and real duplicate poles to recover

p∑
k=1

m−1∑
j=0

σkjψkj = Re
P∑
j=1

θjψj . (3.18)

The reader is referred to [7] for more details on the implementation and proofs.
Due to the exponential term on the right hand side of (3.16) and (3.17), we set η = 1/T . In the

time-stepping schemes, δ is set by a requirement of the discrete scheme, and is hence proportional
to the time-step size h. Thus, to control the kernel compression error, we may choose p,m ∈ N
large, so that Am and Bp are sufficiently small. The number of circles p is chosen so that Bp(α, δη)
is sufficiently small, and therefore depends on δ. In contrast, as Am is independent of δ, the number
m of poles on each circle depends only on the error tolerance, and thus may be chosen a priori.

That property of the above kernel compression scheme makes it convenient for use within
step-size adaptive time stepping schemes. For a given error tolerance, and 0 < δ1 < δ2, the set of
poles Λ2 prescribed for δ2 is a subset of the set of poles Λ1 prescribed for δ1. Moreover, the poles
that are in Λ1 and not in Λ2 lie on a “small” number of circles in the left half of the complex
plane. This is because the center and radius of each circle is independent of δ, and thus poles
λkj are also independent of δ. This property is of particular interest when the step-size h is not
determined a priori, as it allows us to retain most of the poles and only add or remove those
associated with the “last” circles.

Changing the step-size h also requires replacing all the weights σkj . This requires O(J) opera-
tions (independent of the dimension d of the problem), which is relatively cheap, however creates
an overhead which should be compared to the cost of maintaing a constant step-size.

4 Inner schemes

Let us now discuss the two methods used as inner schemes for the IDC method. For that purpose
we employ low-order standard approximations of the fractional integral. Following the procedure
described in §2, at tn ≥ 0 we consider (2.9) in (0, h], where H(δ), understood as H(t, δ), is given.
The analysis of the accuracy of the schemes discussed in this section relies on the regularity of F
and U in the interval of interest (0, h]. As the typical singularity is at the initial time, assuming
F and U to be smooth in δ ≥ 0, for t = tn > 0 is not overly restrictive. To simplify the notation,
we present the methods for a Volterra equation (2.9) in (0, h), disregarding how it is obtained,
and thus suppose H and U(0) are given. Introduce the grid P = (δ0, . . . , δNloc

) to [0, h], where
0 = δ0 < · · · < δNloc

≤ h, and let V be the numerical approximation to U . Suppose we have the
numerical solution V k at δk, for each k = 0, . . . , j − 1, and let Pj = (δ0, . . . , δj). We compute V j

by solving

V j =

j∑
k=0

ωjk F
(
δk, V

k)+Hj (4.1)

for V j , where Hj = H(δj), and ωjk = ωjk(Pj) are the weights characterizing the scheme. For the
two schemes of interest to us, the weights ωjk are chosen so the equality

j∑
k=0

ωjk g
k = IαgPj

(δj) (4.2a)

holds for every grid function g = (g0, . . . , gj) on Pj = (δ0, . . . , δj), where

gPj
(δ) =

j−1∑
k=0

χk(δ) gk

(
δ − δk
τk

)
, (4.2b)

High-Order Adaptive Methods for FDEs 9

is either piecewise constant or piecewise linear. Here

τk = δk+1 − δk k = 0, . . . , j − 1 , (4.2c)

for each k, χk is the indicator function of the interval (δk−1, δk), and the functions g1, . . . , gn are
given by either

gk(s) = gk k = 0, . . . , j − 1 (4.3)

or

gk(s) = (1− s)gk + sgk+1 k = 0, . . . , j − 1 . (4.4)

For simplicity, we refer to (4.2) with (4.3) and (4.4) as the composite left endpoint and trapezoidal
integration rules, respectively, and similarly to the corresponding schemes (4.1). Next we derive
the weights ωjk for the two schemes. The weights ωjk are obtained by substituting (4.2b) into
(4.2a) and comparing coefficients. Applying the α-integral to (4.2a) and evaluating at δj , we obtain

IαgPj
(δj) =

j−1∑
k=0

∫ δk+1

δk

w(δj − s) gk
(
s− δk
τk

)
ds

=

j−1∑
k=0

ταk
Γ (α)

∫ 1

0

(
ξjk − s

)−1+α
gk(s) ds .

(4.5)

where

ξjk =
δj − δk
τk

. (4.6)

To obtain the wights ωjk for the composite left endpoint rule, we substitute (4.3) into (4.5), and

compare the coefficients of gk. Thus, we reover

ωjk(Pj) =

τ
α
k a(ξjk) k = 0, . . . , j − 1

0 k = j
, (4.7a)

where

a(ξ) =
1

Γ (α)

∫ 1

0

(ξ − s)−1+α ds =
ξα − (ξ − 1)α

Γ (1 + α)
ξ ≥ 1 . (4.7b)

Similarly, we obtain the weights ωjk for the composite trapezoidal rule by substituting (4.4) into
(4.5). We obtain an expression of the form

IαgPj
(δj) =

j−1∑
k=0

ταk

(
aLjkg

k + aRjkg
k+1

)

=

j−1∑
k=0

ταk a
L
jkg

k +

j∑
k=1

ταk−1a
R
j,k−1g

k ,

(4.8)

and thus find

ωjk(Pj) =

τα0 a

L
j0 k = 0

ταk a
L
jk + hαk−1a

R
j,k−1 k = 1, . . . , j − 1

ταj−1a
R
j,j−1 k = j

, (4.9a)

where

aLjk = aL(ξjk) k = 0, . . . , j − 1 (4.9b)

aRjk = aR(ξjk) k = 1, . . . , j , (4.9c)

10 Daniel Baffet, Jan S. Hesthaven

and for ξ ≥ 1, aL(ξ) and aR(ξ) are given by

aL(ξ) =
1

Γ (α)

