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OpenCL based parallel algorithm for RBF-PUM

interpolation

Roberto Cavoretto · Teseo Schneider ·

Patrick Zulian

Abstract We present a parallel algorithm for multivariate Radial Basis Func-
tion Partition of Unity Method (RBF-PUM) interpolation. The concurrent nature
of the RBF-PUM enables designing parallel algorithms for dealing with a large
number of scattered data-points in high space dimensions. To efficiently exploit
this concurrency, our algorithm makes use of shared-memory parallel processors
through the OpenCL standard. This efficiency is achieved by a parallel space par-
titioning strategy with linear computational time complexity with respect to the
input and evaluation points. The speed of our approach allows for computation-
ally more intensive construction of the interpolant. In fact, the RBF-PUM can
be coupled with a cross-validation technique that searches for optimal values of
the shape parameters associated with each local RBF interpolant, thus reducing
the global interpolation error. The numerical experiments support our claims by
illustrating the interpolation errors and the running times of our algorithm.

Keywords mesh-free approximation · partition of unity methods · radial basis
functions · scattered data interpolation · parallel algorithms · opencl.

Mathematics Subject Classification (2000) 65D05 · 65D15 · 65Y05 · 65Y20 ·
68W10

1 Introduction

Mesh-free methods are known to be powerful computational tools for solving ap-
proximation problems, which include either multivariate data interpolation or nu-
merical resolution of partial differential equations (PDEs) [16]. In recent literature
a very popular approach to tackle this kind of problems is based on the use of
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radial basis functions (RBFs) or some particular change of the basis [10,11,15,
20,31,33]. The main benefits deriving from the mesh-free nature of RBF based
methods are: the flexibility with respect to geometric problem, the simplicity for
the implementation in higher dimensions, and the high convergence order of the
approximation scheme [43].

However, in applications such as science, engineering or scientific computing,
where one has to deal with very large scattered data interpolation problems, global
RBF methods are not applicable due to the high computational cost associated
with the solution of large linear systems. For this reason, researchers have focused
their attention on local RBF methods such as the radial basis function partition
of unity method (RBF-PUM). The basic idea of PUM consists of decomposing
the domain into several sub-domains forming a covering of the original domain,
then constructing a local RBF interpolant on each sub-domain. Originally, the
RBF-PUM (also known as RBF-PU method) has been introduced in the context
of PDEs [2,25], but now it is also an effective and very used tool in the field of
approximation theory and its applications [7,8,9,22,36,39].

Although previous works study efficient techniques for the organization of scat-
tered data in two and three dimensions, the common use of serial (sequential)
algorithms does not allow to interpolate a large number (e.g., many millions) of
scattered data-points in high space dimensions in reasonable time. For this reason,
we aim at constructing a parallel algorithm that is suitable for our purposes in
any space dimension, also providing an avenue to effectively avoid the “curse of
dimensionality” [28].

Therefore, in this paper we propose a new strategy which solves the inter-
polation problem with linear computational time complexity with respect to the
interpolation and evaluation points. This is achieved by using a specific choice of
space-indexing algorithm. There exist many of such algorithms and data-structures
for various applications and have different run time complexities. One category of
space-indexing consists of space partitioning trees, such as bounding volume hier-
archies, kd-trees, octrees, and many others [14]. Unfortunately, an efficient parallel
construction of such trees is not trivial, some effort has been made for GPUs [29]
or cluster computing [24,40]. Trees are particularly suitable for non-uniformly
distributed points due to their hierarchical structure, however in our particular
application this is not the case. In fact, since we consider uniformly distributed
points, all levels of the tree would result in regular grids. On the one hand, this
construction results in redundant information generated by the hierarchy. On the
other hand the run-time complexity for constructing the tree is O(n log n) and for
querying the tree for a single point is O(log n), where n is the total number of
data-points. In our case, we can directly construct the lowest level of the tree in
the form of an uniform grid in linear time because the hierarchy is implicit. The
first advantage of such construction is that a query for a single point can be per-
formed in constant time through an hash-function. The second advantage is that
the parallelization is easier [18].

