Skip to main content
Log in

Computation of Time Optimal Control Problems Governed by Linear Ordinary Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel numerical algorithm is presented to compute the optimal time of a time optimal control problem where the governing system is a linear ordinary differential equation. By the equivalence between time optimal control problem and norm optimal control problem, computation of the optimal time can be obtained by solving a sequence of norm optimal control problems, which are transferred into their Lagrangian dual problems. The nonsmooth structure of the dual problem is approximated by the iteratively reweighted least square strategy. Several numerical tests are given to show the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston (1993)

    MATH  Google Scholar 

  2. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program. 134, 71–99 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63, 1–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans, L.C.: An Introduction to Mathematical Optimal Control Theory. Lecture Notes, Department of Mathematics, University of California, Berkeley (2008)

  7. Fattorini, H.O.: Infinite Dimensional Linear Control Systems, the Time Optimal and Norm Optimal Control Problems, vol. 201. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  8. Hermes, H., LaSalle, J.: Functional Analysis and Time Optimal Control. Academic Press, New York (1969)

    MATH  Google Scholar 

  9. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito, K., Kunisch, K.: Semismooth newton methods for time-optimal control for a class of ODES. SIAM J. Control Optim. 48, 3997–4013 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaya, C.Y., Noakes, J.L.: Computations and time-optimal controls. Optim. Control Appl. Methods 17, 171–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaya, C.Y., Noakes, J.L.: Computational methods for time-optimal switching controls. J. Optim.Theory Appl 117, 69–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunisch, K., Wang, L.: Time optimal control of the heat equation with pointwise control constraints. ESAIM Control Optim. Calc. Var. 19, 460–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasalle, J.P.: The Time Optimal Control Problem, Contributions to the Theory of Nonlinear Oscillations, vol. 5, pp. 1–24. Princeton University Press, Princeton (1960)

    MATH  Google Scholar 

  15. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  16. Meier, E., Bryson, A.E.: Efficient algorithms for time-optimal rigid spacecraft reorientation problem. J. Guid. Control Dyn. 13, 859–866 (1990)

    Article  MATH  Google Scholar 

  17. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience Publishers, New York (1962)

    Google Scholar 

  18. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  20. Wang, G., Zheng, G.: An approach to the optimal time for a time optimal control problem of an internally controlled heat equation. SIAM J. Control Optim. 50, 601–628 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, G., Zuazua, E.: On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J. Control Optim. 50, 2938–2958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, S.: The Compution of Matrices in Control Theorey (in Chinese). China Higher Education Press, Beijing (2011)

    Google Scholar 

  23. Yong, J., Lou, H.: A Concise Course Of Optimal Control Theory. China Higher Education Press, Beijing (2006). (in Chinese)

    Google Scholar 

  24. Zhang, C.: The time optimal control with constraints of the rectangular type for linear time-varying ODEs. SIAM J. Control Optim. 51, 1528–1542 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527–621. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments, and to thank Professor Kunisch Karl and Professor Gengsheng Wang for their interesting inputs. The work of X. Lu was partially supported by the National Natural Science Foundation of China under Grants Nos. 11471253 and 91630313, and the work of L. Wang was partially supported by the National Natural Science Foundation of China under Grant No. 11371285.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qishu Yan.

Appendix

Appendix

Proof of Lemma 1

The proof is divided into four steps as follows.

Step 1.

$$\begin{aligned} \text{ If } \mu \ne 0,\; \text{ then } B^\mathrm {T}\varphi (t;T,\mu )= 0 \text { at most finite }t\in [0,T]. \end{aligned}$$
(27)

It can be proved by contradiction. Assume that \(B^\mathrm {T}\varphi (t;T,\mu )= 0\) at infinite \(t\in [0,T]\). Since \(B^\mathrm {T}\varphi (t;T,\mu )\) is analytic, we then obtain \(B^\mathrm {T}\varphi (t;T,\mu )\equiv 0\) in [0, T], which implies that

$$\begin{aligned} B^\mathrm {T}\mu =0,\, B^\mathrm {T}A^\mathrm {T}\mu =0,\ldots , B^\mathrm {T}(A^\mathrm {T})^{n-1}\mu =0. \end{aligned}$$
(28)

From \((H_2)\) and (28), it follows that

$$\begin{aligned} \mu =0, \end{aligned}$$

which leads to a contradiction.