∫ 1

0

(ξ − s)−1+α (1− s) ds =
(1 + α− ξ)ξα + (ξ − 1)1+α

Γ (2 + α)
, (4.9d)

aR(ξ) =
1

Γ (α)

∫ 1

0

(ξ − s)−1+α
sds =

ξ1+α − (ξ + α)(ξ − 1)α

Γ (2 + α)
. (4.9e)

The accuracy of the schemes can be obtained by a direct computation. It is convenient to introduce
the operator

IαPj
g =

j∑
k=0

ωjk g
k (4.10)

where g = (g0, . . . , gj) is a grid function on Pj . The extension of IαPj
to continuous functions is

obvious. It can be easily verified that for each g ∈ C1[0, δj], (4.7) yields

|Iαg(δj)− IαPj
g| ≤ ‖g′‖∞

Γ (1 + α)
δαj max

k
τk , (4.11)

and for each g ∈ C2[0, δj], (4.9) yields

|Iαg(δj)− IαPj
g| ≤ ‖g′′‖∞

2Γ (1 + α)
δαj max

k
τ2k . (4.12)

The schemes presented in this section are used as inner schemes for the IDC scheme. As such,
at each step, the grid P is of the form P = hP̂, where h is the current step-size, and P̂ is some
fixed (small) set of quadrature nodes in [0, 1]. In this paper, P̂ is the set of Gauss-Lobatto nodes.
Using the following property

ωkj
(
hP̂j

)
= hαωkj

(
P̂j
)

h > 0 , (4.13)

one may compute the weights ωkj associated with each IαPj
at each step with little computational

effort.

It is useful to unify (4.11) and (4.12) into a single estimate

|Iαg(δj)− IαPj
g| ≤ Cmax

∣∣g(q)∣∣hq+α , (4.14)

where q = 1, 2, and C > 0. Here we also make use of the fact that the schemes are only used for a
bounded number of steps each time; i.e., to improve the accuracy we take smaller h, and maintain
the number of steps Nloc of the inner scheme fixed. This estimate also holds for other schemes,
where q may be grater than two. Schemes like this, however, may require more initial conditions
and more complicated treatment of left boundary of the interval.

5 Integral deferred correction

Consider the ODE

u′ = f(t, u) . (5.1)

The general notion of SDC, introduced in [14], leaves room for many variations to be explored; see,
e.g., [15,16] and the references therein. For simplicity, we forgo the generality of the presentation
and restrict ourselves to a single method for standard ODEs and the two methods proposed
above for FDEs. Theorem 5.1 of §5.3 provides an estimate of the local truncation error for the
IDC scheme for Volterra equations (2.9).

High-Order Adaptive Methods for FDEs 11

5.1 Standard ordinary differential equations

Fix some t and h > 0, and suppose u is a solution of (5.1) in [t, t + h]. For δ ∈ [0, h], let U(δ) =
u(t+ δ), and F (δ, u) = f(t+ δ, u). Then,

U(δ) = U(0) +

∫ δ

0

F (s, U(s)) ds . (5.2)

For an approximation V = V (δ) of U we have the following identity

U(δ) = U(0) +

∫ δ

0

(F ◦ U(s)− F ◦ V (s)) ds+R(δ) , (5.3)

where

R(δ) =

∫ δ

0

F ◦ V (s) ds . (5.4)

The approximation is computed on a finite set of points in the interval [0, h]. Let P = (δ0, . . . , δNloc
)

be the Gauss-Lobatto quadrature node of [0, h]. For j = 1, . . . , Nloc, we subtract (5.3) at δ = δj−1

from (5.3) at δ = δj to obtain

U(δj) = U(δj−1) +

∫ δj

δj−1

(
F ◦ U(s)− F ◦ V (s)

)
ds+R(δj)−R(δj−1) . (5.5)

The approximation procedure is iterative. At each iteration the approximation computed at the
previous step is used to compute an improved approximation. In the literature, the method is usu-
ally formulated using the error equation, and, at each iteration, the correction is computed as the
discrete approximation to the error and then approximation is updated. Below we take a slightly
different approach and compute the approximation directly. This is equivalent to simply defining
the updated approximation at the present iteration as the sum of the previous approximation and
the correction.

The scheme is obtained by formally replacing F ◦ V in (5.4) by an interpolating polynomial
and the integral in (5.5) by a discrete approximation. For simplicity of the presentation we use
the forward Euler scheme as the inner scheme, i.e., for the discrete approximation of the integral
in (5.5). The approximation Vk at the kth iteration is obtained by solving

V jk = V j−1
k + τj

(
F j−1
k − F j−1

k−1

)
+Rjk −R

j−1
k (5.6)

for V jk , for each j = 1, . . . , Nloc, where τj = δj − δj−1, V jk is the approximation to U(δj), F
j
k =

F (δj , V
j
k), and

Rjk =

∫ δj

0

L[P, Fk−1](s) ds (5.7)

is the approximation of R(δj). The approximation to u at t + h is given by V Nloc
Niter

. Notice that

setting F j−1 = 0, for j = 0, . . . , Nloc, yields R0
0 = · · · = RNloc

0 = 0 and thus (5.6) with k = 0 may be

used to obtain the initial approximation V 0
0 , . . . , V

Nloc
0 .