The concurrent nature of the RBF-PUM together with the particular space
partitioning strategy, allows exploiting parallel processors, which efficiently solves
large interpolation problems. There exists two main parallel computing paradigms:
message based and shared-memory based [1]. Message based parallelism is related
to cluster computing where the data is physically separated among multiple com-
pute nodes. This type of parallelism is usually realized through standards such



Parallel RBF-PUM algorithm 3

as MPI [21] and its principal challenge is exploiting the concurrency of a compu-
tational problem such that the algorithm speeds-up when the number of cores is
increased. The speed-up is usually achieved by using problem specific strategies
that allow for a balanced computation across the different cores and as little as
possible inter-node communication. In shared-memory based parallelism threads
are dynamically spanned for parallelizing specific parts of an algorithm, such as
loops, concurrently accessing the same (shared) memory. Commonly used thread
libraries are OpenMP [30], p-threads [26], and boost-threads [38]. The last two
decades witnessed the rise and evolution of new parallel computing hardware such
as general purposes GPUs and multi-core processors. Consequently, programming
language extensions such as Cuda [27] and standards such as OpenCL [41] have
been developed for harnessing the full power of computational hardware. Both
Cuda and OpenCL provide a convenient run-time compiler API which allows for
the just-in-time (JIT) compilation of computational kernels, hence enabling code
generation and optimizations based on the input data. In fact, the code can be
tailored for a specific run (e.g., trough macros) allowing the compiler to apply
low-level optimizations (e.g., loop unrolling, vectorization). AlthoughOpenCL sup-
ports heterogeneous computing it requires specific implementations for the differ-
ent architecture because of the memory handling. For the aforementioned reasons
we implement our strategy with theOpenCL standard for exploiting share-memory
parallel processors specifically for CPUs. The main reason for this choice is that
the local RBF-PUM problem is dense and requires a significant amount of memory
per thread and GPUs have smaller ratio between memory and number of threads.
Nevertheless our code also runs on GPUs for smaller problems with comparable
performance.

The speed of our algorithm allows tackling the critical choice of the shape
parameters associated with the RBFs automatically. In fact, the selection of such
parameters may greatly influence the accuracy of the global fit [16]. Consequently,
in order to avoid inaccurate or unreliable results, it turns out to be essential to
design a mesh-free approximation scheme that predicts optimal – or more probably
reliable – values of the shape parameter via any error estimate [15]. For this reason
we propose to couple the RBF-PUM with a cross-validation approach such as the
leave-one-out cross-validation (LOOCV) [35]. This technique allows searching for
optimal values of the shape parameters associated with each local RBF interpolant,
thus reducing the global interpolation error. These effects are illustrated in our
numerical experiments for bivariate, trivariate and spherical interpolation.

The paper is organized as follows. In Section 2 we recall some theoretical results
for the RBF-PUM interpolation. Section 3 analyzes the LOOCV technique used
to locally select the RBF shape parameters. In Section 4 we explain in all the
different phases of our algorithm and compare their performances. In Section 5
we report numerical experiments devoted to point out interpolation errors and
computational times of our parallel algorithm. Section 6 contains an application
with real world data. Section 7 deals with conclusions and future work.

2 RBF based mesh-free methods

In this section we first review the main theoretical aspects concerning RBF in-
terpolation, and we deal with the RBF-PU method based on a local use of RBF
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RBF φε(r)

Gaussian C∞ (GA) e−ε2r2

Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

Matérn C6 (M6) e−εr(ε3r3 + 6ε2r2 + 15εr + 15)

Matérn C4 (M4) e−εr(ε2r2 + 3εr + 3)

Matérn C2 (M2) e−εr(εr + 1)

Wendland C6 (W6) (1− εr)8+ (32ε3r3 + 25ε2r2 + 8εr + 1)

Wendland C4 (W4) (1− εr)6+ (35ε2r2 + 18εr + 3)

Wendland C2 (W2) (1− εr)4+ (4εr + 1)

Table 1 Examples of strictly positive definite RBFs, where r = || · ||2 is the Euclidean norm
and (·)+ denotes the truncated power function.

interpolants. Both computational techniques are mesh-free and effectively works
with scattered data-points, therefore they turn out to be flexible in terms of the
geometry of the domain [5].

