Skip to main content

Advertisement

Log in

Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal \(L^2\) error estimate is provided almost unconditionally (i.e., when the mesh size h and time step \(\tau \) are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012). doi:10.1007/978-3-642-23099-8

    MATH  Google Scholar 

  2. Bochev, P., Lehoucq, R.: On the finite element solution of the pure Neumann problem. SIAM Rev. 47, 50–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    Book  MATH  Google Scholar 

  4. Brezzi, F., Marini, L., Pietra, P.: Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26, 1342–1355 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Marini, L., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75, 493–514 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunk, M., Kværnø, A.: Positivity preserving discretization of time dependent semiconductor drift-diffusion equations. Appl. Numer. Math. 62, 1289–1301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Wu, L.: Second-order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174, AMS (1998)

  8. Evans, L.: Partial Differential Equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI (1998)

  9. Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electron. 15, 1–15 (2013)

    Google Scholar 

  10. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287–288, 214–223 (2016)

    MathSciNet  Google Scholar 

  12. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hou, Y., Li, B., Sun, W.: Error analysis of splitting Galerkin methods for heat and sweat transport in textile materials. SIAM J. Numer. Anal. 51, 88–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Lu, B., Wang, Z., McCammon, J.A.: Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates. Phys. A 389, 1329–1345 (2010)

    Article  Google Scholar 

  15. Liu, Y., Shu, C.W.: Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Sci. China Math. 59, 115–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, B., Holst, M., McCammon, J., Zhou, Y.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: finite element solutions. J. Comput. Phys. 229, 6979–6994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metti, M., Xu, J., Liu, C.: Energetically stable discretizations for charge transport and electrokinetic models. J. Comput. Phys. 306, 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson–Nernst–Planck equations on adaptive Cartesian grids. J. Comput. Phys. 274, 633–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mock, M.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3) 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  22. Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst–Planck–Poisson system. Numer. Math. 111, 591–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prohl, A., Schmuck, M.: Convergent finite element for discretizations of the Navier–Stokes–Nernst–Planck–Poisson system. M2AN Math. Model. Numer. Anal. 44, 531–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Scharfetter, D., Gummel, H.: Large signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Dev. 16, 64–77 (1969)

    Article  Google Scholar 

  26. Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19, 993–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Y., Sun, P., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Wei, G., Zheng, Q., Chen, Z., Xia, K.: Variational multiscale models for charge transport. SIAM Rev. 54, 699–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in Gramicidin pores. Mol. Based Math. Biol. 2, 509–523 (2014)

Download references

Acknowledgements

Huadong Gao was supported in part by a grant from the National Natural Science Foundation of China (NSFC) under Grant No. 11501227. Dongdong He was supported in part by a Grant from the National Natural Science Foundation of China (NSFC) under Grant No. 11402174. The authors would like to thank Dr. Weifeng Qiu for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., He, D. Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations. J Sci Comput 72, 1269–1289 (2017). https://doi.org/10.1007/s10915-017-0400-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0400-4

Keywords

Mathematics Subject Classification

Navigation