5.2 Voterra equations

Let t ≥ 0, and h > 0. Consider the Volterra equation (2.9) in [0, h]. In practice we have U(δ) =
u(t+ δ), F (δ, u) = f(t+ δ, u), and H = H(t, δ), which accounts for the history term, is not known
exactly, and we only have its approximation at a finite number of points δ ∈ (0, h]. For the
presentation of the method, however, this does not matter and thus we suppose H = H(δ) is
given. Suppose V = V (δ) is an approximation of U . Clearly, it holds

U(δ) = Iα(F ◦ U − F ◦ V) + H̃(δ) (5.8)

12 Daniel Baffet, Jan S. Hesthaven

where

H̃(δ) = H(δ) + Iα(F ◦ V) . (5.9)

The scheme is obtained by formally replacing the fractional integral in (5.8) by a discrete approx-
imation, and F ◦ V in (5.9) by an interpolating polynomial. In our implementation we use the
Gauss-Lobatto nodes P = (δ0, . . . , δNloc

) of [0, h]. Thus the approximation Vk at the kth iteration
is obtained by solving

V jk =

j∑
s=0

ωjs(F
s
k − F

s
k−1) +Hj

k (5.10a)

Hj
k = H(δj) + SαPF

j
k−1 (5.10b)

for V jk , where, for each j = 0, . . . , Nloc, V
j
k is the approximation to U(δj) at the kth correction

iteration, F jk = F (δj , V
j
k), the coefficients ωjs = ωjs(Pj), with Pj = (δ0, . . . , δj), are given by either

(4.7) or (4.9), and Sα is the operator defined by

SαPg
j = IαL[P, g](δj) j = 0, . . . , Nloc , (5.11)

where L[P, g] is the polynomial interpolating g = (g0, . . . , gNloc) at P. The operator SαP may be
computed exactly by mapping the Lagrange basis to the Legendre basis and using the formula

1

Γ (α)

∫ x

−1

(x− y)−1+αP̃
(0,0)
n (y) dy =

√
Γ (n− α+ 1)

Γ (n+ α+ 1)
(1 + x)αP̃

(−α,α)
n (x) (5.12)

valid for x ∈ [−1, 1], where P̃
(a,b)
n is the nth degree normalized Jacobi polynomial associated with

the weight (1 − y)a(1 + y)b, [22]. Note that setting F−1 = 0 yields H0 = H and thus (5.10) with
k = 0 may be used to obtain the initial approximation V0.

5.3 The local truncation error

We use the notation Fk for both the grid function Fk = (F 0
k , . . . , F

Nloc

k) on P = (δ0, . . . , δNloc
)

and the polynomial interpolating the data (δj , F
j
k), j = 0, . . . , Nloc. Let Iα|tg = Iαg(t), and

L = L(δ) = L[P, F ◦ U](δ) the polynomial interpolating F ◦ U at P. The following theorem gives
an estimate of the local truncation error of the IDC method.

Theorem 5.1 Let α ∈ (0, 1) and P̂ ⊂ [0, 1] a set of Nloc + 1 distinct quadrature nodes. For h > 0,

let P = hP̂ = (δ0, . . . , δNloc
) ⊂ [0, h], for each j = 0, . . . , Nloc, Pj = (δ0, . . . , δj) and IαPj

a discrete

operator (4.10) satisfying (4.14). Suppose U a solution of (2.9) such that F ◦ U is smooth, and Vk the

numerical solution obtained by the IDC scheme (5.10) at the kth correction iteration, with appropriate

initial conditions, then

U(δj)− V jk = O(hν) h→ 0+ , (5.13)

where ν = min(Nloc + 1 + α, q + (k + 1)α).

Note that in practice we apply the method to (2.9) which we obtain from (2.8) by substituting
U(δ) = u(t+ δ), F (δ, U) = f(t+ δ, U) and H(δ) for H(t, δ). Thus, for t > 0 the hypothesis that U
and F are smooth in [0, h] is not very restrictive.

Proof Let the local error ejk = U(δj)−V jk at the kth correction iteration. The proof is by induction
on k. By (4.14), clearly (5.13) holds for k = 0. Suppose (5.13) holds with k − 1 substituting for k
and ν′ = min(Nloc + 1 + α, q + kα) substituting for ν. We have

ejk = Iα|δj (F ◦ U)− IαPj
(Fk − Fk−1)− Iα|δjFk−1 . (5.14)

High-Order Adaptive Methods for FDEs 13

Due to

ejk − I
α
Pj

(F ◦ U − Fk) = Iα|δj (F ◦ U − Fk−1)− IαPj
(F ◦ U − Fk−1)

= Iα|δj (F ◦ U − L) + Iα|δj (L− Fk−1)− IαPj
(L− Fk−1)

(5.15)

we obtain

ejk =

j∑
s=0

ωjs

(
F (δs, U(δs))− F sk

)
+ ρjk (5.16)

where

ρjk = Iα|δj (F ◦ U − L) +
(
Iα|δj − I

α
Pj

)
(L− Fk−1) . (5.17)

Thus we recover

|ejk| ≤ C0

j∑
s=0

ωjs|esk|+ |ρ
j
k| , (5.18)

which yields

|ejk| ≤ C1 max
s
|ρsk| , (5.19)

by a simple induction on j, recalling that j ≤ Nloc is bounded as h → 0+. It is left to estimate
ρsk. We do this by estimating each of the terms separately. Due to standard results regarding
polynomial interpolation, the first term on the right hand side of (5.17) satisfies

∣∣Iα|δj (F ◦ U − L)
∣∣ ≤ hNloc+1+α

(Nloc + 1)!Γ (1 + α)

∥∥∥(F ◦ U)(Nloc+1)
∥∥∥
L∞(0,h)

(5.20)

and thus

Iα|δj (F ◦ U − L) = O
(
hNloc+1+α) . (5.21)

To estimate the second term, we use (4.14) to recover the following estimate

∣∣(Iα|δj − IαPj

)
(L− Fk−1)

∣∣ ≤ C2h
q+α max

∣∣∣∣ dq

dδq

(
L− Fk−1

)∣∣∣∣ (5.22)

for each j. Note that L − Fk−1 is the Nloc-degree polynomial interpolating the error ek−1 at P.
Due to the Lagrange form of this polynomial, we have

∣∣∣∣ dq

dδq

(
L− Fk−1

)∣∣∣∣ ≤ C3h
−q max

s
|esk−1| (5.23)

which, by the induction hypothesis, yields

(
Iα|δj − I

α
Pj

)
(L− Fk−1) = O

(
hν
′+α) . (5.24)