Step 2. The bang-bang property of \((TP)^M\).

By Pontryagin’s maximum principle (see Theorem 3.5 in Chapter 3 of [24]), there exists \(\xi \in {\mathbb {R}}^n\) with \(\Vert \xi \Vert =1\) such that

$$\begin{aligned} \max _{\Vert v\Vert \le M}\langle \varphi (t;t^*(M),\xi ),Bv\rangle =\langle \varphi (t;t^*(M),\xi ),Bu_M^*(t)\rangle , \text { for a.e.}\;t\in (0,t^*(M)). \end{aligned}$$

This, together with (27), indicates the bang-bang property of \((TP)^M\). Then the uniqueness of the optimal control follows.

Step 3. For any \(\tau \in (0,T)\), there exists a generic positive constant \(C(\tau )\) dependent on \(\tau \), such that

$$\begin{aligned} \Vert \varphi (0;\tau ,\mu )\Vert \le C(\tau )\int _0^\tau \Vert B^{\mathrm {T}}\varphi (t;\tau ,\mu )\Vert \,dt, \quad \forall \,\mu \in {\mathbb {R}}^n. \end{aligned}$$
(29)

It can be proved by contradiction. Assume that there exists \(\mu _\ell \in {\mathbb {R}}^n\) with \(\Vert \mu _\ell \Vert =1\) and

$$\begin{aligned} \frac{\displaystyle \int _0^\tau \Vert B^\mathrm {T}\varphi (t;\tau ,\mu _\ell )\Vert \,dt}{\Vert \varphi (0;\tau ,\mu _\ell )\Vert }< \frac{1}{\ell },\quad \forall \,\ell \ge 1. \end{aligned}$$
(30)

Since \(\Vert \mu _\ell \Vert =1\), there exists a subsequence of \(\{\mu _\ell \}_{\ell \ge 1}\), still denoted by \(\{\mu _\ell \}\), and \(\mu _0\in {\mathbb {R}}^n\), such that

$$\begin{aligned} \lim _{\ell \rightarrow \infty }\mu _\ell =\mu _0\text { and }\Vert \mu _0\Vert =1. \end{aligned}$$

Passing to the limit for \(\ell \rightarrow +\infty \) in (30), we have that

$$\begin{aligned} \frac{\displaystyle \int _0^\tau \Vert B^\mathrm {T}\varphi (t;\tau ,\mu _0)\Vert \,dt}{\Vert \varphi (0;\tau ,\mu _0)\Vert }=0. \end{aligned}$$

This implies that \(B^\mathrm {T}\varphi (t;\tau ,\mu _0)=0\) for a.e. \(\; t\in [0,T]\) and contradicts (27).

Step 4. By (29) and the equivalence between the observability and controllability, see e.g. Theorem 2.1 in [19], we get that for any \(z_0\in {\mathbb {R}}^n\), there exists a control \(u\in L^\infty (0,\tau ;{\mathbb {R}}^m)\) with

$$\begin{aligned} \Vert u\Vert _{L^\infty (0,\tau ;{\mathbb {R}}^m)}\le C(\tau )\Vert z_0\Vert , \end{aligned}$$
(31)

such that the solution \(z(\cdot )\) to the equation

$$\begin{aligned} {\left\{ \begin{array}{ll} z'(t)+Az(t)=Bu(t),&{}t\in (0,\tau ),\\ z(0)=z_0 \end{array}\right. } \end{aligned}$$

satisfies that \(z(\tau )=0\).

