Skip to main content
Log in

Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Lagrangian Coherent Structures Extraction

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze a new class of Eulerian methods for constructing both the forward and the backward flow maps of sufficiently smooth dynamical systems. These methods improve previous Eulerian approaches so that the computations of the forward flow map can be done on the fly as one imports or measures the velocity field forward in time. Similar to typical Lagrangian or semi-Lagrangian methods, the proposed methods require an interpolation at each step. Having said that, the Eulerian method interpolates d components of the flow maps in the d dimensional space but does not require any \((d+1)\)-dimensional spatial-temporal interpolation as in the Lagrangian approaches. We will also extend these Eulerian methods to compute line integrals along any Lagrangian particle. The paper gives a computational complexity analysis and an error estimate of these Eulerian methods. The method can be applied to a wide range of applications for flow map constructions including the finite time Lyapunov exponent computations, the coherent ergodic partition, and high frequency wave propagations using geometric optic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Artale, V., Boffetta, G., Celani, A., Cencini, M., Vulpiani, A.: Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys. Fluids 9(11), 3162–3171 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A: Math. Gen. 30, 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Ying, L.: Fast geodesics computation with the phase flow method. J. Comput. Phys. 220, 6–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cencini, M., Vulpiani, A.: Finite size Lyapunov exponent: review on applications. J. Phys. A: Math. Theor. 46, 254019 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerveny, V., Molotkov, I.A., Psencik, I.: Ray Method in Seismology. Univerzita Karlova Press, Praha (1977)

    Google Scholar 

  6. Courant, R., Issacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Boor, C., Swartz, B.: Piecewise monotone interpolation. J. Approx. Theory 21, 411–416 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 479–490 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149, 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids A 13, 3368–3385 (2001)

    MathSciNet  Google Scholar 

  12. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147, 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hermandez-Carrasco, I., Lopex, C., Hernansez-Garcia, E., Turiel, A.: How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36(3–4), 208–218 (2011)

    Article  Google Scholar 

  14. Huynh, H.T.: Accurate monotone cubic interpolation. NASA Technical Memorandum 103789 (1991)

  15. Lekien, F., Marsden, J.E.: Tricubic interpolation in three dimensions. Int. J. Numer. Methods Eng. 63, 455–471 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in \(n\)-dimensional systems. J. Math. Phys. 48, 065404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lentine, M., Gretarsson, J.T., Fedkiw, R.: An unconditionally stable fully conservative semi-Lagrangian method. J. Comput. Phys. 230, 2857–2879 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leslie, L.M., Pursuer, R.J.: Three-dimensional mass-conserving semi-Lagrangian scheme employing forward trajectories. Mon. Weather Rev. 123, 2551–2566 (1995)

    Article  Google Scholar 

  19. Letz, T., Kantz, H.: Characterization of sensitivity to finite perturbations. Phys. Rev. E. 61, 2533 (2000)

    Article  Google Scholar 

  20. Leung, S.: An Eulerian approach for computing the finite time Lyapunov exponent. J. Comput. Phys. 230, 3500–3524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leung, S.: A backward phase flow method for the finite time Lyapunov exponent. Chaos 23, 043132 (2013)

  22. Leung, S., Qian, J.: Transmission traveltime tomography based on paraxial Liouville equations and level set formulations. Inverse Probl. 23, 799–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228, 2951–2977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leung, S., Qian, J.: The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation. J. Comput. Phys. 229, 8888–8917 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leung, S., Qian, J., Burridge, R.: Eulerian Gaussian beams for high frequency wave propagation. Geophysics 72, SM61–SM76 (2007)

    Article  Google Scholar 

  26. Liu, X.D., Osher, S.J., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mills, P.: Following the vapour trail: A study of chaotic mixing of water vapour in the upper troposphere. Thesis, University of Bremen, Germany (2004)

  28. Mills, P.: Isoline retrieval: an optimal sounding method for validation of advected contours. Comput. Geosci. 35, 2020–2031 (2009)

    Article  Google Scholar 

  29. Min, C.: Local level set methods in high dimension and codimension. J. Comput. Phys. 200(1), 368–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Min, C., Gibou, F.: A second order accurate level set method on non-graded adaptive cartesian grids. J. Comput. Phys. 225, 300–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mirzadeh, M., Guittet, A., Burstedde, C., Gibou, F.: Parallel level-set methods on adaptive tree-based grids. J. Comput. Phys. 322, 345–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  MATH  Google Scholar 

  33. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Osher, S.J., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Passow, E.: Piecewise monotone spline interpolation. J. Approx. Theory 12, 240–241 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian, J., Leung, S.: A level set based Eulerian method for paraxial multivalued traveltimes. J. Comput. Phys. 197, 711–736 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sethian, J.A.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  38. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212, 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  40. Smolarkiewicz, P.K., Grell, G.A.: A class of monotone interpolation schemes. J. Comput. Phys. 101, 431–440 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric model—a review. Mon. Weather Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  42. Ying, L., Candès, E.J.: The phase flow method. J. Comput. Phys. 220, 184–215 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. You, G., Leung, S.: An Eulerian method for computing the coherent ergodic partition of continuous dynamical systems. J. Comput. Phys. 264, 112–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. You, G., Leung, S.: VIALS: an Eulerian tool based on total variation and the level set method for studying dynamical systems. J. Comput. Phys. 266, 139–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. You, G., Wong, T., Leung, S.: Eulerian methods for visualizing continuous dynamical systems using Lyapunov exponents. SIAM J. Sci. Comput. 39(2), A415–A437 (2017)

Download references

Acknowledgements

The work of You was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 16KJB110012) and the National Natural Science Foundation of China (61673221). The work of Leung was supported in part by the Hong Kong RGC Grants 16303114 and 16309316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingyu Leung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, G., Leung, S. Eulerian Based Interpolation Schemes for Flow Map Construction and Line Integral Computation with Applications to Lagrangian Coherent Structures Extraction. J Sci Comput 74, 70–96 (2018). https://doi.org/10.1007/s10915-017-0424-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0424-9

Keywords

Navigation