Substituting (5.21) and (5.24) into (5.17), we recover ρjk = O(hν) with ν = min(Nloc + 1 + α, q +
(k + 1)α). Thus, due to (5.19) we have (5.13), and the proof is complete. ut

14 Daniel Baffet, Jan S. Hesthaven

6 Adaptive error control

6.1 Adaptive control of the step-size

As the proposed schemes employ a DIRK method to advance the auxiliary variables, it is reason-
able to consider the use of an embedded scheme to estimate the local error. A sightly different
approach is to control the error of the reconstruction of the history term at the nearest point δ1
of the inner scheme. For the first approach, we define

∆ = |Φn+1 − Φ̃n+1|∞ (6.1)

and for the second

∆ = |(Φn+1 − Φ̃n+1)σ(δ1) |∞ , (6.2)

where Φn+1, and Φ̃n+1 are the approximations to Ψ(tn + h) obtained by the main and the embed-
ded schemes, respectively, and | · |∞ denotes the entry-wise maximum norm. For an error tolerance
εh > 0, we define

q =
(
εh
∆

)1/(ν̃RK+1)

(6.3)

where ν̃RK is the order of the embedded scheme. Let qu > ql > 0. The step size is chosen as follows.
If q < pl, the approximation is discarded and the step-size h is halved. If q ≥ ql the approximation
is accepted and the scheme advances; in that case the new value for the auxiliary variable is set
to Φn+1. If in addition q > qu, the step-size is doubled.

In our experience, (6.2) performs better than (6.1) at small tolerances near the singularity at
the initial condition. When using (6.1), the error decreases as the tolerance is reduced, however
near the initial condition, it decreases at a lower rate, i.e., the indicator does not control the error
adequately near the singularity. With (6.2), this issue seems to be resolved. The price for high
accuracy is, obviously, advancing with a very small step-size near the singularity at the initial
condition.

6.2 Adaptive control of P

The kernel compression scheme used for the approximation of the history term offers an a priori
estimate on the number of auxiliary variables required to satisfy an error tolerance. Thus, to
control the kernel compression error, we use Am and Bp given by (3.14b) to estimate the number
of poles per circle m and the total number of circles p. The kernel compression approximation,
however, is not uniform in δ – the distance of the reconstruction time from the present time.
Since δ is proportional to the step-size h, the number of auxiliary variables may need to increase
when h decreases. Also, when δ increases, maintaining the same number of auxiliary variables may
be unnecessary. As the approximation is costly, it is desirable to adapt the number of auxiliary
variables to keep it close to the optimal value for a given tolerance εP .

Estimate (3.16) and the multipole approximation (3.12) associated with the approximation
operator Iδ,r offer a possible approach to this end. Note that the number of poles on each circle m,
required to satisfy an error tolerance is independent of δ. Therefore it may remain fixed throughout
the computation. In fact, the radii rk and the centers ck of the circles are also independent of
δ. Hence, the poles λkj and therefore the auxiliary variables are likewise independent of δ (see
discussion in §3).

Thus, changing δ requires only that we change the weights σ and perhaps the number of
circles. This raises the question of what values should be assigned to new auxiliary variables. In our
approach, new auxiliary variables are set to zero at the current time as their expected contribution
to the reconstruction was below the error tolerance previously, and redundant auxiliary variables
are discarded as their expected contribution drops below the error tolerance.

High-Order Adaptive Methods for FDEs 15

This approach relies on the following argument. The error committed by neglecting information
from the interval [0, tn] in the auxiliary variable associated with λ is given by

ρ(t) =

∫ tn

0

eλ(t−s)f(s) ds = eλ(t−tn)

∫ tn

0

eλ(tn−s)f(s) ds . (6.4)

Note that this expression decays exponentially in t. Also note that λ is typically on one of the last
circles, and therefore has a large negative real part, which implies that the decay is very rapid.

7 Further details on the implementation

The results below are obtained with two high-order methods – one explicit and one implicit. The
two methods differ only by their inner schemes. The explicit scheme is based on the composite
left endpoint rule (4.7), while the implicit utilizes the composite trapezoidal rule (4.9). For sim-
plicity, we denote the methods employing the composite trapezoidal and left endpoint rules as
inner schemes by TR-IDC and LER-IDC, respectively. Both methods employ the same DIRK
method for the approximation of the auxiliary variables, (2.11). The DIRK method – denoted
ARK4(3)6L[2]SA - ESDIRK in [23] – is 6-stage, L-stable with main and embedded methods of
orders 4 and 3, respectively. For the LER-IDC and TR-IDC schemes, we use

Niter =
⌈ 3

α
− 1
⌉

(7.1a)

and

Niter =
⌈ 3

1 + α
− 1
⌉

(7.1b)

correction iterations, respectively. This choice corresponds to an increase of the order of the LER-
IDC and TR-IDC schemes by α and 1 + α, respectively, each iteration and aims to achieve local
order of 4. By Theorem 5.1, (7.1a) correction iterations guarantee the LER-IDC scheme has local
order of 4. In contrast, (7.1b) is due to numerical evidence and not a complete analysis. The
number of correction iterations which guaranties local order of 4 for the TR-IDC scheme is

Niter =
⌈ 2

α
− 1
⌉
, (7.2)

by Theorem 5.1. For both schemes, and independently of Niter, we take Nloc = 5. The reason
for this choice is that it yields six quadrature points, the same number as the RK scheme. The
tolerance for the kernel compression error indicator is εP = 10−1εh, where εh is the tolerance for
the step-size error indicator.