By (31) and using the same argument as in [22], we have that (ii), (iii) and (iv) hold. Finally, the bang-bang property and the uniqueness of the optimal control for \((NP)^T\) follow from (iv) and Step 2. \(\square \)

Proof of Proposition 1

By changing variables, it suffices to show that there exists a solution \((T,y(\cdot ),u(\cdot ),\psi (\cdot ))\) to the the following system

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle y'(t)+ Ay(t)= Bu(t), &{} t\in (0,T),\\ \displaystyle \psi '(t)= A^\mathrm {T}\psi (t),&{}t\in (0,T),\\ \displaystyle u(t)=M\frac{B^\mathrm {T}\psi (t)}{\Vert B^\mathrm {T}\psi (t)\Vert },&{}t\in (0,T),\\ \displaystyle M=\int _0^T\Vert B^\mathrm {T}\psi (t)\Vert \,dt,\\ \displaystyle y(0)=y_0,\\ \displaystyle y(T)=0,\\ \end{array}\right. } \end{aligned}$$
(32)

where T is the optimal time to \((TP)^M\) and \(u(\cdot )\), when extended by zero to \((T, +\infty )\), is the optimal control to \((TP)^M\).

On one hand, let \(y^*(\cdot )\) and \(u^*(\cdot )\) be the optimal state and optimal control to \((TP)^M\), respectively and let \(\mu ^*\) be a minimizer of \(J^{t^*(M)}(\cdot )\). By (iv) in Lemma 1 and (iii) in Lemma 2, we have that

$$\begin{aligned} \left( t^*(M),y^*(\cdot ), u^*(\cdot ),\varphi (\cdot ;t^*(M),\mu ^*)\right) \end{aligned}$$

is a solution to (32). On the other hand, for any solution \(( T, y(\cdot ), u(\cdot ), \psi (\cdot ))\) to (32) and any \(\nu \in {\mathbb {R}}^n\), multiplying the first equation of (32) by \(\varphi (\cdot ;T,\nu )\) and integrating it over (0, T), we get that

$$\begin{aligned} \int _0^T\Vert B^\mathrm {T}\psi (t)\Vert \,dt\int _0^T\frac{\langle B^\mathrm {T}\psi (t),B^\mathrm {T}\varphi (t;T,\nu ) \rangle }{\Vert B^\mathrm {T}\psi (t)\Vert }\,dt +\langle \varphi (0;T,\nu ),y_0\rangle =0. \end{aligned}$$

This, together with (ii) in Lemma 2, indicates that

$$\begin{aligned} \psi (T)\text { is a minimizer of } J^T(\cdot ). \end{aligned}$$
(33)

It follows from the third equality, the fourth equality in (32), (33) and (iii) in Lemma 2 that

$$\begin{aligned} u(\cdot ),\text { when extended by zero to }(T,+\infty ), \text { is the optimal control to }(NP)^T. \end{aligned}$$
(34)

By the third equality in (32) and (34), we obtain that \(M=M^*(T)\), which, combined with (iii) and (iv) in Lemma 1, implies

$$\begin{aligned} T=t^*(M). \end{aligned}$$
(35)

From this equation, (34) and (iv) in Lemma 1, we obtain the conclusion. \(\square \)

Proof of Lemma 2

(i) It is obvious that \(J_\varepsilon ^T(\cdot )\) is continuous and convex. By (29), we have that

$$\begin{aligned} J_\varepsilon ^T(\mu )\ge & {} \frac{1}{2}\left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds\right) ^2 -C(T)\Vert y_0\Vert \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds+\varepsilon \Vert \mu \Vert \\= & {} \frac{1}{2}\left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds-C(T)\Vert y_0\Vert \right) ^2 -\frac{1}{2}C(T)^2\Vert y_0\Vert ^2+\varepsilon \Vert \mu \Vert . \end{aligned}$$

We will prove

$$\begin{aligned} \lim _{\Vert \mu \Vert \rightarrow +\infty }\int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds=+\infty \end{aligned}$$
(36)

by contradiction, and the coercivity follows immediately. Assume that there exist \(\{\mu _k\}\subset {\mathbb {R}}^n\) and a positive constant C which is independent of k, such that \(\Vert \mu _k\Vert \rightarrow +\infty \) and

$$\begin{aligned} \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu _k)\Vert \,ds\le C \text { for each }k\ge 1. \end{aligned}$$
(37)