2.1 RBF interpolation

Given N distinct data-points or nodes x1, . . . ,xN ∈ XN in a domain Ω ⊆ R
s

and corresponding data or function values f(x1), . . . , f(xN ) obtained by possibly
sampling any (unknown) function f : Ω → R, the standard RBF interpolation
problem consists of finding an interpolant R : Ω → R of the form

R(x) =
N
∑

i=1

ciφε(||x− xi||2), x ∈ Ω, (1)

where ci is an unknown real coefficient, || · ||2 denotes the Euclidean norm, and
φ : R≥0 → R is a strictly positive definite RBF depending on a shape parameter

ε > 0 such that φε(||x − z||2) = φ(ε||x − z||2), for all x, z ∈ Ω. For simplicity,
from now on we refer to φε as φ. In Table 1 we report a list of some strictly
positive definite RBFs with their orders of smoothness. Note that Gaussian, Inverse
MultiQuadric and Matérn functions are globally supported and strictly positive
definite in R

s for any s, whereas Wendland functions are compactly supported –
with support [0, 1/ε] – and strictly positive definite in R

s for s ≤ 3 [43].

In order to determine the coefficients c1, . . . , cN , we enforce the interpolation
conditions R(xi) = f(xi), i = 1, . . . , N , and, as a result, we obtain a symmetric
linear system of equations

Φc = f , (2)

where c = (c1, . . . , cN )T , f = (f1, . . . , fN )T , and the interpolation matrix Φ ∈
R
N×N is given by Φki = φ(||xk − xi||2), k, i = 1, . . . , N . Since φ is a strictly pos-

itive function, the associated matrix Φ is nonsingular and the RBF interpolation
problem is well-posed, hence a solution to the problem exists and is unique [16].
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Therefore, when the vector c is found, we can evaluate the RBF interpolant at
any point x as

R(x) = φ
T (x)c,

where φT (x) = (φ(||x−x1||2), . . . , φ(||x−xN ||2)). In particular, the interpolant R
is a function of the native Hilbert space Nφ(Ω) uniquely associated with the RBF,
and, if f ∈ Nφ, then R is the Nφ-projection of f into the subspace Nφ(XN ) =
{φ(||x− xi||2),xi ∈ XN} [43].

2.2 RBF-PU approximation

Let Ω ⊆ R
s be an open bounded domain, and let {Ωj}dj=1 be an open bounded

covering of Ω satisfying some mild overlap condition among the sub-domains Ωj

and that

I(x) = {j : x ∈ Ωj}, card(I(x)) ≤ K, ∀x ∈ Ω.

In other words, the set I(x) is uniformly bounded by the constant K (independent

of d) on Ω, where Ω ⊆
⋃d

j=1 Ωj . With the sub-domains we define a partition of

unity {Wj}dJ=1 subordinated to the covering {Ωj}dj=1 such that

d
∑

j=1

Wj(x) = 1, x ∈ Ω,

where the weight Wj : Ωj → R is a compactly supported, nonnegative and con-
tinuous function with supp(Wj) ⊆ Ωj . Then, for each sub-domain we construct,
similary to (1), a local RBF interpolant Rj : Ωj → R of the form

Rj(x) =

Nj
∑

i=1

cjiφ(||x− x
j
i ||2), (3)

where Nj indicates the number of data-points in Ωj (i.e., the points x
j
i ∈ XNj

=
XN ∩Ωj) and then define the global PU interpolant

I(x) =
d

∑

j=1

Rj(x)Wj(x), x ∈ Ω. (4)

We remark that, if the functions Rj , j = 1, . . . , d, satisfy the interpolation condi-
tions