8 Numerical tests

In the tests below we set η = 1/T , εh denotes the tolerance for the step-size error indicator,
εP = 10−1εh is the tolerance for the error indicator controlling the history term. Unless mentioned
otherwise, the error indicator (6.2) is used to control the step-size, ql = 1, qu = 10, the number of
correction iterations Niter is given by (7.1a), and (7.1b) for the LER-IDC and TR-IDC schemes,
respectively, and the initial step size h0 = 2−5. A version of the code used in the numerical tests
is available at [24].

16 Daniel Baffet, Jan S. Hesthaven

8.1 Number of correction iterations

Consider the initial value problem

Dαu = −u u(0) = 1 . (8.1)

in (0, T). Its solution is given by

u(t) = Eα(−tα) Eα(t) =
∞∑
k=0

tk

Γ (αk + 1)
, (8.2)

where Eα is the Mittag-Leffler function [25]. Unless mentioned otherwise, the reference solution
is computed using [26]. The results are obtained for α = 0.5, and T = 5.

In this test we look at the influence of the number of correction iterations Niter on the accuracy
of the scheme. We apply the two methods to (8.1) and measure the global error for different Niter.
Figure 8.1 shows E1/T , where E1 is the global error

E1 =
N∑
n=1

hn|vn − u(tn) | hn = tn − tn−1 , (8.3)

as a function of the average step-size

havg =
1

N

N∑
n=1

hn . (8.4)

The data for each graph is obtained by setting the error tolerance εh to εh = 10−k, with
k = 2, 3, 4, 5, 6. The results on the left, obtained with the LER-IDC method, show the follow-
ing behavior. When no correction iterations are performed, i.e. Niter = 0, the global error behaves
as O(h3/2), which coincides the local order 1 + α = 3/2 of the method approximating (2.9). For
Niter ≥ 1, we measure global orders 1 + (Niter + 1)α which is in agreement with the expected
local order of the IDC method applied to (2.9). The figure on the right, obtained with the TR-
IDC method, shows the graphs of the global error E1/T of the methods with Niter = 0, 1. Here
we measure order 4 after one correction iteration. This is in agreement with the local order
1 + (Niter + 1)(1 + α) = 4 expected of the IDC method provided its order increases by 1 + α each
iteration, while Theorem 5.1 only guarantees local order 2 + (Niter + 1)α = 3, i.e., an increase of α
per iteration. Figure 8.2 shows the results of the same test for α = 0.8 and the LER-IDC scheme.
The figure shows a similar behavior. Note that in all these tests, the global order measured is the
minimum between the local order of the approximation of (2.9) and the global order of the DIRK
method applied to (2.11).

Next we apply the TR-IDC method to (8.1) with α = 0.2. The results, obtained with εh =
10−k, for each k = 3, 4, 5, 6, 7, are in Figure 8.3. In this test, the order of convergence measured is
less than 4, and increasing the number of iterations seems to have no significant effect. The number
of iterations Niter = 2 is chosen according to (7.1b), and Niter = 9 chosen by (7.2) corresponds
to an order increase of α per correction iteration. This order reduction could be caused by the
more severe singularity at the initial time. Since adding correction iterations does not seem to
improve the accuracy or the order of the method, the order reduction is likely caused by either
the polynomial interpolation (of the data at the Gauss-Lobatto nodes) or the RK scheme. Such
order reduction is known to occur in the application of RK methods to very stiff problems [27,
28].

High-Order Adaptive Methods for FDEs 17

10
−3

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

α=0.5 LER IDC

h
avg

E
1
/T

O(h
1.5

)

O(h
2
)

O(h
4
)

N
loc

=5 N
iter

=0

N
loc

=5 N
iter

=1

N
loc

=5 N
iter

=5

10
−2

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

α=0.5 TR IDC

h
avg

E
1
/T

O(h
2.5

)

O(h
4
)

N
loc

=5 N
iter

=0

N
loc

=5 N
iter

=1

Fig. 8.1 The global error E1/T for (8.1) with α = 0.5 plotted as a function of the average step size havg. The
different graphs correspond to different numbers Niter of correction iterations. The results on the left and right
are obtained with the LER-IDC and TR-IDC methods, respectively.

10
−3

10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

α=0.8 LER IDC

h
avg

E
1
/T

O(h
1.8

)

O(h
2.6

)

O(h
3.4

)
O(h

4
)

N
loc

=5 N
iter

=0

N
loc

=5 N
iter

=1

N
loc

=5 N
iter

=2

N
loc

=5 N
iter

=3

Fig. 8.2 The global error E1/T for (8.1) with α = 0.8 plotted as a function of the average step size havg. The
different graphs correspond to different numbers Niter of correction iterations.

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

α=0.2 TR IDC

h
avg

E
1
/T

O(h
4
)

O(h
3
)

N
loc

=5 N
iter

=2

N
loc

=5 N
iter

=9

Fig. 8.3 Global error E1/T for (8.1) with α = 0.2 plotted as a function of the average step size havg. The
different graphs correspond to different numbers Niter of correction iterations.

18 Daniel Baffet, Jan S. Hesthaven

8.2 Comparison of error indicators

We consider (8.1) in (0, T), with α = 0.5, and T = 5. The purpose of this test is to demonstrate an
issue that may arise when using (6.1) as an error indicator. The results are in Figure 8.4. Results
in the left column are obtained with (6.1) and results in the right column with (6.2). The first
row shows the local error

enh = |vn − u(tn) | (8.5)

of the LER-IDC method as a function of time. In this test we are specifically interested in the
behavior of the error near the singularity at the initial condition. Thus the second row shows the
same results, but on a log-log scale. The third row shows the step-size chosen by the program as
a function of time, also on a log-log scale.

As can be seen at the left figure of the second row, obtained with (6.1), as the tolerance
decreases, the error is reduced. However, the reduction is not uniform in time. Notice that near
the initial condition the error decreases at a lower rate. Although in this example, this is observable
at very small scales, if left untreated, it may ruin the accuracy of the approximation. The right
figure of the second row, obtained with (6.2), does not show this behavior. While the jump near
the initial time is still visible, the relative error at the peak, compared to the error elsewhere does
not seem to grow as the tolerance decreases. The price is, of course, that the starting step-size
is considerably smaller. Regardless, with both error indicators we measure 4th order convergence
for E1. This is shown in Figure 8.5, where the graphs of Ind. 1 and Ind. 2 are obtained with (6.1)
and (6.2), respectively.