Let \(\displaystyle v_k\triangleq \frac{\mu _k}{\Vert \mu _k\Vert }\), then there exists a subsequence of \(\{v_k\}_{k\ge 1}\), still denoted by the same way, and \(v_0\in {\mathbb {R}}^n\) with \(\Vert v_0\Vert =1\) and \(v_k\rightarrow v_0\). From (37), it follows that

$$\begin{aligned} \int _0^T\Vert B^\mathrm {T}\varphi (s;T,v_k)\Vert \,ds\le \frac{C}{\Vert \mu _k\Vert }\text { for each }k\ge 1. \end{aligned}$$

Passing to the limit for \(k\rightarrow \infty \) in the above inequality, we get that

$$\begin{aligned} \displaystyle \int _0^T\Vert B^\mathrm {T}\varphi (s;T,v_0)\Vert \,ds=0. \end{aligned}$$

This implies that \(v_0=0\), which leads to a contradiction. By the continuity and the coercivity of \(J_\varepsilon ^T(\cdot )\), there exists a minimizer \(\mu _\varepsilon ^*\).

Next we prove that \(\mu _\varepsilon ^*\ne 0\). If not, we have that for any \(\mu \in {\mathbb {R}}^n\),

$$\begin{aligned} J_\varepsilon ^T(\lambda \mu )=\frac{\lambda ^2}{2} \left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds\right) ^2+\lambda \langle y_0,\varphi (0;T,\mu )\rangle +\lambda \varepsilon \Vert \mu \Vert \ge 0,\quad \forall \, \lambda >0. \end{aligned}$$

and

$$\begin{aligned} J_\varepsilon ^T(-\lambda \mu )=\frac{\lambda ^2}{2} \left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds\right) ^2-\lambda \langle y_0,\varphi (0;T,\mu )\rangle +\lambda \varepsilon \Vert \mu \Vert \ge 0,\quad \forall \, \lambda >0. \end{aligned}$$

From the above two inequalities, we obtain that

$$\begin{aligned} |\langle y_0,\varphi (0;T,\mu )\rangle |\le \frac{\lambda }{2} \left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\mu )\Vert \,ds\right) ^2+\varepsilon \Vert \mu \Vert ,\quad \forall \, \lambda >0. \end{aligned}$$

Letting \(\lambda \rightarrow 0^+\), we obtain that

$$\begin{aligned} |\langle y_0,\varphi (0;T,\mu )\rangle |\le \varepsilon \Vert \mu \Vert ,\quad \forall \,\mu \in {\mathbb {R}}^n, \end{aligned}$$

i.e.,

$$\begin{aligned} |\langle e^{-AT}y_0,\mu \rangle |\le \varepsilon \Vert \mu \Vert , \quad \forall \,\mu \in {\mathbb {R}}^n. \end{aligned}$$

This implies \(\Vert e^{-AT}y_0\Vert \le \varepsilon \), which contradicts \(T<T_\varepsilon ^*\).

(ii) On one hand, if \(\mu _\varepsilon ^*\) is a minimizer of \(J_\varepsilon ^T(\cdot )\), we have that

$$\begin{aligned} \frac{J_\varepsilon ^T(\mu _\varepsilon ^*+\lambda \nu )-J_\varepsilon ^T(\mu _\varepsilon ^*)}{\lambda } \ge 0, \quad \forall \,\lambda >0,\quad \forall \, \nu \in {\mathbb {R}}^n. \end{aligned}$$

Letting \(\lambda \rightarrow 0^+\) in the above inequality, one can check that (5) holds. On the other hand, since \(J_\varepsilon ^T(\cdot )\) is convex and the minimizer is nonzero, then \(\nabla J_\varepsilon ^T(\mu _\varepsilon ^*) =0\) (which is equation (5)) implies \(\mu _\varepsilon ^*\ne 0\) is a minimizer of \(J_\varepsilon ^T(\cdot )\).