Rj(x
j
i ) = f(xj

i ), x
j
i ∈ Ωj , i = 1, . . . , Nj , (5)

then the global interpolant (4) inherits the interpolation property of the local
interpolants [16]

I(xj
i ) =

d
∑

j=1

Rj(x
j
i )Wj(x

j
i ) =

d
∑

j=1

f(xj
i )Wj(x

j
i ) = f(xj

i ).
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Solving the j-th interpolation problem (5) results in the linear system generated
by local RBFs









φ(||xj
1 − x

j
1||2) · · · φ(||xj

1 − x
j
Nj

||2)
...

...
...

φ(||xj
Nj

− x
j
1||2) · · · φ(||xj

Nj
− x

j
Nj

||2)

















cj1
...

cjNj









=









fj1
...

fjNj









,

or simply

Φjcj = f j . (6)

Note that existence and uniqueness of the solution and nonsingularity of the local
matrix Φj is guaranteed by the use of strictly positive definite functions φ [16].

Now, let us consider the following definition [42].

Definition 1 Let Ω ⊆ R
s be a bounded set, and {Ω}dj=1 be an open bounded cov-

ering of Ω. This means that all Ωj are open and bounded and that Ω is contained

in their union. A family of nonnegative functions {Wj}dj=1 with Wj ∈ Ck(Rs) is

called a k-stable partition of unity with respect to the covering {Ωj}dj=1 if:

– supp(Wj) ⊆ Ωj ;

–
∑d

j=1 Wj(x) ≡ 1 on Ω;
– for every β ∈ N

s
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L∞(Ωj) ≤
Cβ

δ
|β|
j

, j = 1, . . . , d,

where δj = diam(Ωj) = supx,z∈Ωj
||x− z||2.

For each sub-domain Ωj we can thus construct PU weight function Wj using the
Shepard method as follows

Wj(x) =
ϕj(x)

∑d
k=1 ϕk(x)

, j = 1, . . . , d, (7)

with ϕj(x) being a compactly supported function with support on Ωj such as the
W2 function (see Table 1). Such functions are scaled with a shape parameter σ to
get ϕj(x) = ϕ(σ||x− ξj ||), where ξj is the center of the weight function.

In order to be able to formulate error bounds, we define the fill distance

hXN ,Ω = sup
x∈Ω

min
xi∈XN

||x− xi||2 (8)

and make some further assumptions on regularity of Ωj [42].

Definition 2 Let Ω ⊆ R
s be bounded and let x1, . . . ,xN ∈ XN ⊆ Ω be given. An

open and bounded covering {Ωj}dj=1 is called regular for (Ω,XN ) if:

– for each x ∈ Ω, the number of sub-domains Ωj with x ∈ Ωj is bounded by a
global constant M ;

– each sub-domain Ωj satisfies an interior cone condition [43];
– the local fill distances hXNj

,Ωj
are uniformly bounded by the global fill dis-

tance (8).
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After defining the space Ck
ν (R

s) of all functions f ∈ Ck whose derivatives of
order |α| = k satisfy Dαf(x) = O(||x||ν2) for ||x||2 → 0, we consider the following
convergence result, see [16, Theorem 29.1] and [43, Theorem 15.9].

Theorem 1 Let Ω ⊆ R
s be open and bounded and x1, . . . ,xN ∈ XN ⊆ Ω. Let

φ ∈ Ck
ν (R

s) be a strictly conditionally positive definite function of order m. If {Ωj}dj=1

is a regular covering for (Ω,XN ) and {Wj}dj=1 is k-stable for {Ωj}dj=1, then the error

between f ∈ Nφ(Ω) and its PU interpolant (4) is bounded by

|Dαf(x)−DαI(x)| ≤ Ch
(k+ν)/2−|α|
XN ,Ω |f |Nφ(Ω), ∀x ∈ Ω, |α| ≤ k/2.