8.3 Fractional Van der Pol equation

Consider the nonlinear fractional differential equation

(Dα)
2
x− ε

(
1− x2

)
Dαx+ x = 0 (8.6a)

in (0, T), with initial conditions

x(0) = x0 Dαx(0) = y0 . (8.6b)

Here ε is a non-negative constant, and x0, y0 ∈ R. For α = 1, (8.6a) is reduced to the classical
Van der Pol equation which can be shown to have a stable periodic solution. To apply the scheme
we write (8.6a) as a system by substituting y = Dαx. Thus, we have

Dαx = y (8.7a)

Dαy = ε
(

1− x2
)
y − x , (8.7b)

in (0, T) subject to the initial condition

x(0) = x0 y(0) = y0 . (8.7c)

In the tests, we fix α = 0.8, ε = 4, x0 = 2, y0 = 0, and T = 25. Figure 8.6 shows the reference
solution computed with the TR-IDC method and εh = 10−10. Figure 8.7 shows the global error
E1/T as a function of the average step size (8.4). The numerical solutions are compared to the
spline interpolation of the reference numerical solution. In this example we measure 4-th order
convergence of both methods.

Figure 8.8 shows the local error eh (top), the step size (middle), and number of auxiliary
variables P (bottom) as functions of time. Comparing Figures 8.6 and 8.8, we observe that the
error indicator detects the changes in the solution and adapts the step size h accordingly. Based
on the error indicator for the history term and the step size h, the number P of auxiliary variables
is also modified.

High-Order Adaptive Methods for FDEs 19

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

t

e
h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

t

e
h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

t

e
h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

10
−15

10
−10

10
−5

10
0

10
5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

t

e
h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−8

10
−6

10
−4

10
−2

10
0

α=0.5 LER IDC

t

h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

10
−15

10
−10

10
−5

10
0

10
5

10
−15

10
−10

10
−5

10
0

α=0.5 LER IDC

t

h

ε
h
=1.0e−06

ε
h
=1.0e−08

ε
h
=1.0e−10

Fig. 8.4 Comparison of error indicator performance – problem (8.1): The figures on the left and right show
the results obtained with (6.1) and (6.2), respectively. Top: the local error eh as a function of time; middle: the
local error as a function of time on log-log scale; bottom: the step-size as a function of time on log-log scale.

The following test provides an example to a situation where the error indicator does not
perform as well. When α becomes smaller, (8.7) becomes harder to approximate. Figure 8.9 shows
a numerical solution computed for (8.7) with α = 0.5, and ε = 4, and error tolerance εh = 10−10.
Problem (8.7) with these parameters seems more difficult for treatment than the the problem
with α = 0.8. In Table 8.1 we show the number of steps and the number of rejected steps in the
TR-IDC method, for different error tolerances. Here, qu is the parameter which determines when
the step-size is increased. The table shows that when qu = 10, the method rejects a significant
number of steps. While the method completed the tests, rejecting a significant number of steps
should be avoided if possible. When qu is increased to qu = 20, the method rejects very few steps,
however it requires more steps to cover the time interval, as, on average, a smaller step-size is
used.

20 Daniel Baffet, Jan S. Hesthaven

10
−3

10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

h
avg

E
1
/T

O(h
4
)

Ind. 1

Ind. 2

Fig. 8.5 Comparison of error indicator performance – problem (8.1): the global error E1/T is plotted as a
function of the average step-size; the graphs Ind. 1 and Ind. 2 are obtained with (6.1) and (6.2), respectively.

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

6

t

α=0.8 ε=4

x
ref

y
ref

Fig. 8.6 The reference solution to (8.7), with α = 0.8, and ε = 4 obtained with the TR-IDC and error tolerance
εh = 10−10.

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

α=0.8

h
avg

E
1
/T

TR IDC

LER IDC

O(h
4
)

Fig. 8.7 The global error E1/T for (8.7) with α = 0.8, and ε = 4. The numerical solutions are compared to a
reference solution computed as the spline interpolation of the numerical solution shown in Figure 8.6.

qu = 10 qu = 20
εh 10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

N 651 665 731 905 1242 1056 1119 1722 2632 3776
Rejected 549 269 564 291 192 4 4 6 16 23

Table 8.1 Problem (8.7) with α = 0.5 and ε = 4. Results obtained with the TR-IDC method. The number of
steps the method performed and rejected for different error tolerances and qu.

High-Order Adaptive Methods for FDEs 21

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

α=0.8 LER IDC

t

e
h

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

α=0.8 TR IDC

t

e
h

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

α=0.8 LER IDC

t

h

ε
h
=1.0e−02

ε
h
=1.0e−04

ε
h
=1.0e−06

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

α=0.8 TR IDC

t

h

ε
h
=1.0e−02

ε
h
=1.0e−04

ε
h
=1.0e−06

0 5 10 15 20 25 30
20

40

60

80

100

120

140

160

180

200

α=0.8 LER IDC

t

P

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

0 5 10 15 20 25 30
20

40

60

80

100

120

140

160

180

200

α=0.8 TR IDC

t

P

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

Fig. 8.8 Problem (8.7): top – the local 1-norm of the error; middle – h as a function of t; bottom – P as a
function of t. The results on the left and right are obtained with the LER-IDC and TR-IDC methods, respectively.

