Skip to main content
Log in

A Block-Centered Finite Difference Method for Slightly Compressible Darcy–Forchheimer Flow in Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A block-centered finite difference method is introduced to solve an initial and boundary value problem for a nonlinear parabolic equation to model the slightly compressible flow in porous media, in which the velocity–pressure relation is described by Darcy–Forchheimer’s Law. The method can be thought as the lowest order Raviart–Thomas mixed element method with proper quadrature formulation. By using the method the velocity and pressure can be approximated simultaneously. We established the second-order error estimates for pressure and velocity in proper discrete norms on non-uniform rectangular grid. No time-step restriction is needed for the error estimates. The numerical experiments using the scheme show that the convergence rates of the method are in agreement with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers LTD, London (1979)

    Google Scholar 

  2. Neuman, S.P.: Theoretical derivation of Darcy’s law. Acta Mech. 25(3), 153–170 (1977)

    Article  MATH  Google Scholar 

  3. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  Google Scholar 

  4. Ruth, D., Ma, H.: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7(3), 255–264 (1992)

    Article  Google Scholar 

  5. Aulisa, E., Bloshanskaya, L., Hoang, L., Lbragimov, A.: Analysis of generalized forchheimer flows of compressible fliuds in porous media. J. Math. Phys. 50(10), 103102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aulisa, E., Lbragimov, A., Volko, P.P., Walton, J.R.: Mathematical framework of the well productivity index for fast Forchheimer (non-Darcy) flow in porous media. Math. Model. Methods Appl. Sci. 19(9), 1241–1275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fabrie, P.: Regularity of the solution of Darcy–Forchheimer’s equation. Nonlinear Anal. Theory Methods Appl. 13(9), 1025–1049 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Douglas, J.J., Paes-Leme, P.J., Giorgi, T.: Generalized Forchheimer flow in porous media. In: Boundary Value Problems for Partial Differential Equations and Applications. RMA Research Notes in Research Notes in Applied Mathematics, 29, Masson, Paris, pp. 99–111 (1993)

  9. Park, E.J.: Mixed finite element method for nonlinear second order elliptic problems. SIAM J. Numer. Anal. 32, 865–885 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Roberts, J.E., Thomas, J.M.: Mixed and Hybrid Methods. In: Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp. 523–639, Elsevier Science Publishers B.V., North-Holland, Amsterdam (1991)

  11. Girault, V., Wheeler, M.F.: Numerical discretization of a Darcy–Forchheimer model. Numer. Math. 110(2), 161–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lopez, H., Molina, B., Jose, J.S.: Comparison between different numerical discretizations for a Darcy–Forchheimer model. Electron. Trans. Numer. Anal. 34, 187–203 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Pan, H., Rui, H.: mixed element method for two-dimensional Darcy–Forchheimer model. J. Sci. Comput. 52, 563–587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Park, E.J.: Mixed finite element method for generalized Forchheimer flow in porous media. Numer. Methods Part. Differ. Equ. 21, 213–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, R.E., Lazarov, R.D., Lyons, S.L., Papavassiliou, D.V., Pasciak, J., Qin, G.: Numerical well model for non-Darcy flow through isotropic porous media. Comput. Geosci. 3(3–4), 184–204 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Ibragimov, A., Kieu, T.: An expanded mixed finite element method for generalized Forchheimer flows in porous media. Comput. Math. Appl. 72, 1467–1483 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kieu, T.: Numerical analysis for generalized Forchheimer flows of slightly compressible fluids in porous media. (2015). arXiv:1508.00294

  18. Kieu, T.: Analysis of expanded mixed finite element methods for the generalized Forchheimer equations. Numer. Methods Part. Differ. Equ. 32, 60–85 (2016)

    Article  MATH  Google Scholar 

  19. Celik, E., Hoang, L., Kieu, T.: Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media. (2016). arXiv:1601.00703

  20. Hoang, L., Kieu, T.: Global estimates for generalized Forchheimer flows of slightly compressible fluids. (2015). arXiv:1502.04732

  21. Hoang, L., Kieu, T.: Interior estimates for generalized Forchheimer flows of slightly compressible fluids. (2015). arXiv:1404.6517

  22. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differencec for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arbogast, T., Dawson, C.N., Keenan, P.T., Wheeler, M.F., Yotov, I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 404–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wheeler, M.F., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121, 165–204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–20106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy–Forchheimer model. SIAM J. Numer. Anal. 50, 2612–2651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rui, H., Zhao, D., Pan, H.: Block-centered finite difference methods for Darcy–Forchheimer model with variable Forchheimer number. Numer. Methods Part. Differ. Equ. 31, 1603–1622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rui, H., Liu, W.: A two-grid block-centered finite difference methods for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53, 1941–1962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin methods for the imcompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. He, Y.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth and non-smooth initial data. Math. Comput. 77, 2097–2124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Elliot, C.C., Larsson, S.: A finite element model for the time-dependent Joule heating problem. Math. Comput. 64, 1433–1453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, W., Sun, Z.: Finite difference methods for a nonlinear and strongly coupled heat and moisture transportsystem in textile materials. Numer. Math. 120, 153–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, H., Ma, H., Li, H.: Optimal order error estimates for the Chebyshev–Legendre spectral method for solving the generalized Burgers equation. SIAM J. Numer. Anal. 41, 659–672 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear Parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Li, B., Sun, W.: Uncontionally convergence and optimal error analysis for a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  38. Douglas Jr., J., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41(164), 441–459 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Aulisa, E., Bloshanskaya, L., Hoang, L., Ibragimov, A.: Analysis of generalized forchheimer flows of compressible fluids in porous media. Technical report. Institute for Mathematics and its Applications (2009)

  40. Hoang, L., Ibragimov, A.: Structural stability of generalized Forchheimer equations for comopressible fluids in porous media. Technical report. Institute for Mathematics and its Applications (2010)

  41. Dibenedetto, E.: Degenerate Parabolic Equations. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  42. Dibenedetto, E., Gianazza, U., Vespri, V.: Forward, backward and elliptic harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze 9(2), 385–422 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Hoang, L., Ibragimov, A., Kieu, T., Sobol, Z.: Stability of solutions to generalized Forchheimer equations of any degree. J. Math. Sci. 210(4), 1–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian. Translations of Mathematical Monographs, vol. 23. American Mathematical Society (1968)

  45. Luan, H., Ibragimov, A.: Qualitative study of generalized forchheimer flows with the flux boundary condition. Adv. Differ. Equ. 17(17), 511–556 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (2013)

    Book  MATH  Google Scholar 

  47. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Indus. Appl. Math. 30, 681–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their constructive comments, suggestions, careful checking of the manuscript and listing papers about this problem published recently, which lead to improvements of the presentation. This work is supported by the National Natural Science Foundation of China Grant Nos. 11671233,91330106,11301307; the Foundation of Shandong Province Outstanding Young Scientist Award No. BS2013NJ002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, H., Pan, H. A Block-Centered Finite Difference Method for Slightly Compressible Darcy–Forchheimer Flow in Porous Media. J Sci Comput 73, 70–92 (2017). https://doi.org/10.1007/s10915-017-0406-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0406-y

Keywords

Mathematics Subject Classification

Navigation