Comparing this convergence result with the global error estimates in [43], we
note that the PU preserves the local approximation order for the global inter-
polant (4). So we can efficiently solve a large problem by solving small RBF in-
terpolation problems (possibly in parallel) and then glue them along with the PU
weights {Wj}dj=1. Consequently, the PU approach turns out to be a simple and
effective technique to decompose a large interpolation problem into many small
problems, simultaneously ensuring that the accuracy obtained for the local fits is
carried over to the global one.

3 Selection of ε via LOOCV

The accuracy of RBF based methods highly depends upon the shape parameter
ε of the basis functions, which is responsible for the flatness of the functions. In
particular, for smooth problems the best accuracy is typically achieved when ε

is small, but then the condition number of the linear system becomes very large.
Therefore, in order to get reliable approximation results, we need to find a tech-
nique that allows detecting a suitable value of ε for each PU sub-domain. In fact,
since the RBF-PUM is based on the solution of d (usually small) linear systems
of the form (6), the selection of shape parameters may greatly affect the accuracy
of the global PU interpolant.

A good way to select a shape parameter ε is to use locally the LOOCV tech-
nique [35]. The idea behind LOOCV in the RBF-PU interpolation is to split the
data of each sub-domain Ωj , j = 1, . . . , d, into two different sets: a training set

{f(xj
1), . . . , f(x

j
k−1), f(x

j
k+1), . . . , f(x

j
Nj

)}, and a validation set consisting of only

the single value f(xj
k) which was left out when creating the training set [17]. Now,

for a fixed k ∈ {1, . . . , Nj} and fixed ε, we define the partial RBF interpolant

R
[k]
j (x) =

Nj
∑

i=1, i 6=k

cjiφ(||x− x
j
i ||2),

whose coefficients cji are determined by interpolating the training data

R
[k]
j (xj

i ) = f(xj
i ), i = 1, . . . , k − 1, k + 1, . . . , Nj .

In order to measure the quality of this attempt, we define the error

ejk(ε) = f(xj
k)−R

[k]
j (xj

k) (9)
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Fig. 1 Left: example of PU sub-domains (orange circles) and scattered node distribution (blue
dots) in Ω = [0, 1]2 ⊆ R2. Right: notation for the spatial hashing.

at the one validation point xj
k not used to determine the interpolant. The “optimal”

value of ε is found as

εjopt = argminε||ej(ε)||, ej = (ej1, . . . , e
j
Nj

)T ,

where || · || is any norm, however we use || · ||∞. We can now compute a vector
εopt = (ε1opt, . . . , ε

d
opt)

T containing an “optimal” value of ε, hence ε = εjopt, for the
RBF interpolant (3) defined on Ωj , j = 1, . . . , d.

The important thing is that we can find the error vector ej without solving dNj

problems, each of size (Nj − 1)× (Nj − 1). In fact, instead of (9), the computation
of the error components can be expressed in terms of the interpolation matrix Φj

in (6) as follows

ejk(ε) =
cjk

(Φj)
−1
kk

,

where cjk is the k-th coefficient in the full RBF interpolant (3) and (Φj)
−1
kk is the

kth diagonal element of the inverse of the corresponding Nj × Nj interpolation
matrix Φj [17]. The LOOCV problem can be solved using the Brent’s method [4].

4 Parallel algorithm

In the RBF-PU scheme the sub-domains can be of any (regular enough) geometric
shape, such as (s − 1)-spheres, s-cubes and s-orthotopes with s ≥ 2. However,
many other possible types of sub-domains are allowed. The usual requirement for
all shapes of PU sub-domains is that they cover the domain Ω ⊆ R

s. In this paper
we use circular sub-domains so that any (possibly also mild) overlap among the
different sub-domains is ensured [36]. A typical example of PU sub-domains and
node distribution in R

2 is shown in Figure 1 left.
The PUM combined with RBF interpolation is suitable for shared-memory

parallel computations for three main reasons. First, the computation of the coeffi-
cients cji is completely independent across different partitions. Second, the evalu-
ation of the global interpolant I can be performed separately for each evaluation
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point. Third, the intersection detection between the sub-domains Ωj and either
the data-points XN or the evaluation points y1, . . . ,yNeval

∈ Y can be efficiently
parallelized using space partitioning strategies.