8.4 Fractional telegraph equation

Consider the fractional telegraph equation

(Dα)
2
q − c2 ∂

2q

∂x2
+ aDαq + bq = 0 , (8.8a)

in (0, 1)× (0, T), subject to Dirichlet boundary conditions

q|x=0 = qE(t) q|x=1 = qW (t) (8.8b)

and initial conditions

q(x, 0) = q0(x) Dαq(x, 0) = q1(x) . (8.8c)

22 Daniel Baffet, Jan S. Hesthaven

0 5 10 15 20 25 30
−7

−6

−5

−4

−3

−2

−1

0

1

2

t

α=0.5 ε=4

x
ref

y
ref

5.5 6 6.5

−6

−5

−4

−3

−2

−1

0

t

α=0.5 ε=4

x
ref

y
ref

Fig. 8.9 A numerical solution to (8.7), with α = 0.5, and ε = 4 obtained with the TR-IDC and error tolerance
εh = 10−10. The figure on the right is an enlargement of the dashed frame on the left.

To apply the method we define r = Dαq and transform (8.8a) into

Dαq = r (8.9a)

Dαr = c2
∂2q

∂x2
− bq − ar . (8.9b)

To discretize the spacial operator and thus obtain a system (2.5), we substitute

Q(x, t) =

Nx+1∑
j=0

Qj(t) `j(x) R(x, t) =

Nx∑
j=1

Rj(t) `j(x) (8.10)

for q, and r in (8.9), impose the boundary conditions and evaluate at xi, with i = 1, . . . , Nx, where
`j are the Lagrange polynomials associated with the Gauss-Lobatto nodes x0, . . . , xNx+1 of the
spacial domain [0, 1], and `j are the Lagrange polynomials associated with x1, . . . , xNx

. Thus, we
obtain

DαQi = Ri (8.11)

DαRi = c2
Nx+1∑
j=0

`′′j (xi)Qj − bQi − aRi (8.12)

with i = 1, . . . , Nx, where
Q0 = qW QNx+1 = qE . (8.13)

We set α = 0.5, a = b = 0, c = 1/π, qW (t) = sin(t), qE(t) = 0, q0 = q1 = 0, T = 2π, and
Nx = 11. All tests are performed with the LER-IDC method. In the following qn(x) denotes the
approximation to q(x, tn). Figure 8.10 shows the reference solution qref computed with εh = 10−8.
We compare the numerical solutions to the reference solution at x = x6 = 1/2. The results are in
Figure 8.11. In this figure,

E1 =
∑
n

hne
n
h , (8.14)

and
enh = |qn(1/2)− qref(1/2, tn) | , (8.15)

where qref(1/2, ·) is the spline interpolation in time of qref at x = 1/2. The top and bottom figures
on the right show the global-in-time error E1/T at x = 1/2 as a function of the average step
size, and the step size as a function of time, respectively. Note that when the error tolerance εh
is reduced from 10−2 to 10−3 or 10−4, the average step size does not change significantly. The
error, however, decreases from E1/T ≈ 10−5, for εh = 10−2, to E1/T ≈ 10−6, for εh = 10−3, and

High-Order Adaptive Methods for FDEs 23

0

0.5

1

0

5

10
−1

−0.5

0

0.5

1

xt

q
re

f

0 1 2 3 4 5 6 7
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

q
re

f(1
/2

,t
)

α=0.5

Fig. 8.10 The reference solution qref to (8.9). The figure on the left shows the solution surface in the x-t plane,
and the figure on the right shows qref(1/2, ·) as a function of t.

E1/T ≈ 10−7, for εh = 10−4. It is likely that at these moderate tolerances, the main restriction
on the step size is imposed by the stability of the discrete scheme and not its accuracy. This
explains why the average step size does not decrease significantly. The reason the error is reduced
so quickly could be that when εh = 10−2, the approximation of the history term contributes
a significant error compared with the error due to the step size picked by the program. Thus,
when εh is reduced, the tolerance for the history term is also reduced – as they are linked by
εP = 10−1εh. As a result, more auxiliary variables are retained, as is shown in the bottom left
figure, and hence the approximation of the history term improves. When εh is decreased further,
the graph of the error continues to decrease at a lower rate, closer to the expected rate.

9 Concluding remarks

We have developed fully discrete, high-order, adaptive time-stepping methods for FDEs. The
methods are based on the kernel compression scheme proposed in [7] for the approximation of the
history term and on the IDC method for the approximation of the local term. The analysis shows
that the IDC method increases the order of the local approximation by α each correction itera-
tion. We have presented numerical results obtained with two methods for a number of problems,
illustrating the performance. The results demonstrate the capability to yield high order accuracy
and the ability of the error indicators to control the error, detect changes in the solution, and
adapt the step size accordingly. A version of the code used in the numerical tests is available at
[24].

At this point there are some interesting theoretical issues left open. One issue is the local
order of the IDC method, and its increase at each correction iteration. Theorem 5.1 states that
the local order of the IDC method increases by at least α each correction iteration. In our tests we
measure the global errors of the schemes and observe an increase of the order by α and 1 + α for
each iteration with the composite left endpoint and trapezoidal rules, respectively. Furthermore,
our results show a considerable improvement of the accuracy when using the trapezoidal rule
compared to the left endpoint rule. This issue is of particular importance since an increase of
the order by α per correction iteration implies the number of correction iterations required to
obtain a prescribed order tends to infinity as α tends to zero. In contrast, if one can guarantee an
increase of the order by 1 + α, a bounded number of correction iterations will suffice to achieve
the prescribed order for all α ∈ (0, 1). Some variations of the approach could also be explored.
Different quadratures nodes may yield improved accuracy and stability, or allow for more efficient
algorithms. Other types of schemes such as convolution quadratures may be used as inner schemes.
We leave the treatment of these issues to future work.