(iii) Let \(\mu _\varepsilon ^*\) be a minimizer of \(J_\varepsilon ^T(\cdot )\) and \(u_\varepsilon ^*\) be defined by (6). First, we can prove that \(u_\varepsilon ^*\) is an admissible control for \((NP)_\varepsilon ^T\). Let \(y(\cdot )\) be the solution to

$$\begin{aligned} \left\{ \begin{array}{l} y'(t)+Ay(t)=Bu_\varepsilon ^*(t),\,t\in ( 0,T),\\ y(0)=y_0. \end{array}\right. \end{aligned}$$

Multiplying the first equation of the above system by \(\varphi (\cdot ;T,\nu )\) and integrating it over (0, T), we get that

$$\begin{aligned} \langle \nu ,y(T)\rangle -\langle \varphi (0;T,\nu ),y_0\rangle =\int _0^T\langle u_\varepsilon ^*(t), B^\mathrm {T}\varphi (t;T,\nu )\rangle \,dt. \end{aligned}$$

From the latter and (6) it follows that

$$\begin{aligned}&\langle \nu ,y(T)\rangle \\&\quad = \langle \varphi (0;T,\nu ),y_0\rangle +\int _0^T\langle u_\varepsilon ^*(t), B^\mathrm {T}\varphi (t;T,\nu )\rangle \,dt\\&\quad =\langle \varphi (0;T,\nu ),y_0\rangle +\int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert \,dt\int _0^T\frac{\langle B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*), B^\mathrm {T}\varphi (t;T,\nu ) \rangle }{\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert }\,dt, \end{aligned}$$

which, combined with (5), indicates that

$$\begin{aligned} |\langle \nu ,y(T)\rangle |=\left| \varepsilon \frac{\langle \mu _\varepsilon ^*, \nu \rangle }{\Vert \mu _\varepsilon ^*\Vert }\right| \le \varepsilon \Vert \nu \Vert , \quad \forall \, \nu \in {\mathbb {R}}^n. \end{aligned}$$

This implies \(\Vert y(T)\Vert \le \varepsilon \) and \(u_\varepsilon ^*\) is an admissible control for \((NP)_\varepsilon ^T\).

Then, we prove that \(u_\varepsilon ^*\) is an optimal control for \((NP)_\varepsilon ^T\). For any \(u\in L^\infty (0,+\infty ;{\mathbb {R}}^m)\) satisfying that

$$\begin{aligned} \left\{ \begin{array}{l} h'(t)+Ah(t)=Bu(t),\,t\in ( 0,T),\\ h(0)=y_0,\\ \Vert h(T)\Vert \le \varepsilon , \end{array}\right. \end{aligned}$$

multiplying the first equation of the above system by \(\varphi (\cdot ;T,\mu _\varepsilon ^*)\) and integrating it over (0, T), we get that

$$\begin{aligned} \langle \mu _\varepsilon ^*, h(T)\rangle -\langle \varphi (0;T,\mu _\varepsilon ^*),y_0\rangle =\int _0^T \langle u(t), B^{\mathrm {T}}\varphi (t;T,\mu _\varepsilon ^*)\rangle \,dt. \end{aligned}$$

This, together with (5), implies that

$$\begin{aligned} \langle \mu _\varepsilon ^*, h(T)\rangle -\int _0^T \langle u(t), B^{\mathrm {T}}\varphi (t;T,\mu _\varepsilon ^*)\rangle \,dt =-\varepsilon \Vert \mu _\varepsilon ^*\Vert -\left( \int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert \,dt\right) ^2. \end{aligned}$$

Since \(\Vert h(T)\Vert \le \varepsilon \), it follows from the latter equality that

$$\begin{aligned} \int _0^T \langle u(t), B^{\mathrm {T}}\varphi (t;T,\mu _\varepsilon ^*)\rangle \,dt -\left( \int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert \,dt\right) ^2 =\langle \mu _\varepsilon ^*, h(T)\rangle +\varepsilon \Vert \mu _\varepsilon ^*\Vert \ge 0. \end{aligned}$$

Thus

$$\begin{aligned} \Vert u\Vert _{L^\infty (0,T;{\mathbb {R}}^m)}\ge \int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert \,dt= \Vert u_\varepsilon ^*\Vert _{L^\infty (0,T;{\mathbb {R}}^m)}. \end{aligned}$$

