Skip to main content
Log in

The Time Second Order Mass Conservative Characteristic FDM for Advection–Diffusion Equations in High Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose in this paper a time second order mass conservative algorithm for solving advection–diffusion equations. A conservative interpolation and a continuous discrete flux are coupled to the characteristic finite difference method, which enables using large time step size in computation. The advection–diffusion equations are first transformed to the characteristic form, for which the integration over the irregular tracking cells at previous time level is proposed to be computed using conservative interpolation. In order to get second order in time solution, we treat the diffusion terms by taking the average along the characteristics and use high order accurate discrete flux that are continuous at tracking cell boundaries to obtain mass conservative solution. We demonstrate the second order temporal and spatial accuracy, as well as mass conservation property by comparing results with exact solutions. Comparisons with standard characteristic finite difference methods show the excellent performance of our method that it can get much more stable and accurate solutions and avoid non-physical numerical oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S., Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications. Atmos. Environ. 32(17), 2981–2999 (1998)

    Article  Google Scholar 

  2. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Chapman & Hall, London (1979)

    Google Scholar 

  3. Bear, J.: Hydraulics of Groundwater. Courier Corporation, New York (2012)

    Google Scholar 

  4. Bermejo, R.: A Galerkin-characteristic algorithm for transport-diffusion equations. SIAM J. Numer. Anal. 32, 425–454 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binning, P., Celia, M.A.: A finite volume Eulerian–Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems. Water Resour. Res. 32, 103–114 (1996)

    Article  Google Scholar 

  6. Celia, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)

    Article  Google Scholar 

  7. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MATH  Google Scholar 

  8. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26, 1487–1512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Douglas Jr., J., Russell, T.F.: Numerical methods for convection–dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flanders, H.: Differentiation under the integral sign. Am. Math. Mon. 80(6), 615–627 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansbo, P.: The characteristic streamline diffusion method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 96, 239–253 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Healy, R.W., Russell, T.F.: Solution of the advection–diffusion equation in two dimension by a finite-volume Eulerian–Lagrangian localized adjoint method. Adv. Water Resour. 21, 11–26 (1998)

    Article  Google Scholar 

  13. Liang, D., Du, C., Wang, H.: A fractional step ELLAM approach to high-dimensional convection–diffusion problems with forward particle tracking. J. Comput. Phys. 221(1), 198–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, D., Wang, W., Cheng, Y.: An efficient second-order characteristic finite element method for non-linear aerosol dynamic equations. Int. J. Numer. Methods Eng. 80(3), 338–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morton, K.W., Morton, K.W.: Numerical Solution of Convection–Diffusion Problems, vol. 46. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  16. Nair, R.D., Scroggs, J.S., Semazzi, F.H.: Efficient conservative global transport schemes for climate and atmospheric chemistry models. Mon. Weather Rev. 130(8), 2059–2073 (2002)

    Article  Google Scholar 

  17. Rui, H.: A conservative characteristic finite volume element method for solution of the advection–diffusion equation. Comput. Methods Appl. Mech. Eng. 197(45), 3862–3869 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection–diffusion problems. Numer. Math. 92(1), 161–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rui, H., Tabata, M.: A mass-conservative characteristic finite element scheme for convection–diffusion problems. J. Sci. Comput. 43(3), 416–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seinfeld, J., Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  21. Zerroukat, M., Wood, N., Staniforth, A.: SLICE: a semi-lagrangian inherently conserving and efficient scheme for transport problems. Q. J. R. Meteorol. Soc. 128(586), 2801–2820 (2002)

    Article  Google Scholar 

  22. Zerroukat, M., Wood, N., Staniforth, A.: Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE). J. Comput. Phys. 225(1), 935–948 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zerroukat, M., Allen, T.: A three-dimensional monotone and conservative semi-Lagrangian scheme (SLICE-3D) for transport problems. Q. J. R. Meteorol. Soc. 138(667), 1640–1651 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Natural Sciences and Engineering Research Council of Canada, the National Natural Science Foundation of China (Grant No. 11601497) and Fundamental Research Funds for the Central Universities of China (Grant No. 201513059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, K., Liang, D. The Time Second Order Mass Conservative Characteristic FDM for Advection–Diffusion Equations in High Dimensions. J Sci Comput 73, 26–49 (2017). https://doi.org/10.1007/s10915-017-0404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0404-0

Keywords

Navigation