The uniform distribution of the data-points allows for an ad-hoc space parti-
tioning in a form of a structured grid. The grid is constructed by dividing each
dimension k of the axis-align bounding-box B = [Bm,BM ], in

dkPU =











⌈

1

2

(

N

2

)1/s
⌉

Bk
M −Bk

m

min
l=1,...,s

(Bl
M −Bl

m)











intervals which creates d =
∏s

k=1 d
k
PU cells Cj , where Bk

m, Bk
M denote the k-th

components of the respective vectors, ⌊·⌋ is the floor operator, and ⌈·⌉ is the ceiling
operator. Note that the number of sub-domains d is proportional to the number
of nodes N , that is N/d ≈ 2s+1 [6]. Nevertheless, in general, one could also study
different PU strategies, suitably increasing (decreasing) the number of sub-domains
to be used. From a computational point of view, we would expect to increase
(reduce) the number of sub-domains, reducing (increasing) at the same time the
sub-domain size. A change of this type may influence more or less significantly the
approximation results in term of both accuracy and stability. In fact, a cover with
small (large) partitions results in worse (better) approximations, even if it turns
out to be computationally cheaper (more expensive); for further details we refer
to [7,17].

The grid implicitly generates the space partitioning where the centre of each
cell Cj corresponds to the centre of the hyper-spherical sub-domain Ωj with radius

δPU =

√
2

mink d
k
PU

min
k

(Bk
M −Bk

m) (10)

which entirely covers the volume of the cell as shown in Figure 1 right.
Given a point x, for finding the cell Cj = Cj(x) containing it we evaluate the

hash-function

j(x) =
s

∑

k=1

(

⌊

(xk −Bk
m)/(Bk

M −Bk
m) · dkPU

⌋

s
∏

l=k+1

dlPU

)

, (11)

where xk is the k-th coordinate of x. By exploiting this function we build the
inverse index which maps a cell to its contained points. Finally, for identifying the
set of points within a sub-domain Ωj we visit the corresponding cell Cj and its
3s − 1 neighbours and check if the contained points are within the radius δPU of
Ωj , see Section 4.1.

This condition, along with the value of the sub-domain radius (10), enables
the algorithm to efficiently work for any space dimension s.

Once we have identified the points contained in each sub-domain we assemble
the matrix Φj and compute the local coefficients cji by solving the interpolation
system (6). Finally, for interpolating the function at a point y, we again exploit
the hash-function j(·) to identify all the intersecting cells and consequently the
intersecting sub-domains so that we can build the global interpolant I in (4), as
explained in Section 2.2.
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Among shared-memory domain specific languages we opt for OpenCL [41]. The
main advantage is that OpenCL is an open standard designed for heterogeneous
computing, which allows exploiting different types of computational resources, such
as CPUs, GPGPUs, FPGAs. Additionally, OpenCL is suitable for code-generation
and JIT compilation, which allows ad-hoc memory management and compile-time
optimization (for instance loop unrolling and private memory allocation based on
problem dimensions). However, the flexibility of JIT code generation requires com-
piling the code whenever the algorithm is used, adding some neglectable overhead.

The adoption of the parallel paradigm of standards such as OpenCL, implies
a special memory handling due to the limitations of graphics hardware. Such
hardware requires the explicit handling of the different memory hierarchies, and
precludes dynamic memory-allocation within compute kernels. Here, we do not
address the memory-hierarchy issue since we focus on CPU-based architectures,
however we tackle the problem concerning storing and solving the local interpola-
tion problems, as explained in Section 4.2.