24 Daniel Baffet, Jan S. Hesthaven

0 1 2 3 4 5 6 7
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

α=0.5 LER IDC

t

e
h

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

h
avg

E
1
/T

LER IDC

O(h
4
)

0 1 2 3 4 5 6 7
60

80

100

120

140

160

180

α=0.5 LER IDC

t

P

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

α=0.5 LER IDC

t

h

ε
h
=1.0e−02

ε
h
=1.0e−03

ε
h
=1.0e−04

ε
h
=1.0e−05

ε
h
=1.0e−06

Fig. 8.11 Problem (8.9); numerical results. Starting from the top left and continuing clockwise, the figures
show the local error eh at x = 0.5 as a function of time, the global in time error E1/T at x = 0.5 as a function
of the average step size havg, the step size h as a function of time, and P as a function of time.

Acknowledgements The authors are grateful to Stefano Guarino for his contribution.

References

1. Y. Zhang, Z. Sun, H. Liao, Finite Difference Methods for the Time Fractional Diffusion Equation on Non-
Uniform Meshes, J. Comput. Phys. 256 (2014), 195-210.

2. B. Jin, R. Lazarov, Z. Zhou, An Analysis of the L1 Scheme for the Subdiffusion Equation with Nonsmooth
Data, IMA J. Numer. Anal., DOI: 10.1093/imanum/dru063.

3. C. Lubich, Convolution Quadrature and Discretized Operational Calculus I, Numer. Math. 52 (1988), 129-
145.

4. A. Schädle, M. López-Fernández, C. Lubich, Fast and Oblivious Convolution Quadrature, SIAM J. Sci.
Comput., Vol. 28, No. 2 (2006), pp. 421-438.

5. H. Brunner, D. Schötazau, hp Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equa-
tions, SIAM J. Numer. Anal., Vol. 44, No. 1, pp. 224-245.

6. K. Mustapha, H. Brunner, H. Mustapha, D. Schötazau, An hp-Version Discontinuous Galerkin Method for
Integro-Differential Equations of Parabolic Type, SIAM J. Numer. Anal., Vol. 49, No. 4, pp. 1369-1396.

7. D. Baffet, J. S. Hesthaven, A Kernel Compression Scheme for Fractional Differential Equations, SIAM J.
Numer. Anal., (accepted) 2016.

8. J.R. Li, A Fast Time Stepping Method for Evaluating Fractional Integrals SIAM J. Sci. Comput., Vol. 31,
No. 6 (2010), pp. 4696-4714.

9. C. Lubich, A. Schädle, Fast Convolution for Nonreflecting Boundary Conditions, SIAM J. Sci. Comput.,
Vol. 24, No. 1 (2002), pp. 161-182.

10. M. López-Fernández, C. Lubich, A. Schädle, Adaptive Fast and Oblivious Convolution in Evolution Equa-
tions with Memory, SIAM J. Sci. Comput., Vol. 30, No. 2 (2008), pp. 1015-1037.

11. G. Beylkin, L. Monzón, Approximation by Exponential Sums Revisited, Appl. Comput. Harmon. Anal. 28
(2010), 131-149.

12. D. Conte, I. Del Prete, Fast Collocation Methods for Volterra Integral Equations of Convolution Type, J.
Comput. Appl. Math., 196 (2006), 652-663.

High-Order Adaptive Methods for FDEs 25

13. C. Lubich, Runge-Kutta Theory for Volterra and Abel Integral Equations of the Second Kind, Math. Comp.,
Vol. 41, No. 163 (1983), pp. 87-102.

14. A. Dutt, L. Greengard, V. Rokhlin, Spectral Deferred Correction Methods for Ordinary Differential Equa-
tions, BIT Vol. 40, No. 2, 241-266 (2000).

15. T. Hagstrom, R. Zhou, On the Spectral Deferred Correction of Splitting Methods for Initial Value Problems,
Comm. App. Math. and Comp. Sci., Col. 1, No. 1, 2006.

16. A. Christlieb, B. Ong, J.M. Qiu, Integral Deferred Correction Methods Constructed with High Order Runge-
Kutta Integrators, Math. Comp., Vol. 79, No. 270, 761-783 (2010).

17. A. Christlieb, B. Ong, J.M. Qiu, Comments on High-Order Integrators Embedded Within Integral Deferred
Correction Methods, Comm. App. Math. and Comp. Sci., Vol. 4, No. 1, 2009.

18. S. Guarino, Spectral Deferred Correction Methods for Differential Integral Equations, Master Dissertation,
EPFL, 2016.

19. K. Diethelm, N. J. Ford, Analysis of Fractional Differential Equations, J. Math. Anal. Appl., Vol. 265,
229-248 (2002).

20. B. Alpert, L. Greengard, T. Hagstrom, Rapid Evaluation of Nonreflecting Boundary Kernels for Time-
Domain Wave Propagation, SIAM J. Numer. Anal., Vol. 37, No. 4, pp. 1138-1164.

21. M. López-Fernández, C. Palencia, A. Schädle, A Spectral Order Method for Inverting Sectorial Laplace
Transforms, SIAM J. Numer. Anal., Vol. 44, No. 3 (2006), pp. 1332-1350.

22. R. Askey, J. Fitch, Integral Representations for Jacobi Polynomials and Some Applications, Journal of
Mathematical Analysis and Applications, 26 (1969), 411-437.

23. C. A. Kennedy, M. H. Carpenter, Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equa-
tions, Appl. Numer. Math., Vol. 44 (2003), Issue 1-2, pp. 139-181.

24. D. Baffet, Kernel Compression Schemes for Fractional Differential Equations, MATLAB Central File Ex-
change, 2017, file ID: 61024.

25. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
26. R. Grrappa, The Mittag-Leffler Function, MATLAB Central File Exchange, 2014, file ID: 48154.
27. J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2003.
28. A. Prothero, A. Robinson, On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of

Ordinary Differential Equations, Math. Comp., Vol. 28, No. 125, 145-162 (1974).

	Introduction
	Overview
	Kernel compression
	Inner schemes
	Integral deferred correction
	Adaptive error control
	Further details on the implementation
	Numerical tests
	Concluding remarks