This shows that \(u_\varepsilon ^*\) is an optimal control to \((NP)_\varepsilon ^T\) and

$$\begin{aligned} M_\varepsilon ^*(T)=\displaystyle \int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _\varepsilon ^*)\Vert \,dt. \end{aligned}$$

\(\square \)

Proof of Proposition 2

Let \(0<\varepsilon <\Vert y_0\Vert \) and \(0<T<T_\varepsilon ^*\). For any \(\mu _1,\,\mu _2\in {\mathbb {R}}^n\), \(0<\alpha <1\), we have that

$$\begin{aligned}&J_\varepsilon ^T(\alpha \mu _1+(1-\alpha )\mu _2)\nonumber \\&\quad = \frac{1}{2}\left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T,\alpha \mu _1+(1-\alpha )\mu _2)\Vert \,ds\right) ^2\nonumber \\&\qquad +\,\langle y_0,\varphi (0;T,\alpha \mu _1+(1-\alpha )\mu _2)\rangle +\varepsilon \Vert \alpha \mu _1+(1-\alpha )\mu _2\Vert \nonumber \\&\quad \le \frac{1}{2}\left( \int _0^T(\alpha \Vert B^\mathrm {T}\varphi (s;T, \mu _1)\Vert +(1-\alpha )\Vert B^\mathrm {T}\varphi (s;T, \mu _2)\Vert )\,ds\right) ^2\nonumber \\&\qquad +\,\alpha \langle y_0,\varphi (0;T, \mu _1)\rangle +(1-\alpha )\langle y_0,\varphi (0;T, \mu _2)\rangle +\alpha \varepsilon \Vert \mu _1\Vert +(1-\alpha )\varepsilon \Vert \mu _2\Vert \nonumber \\&\quad \le \frac{\alpha }{2}\left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T, \mu _1)\Vert \,ds\right) ^2+\frac{1-\alpha }{2}\left( \int _0^T\Vert B^\mathrm {T}\varphi (s;T, \mu _2)\Vert \,ds\right) ^2\nonumber \\&\qquad +\,\alpha \langle y_0,\varphi (0;T, \mu _1)\rangle +(1-\alpha )\langle y_0,\varphi (0;T, \mu _2)\rangle +\alpha \varepsilon \Vert \mu _1\Vert +(1-\alpha )\varepsilon \Vert \mu _2\Vert \nonumber \\&\quad =\alpha J_\varepsilon ^T( \mu _1)+(1-\alpha )J_\varepsilon ^T( \mu _2). \end{aligned}$$
(38)

First, we notice that the first inequality in (38) becomes equality if and only if there exists a constant \(k\ge 0\) and a function \(\beta (\cdot ):\,[0,T]\rightarrow [0,+\infty )\), such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \mu _1=k\mu _2,\\ B^\mathrm {T}\varphi (t;T,\mu _1)=\beta (t)B^\mathrm {T}\varphi (t;T,\mu _2), \text { for a.e. }t\in (0,T). \end{array}\right. } \end{aligned}$$

These imply that the first inequality in (38) becomes equality if and only if there exists a constant \(k\ge 0\), such that

$$\begin{aligned} \mu _1=k\mu _2. \end{aligned}$$

Then, the second inequality in (38) becomes equality if and only if

$$\begin{aligned} \int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _1)\Vert \,dt=\int _0^T\Vert B^\mathrm {T}\varphi (t;T,\mu _2)\Vert \,dt. \end{aligned}$$

Hence \(J_\varepsilon ^T(\alpha \mu _1+(1-\alpha )\mu _2)=\alpha J_\varepsilon ^T( \mu _1)+(1-\alpha )J_\varepsilon ^T( \mu _2)\) if and only if \(\mu _1=\mu _2\). This shows that \(J_\varepsilon ^T(\cdot )\) is strictly convex and it has a unique minimizer. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wang, L. & Yan, Q. Computation of Time Optimal Control Problems Governed by Linear Ordinary Differential Equations. J Sci Comput 73, 1–25 (2017). https://doi.org/10.1007/s10915-017-0403-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0403-1

Keywords

Mathematics Subject Classification

Navigation