4.1 Space indexing

In order to efficiently index the input data-points xi ∈ XN with respect to the
sub-domains Ωj we exploit a compressed storage indexing format. This format Γ =
{aidx,aptr} consists of two arrays, the first one aidx contains the indices pointing
to the actual data, and the second aptr stores the offsets to access specific ranges
within the index array aidx, see Figure 2 middle. We exploit the compressed storage
format in our two-stage algorithm, whose overview is illustrated in Algorithm 1.

The goal of the first stage is computing the mapping ΓC from each cell Cj to
its contained points. To this end, we first use the hash-function (11) to compute
in parallel the vector J which stores the association ji = j(xi) from xi to cell
Cj(xi), see Figure 2 left. Then, for improving caching when accessing memory, we
rearrange the data-points, using ΓC , such that the points belonging to the same
cell are stored contiguosly in memory, which allows for 20% speed-up. Then, in
serial, we employ a variation of the bucket-sort algorithm (see Algorithm 2), for
creating the compressed-storage index ΓC storing the association from cell to its
contained points. We use the initial part of the bucket-sort algorithm where a cell
Cj corresponds to the j-th “bucket”, and the elements are the point indices i. Note
that this stage has linear time computational complexity, since we do not need to
sort the elements once they are within each bucket.

The goal of the second stage is creating the mapping ΓΩ from each sub-domain
Ωj to its contained points. We first count in parallel the number of points in the
hyper-spherical sub-domains Ωj exploiting ΓC and store them in qΩ . The vector
qΩ , whose entries are the number of points Nj in the corresponding sub-domain
Ωj , is necessary for allocating the required memory. For each cell in parallel, we
visit all its 3s − 1 neighbouring cells, and count the number of points that are
within the sub-domain radius δPU , see Figure 2 right. Then, in serial, we create
the sub-domain pointer by computing a cumulative sum of qΩ . Finally, we fill
the compressed storage index with the indices of intersecting points, which are
selected the same way as for the computation of qΩ . Note that duplicate indices
may appear across different sets since the points might belong to multiple sub-



Parallel RBF-PUM algorithm 11

a
ptr

=[ 1 2 5 ... N+1 ]
cell 1

cell 2

a
idx

=[ 4 5 2 3 9 ... ]

X=[ x
1 
x

2 
x

3 
x

4 
x

5 
... x

9 
... ]

f g¡=cell 1 cell 2
x

4

x
5

x
3

x
2

x
9

J=[j(x
1
) 1 1 0 0 ... 1 ... ]

Fig. 2 Overview of the space partitioning data-structures and algorithm.

Algorithm 1: Overview of the space indexing algorithm.

Data: xi ∈XN

Result: ΓΩ

First stage
J ← in parallel, compute the hash function for all xi;
ΓC ← in serial, count the number of points contained in each cell Cj and create
the mapping from cell to contained points applying a partial sorting, using J ;

Second stage
qΩ ← in parallel, count the number of points contained in each Ωj to determine
memory size, using ΓC ;

ΓΩ ← in serial, create the sub-domain pointer array and, in parallel, fill the index
array with the mapping from Ωj to its contained points, using ΓC and qΩ .

domains. This compressed storage index is used both when computing the local
coefficients and when evaluating the interpolant I.

4.2 Computation of the local coefficients

The dense matrix Φj of the interpolation system (6) is symmetric positive defi-
nite. However, the system may become ill-conditioned when data-points are close
to each other or even semi-definite because of numerical truncation. For all fore-
mentioned reasons we employ the Cholesky decomposition Φj = LDLT , which
allows for efficiently and accurately computing the solution cj by the forward-

Algorithm 2: Construction of the compressed storage index.

Data: J ∈ NN , q ∈ Nd, I ∈ Nd

Result: Γ = {aidx ∈ Nd+1,aptr ∈ NN}

Count points in cells:

for k = 1, . . . , N do
qJk
← qJk

+ 1
end

Create cell pointer:

aptr1 ← 1
for k = 1, . . . , d do

aptrk+1 ← aptrk + qk
end

Create cell to point index:

for k = 1, . . . , d do
Ik ← 0

end

for k = 1, . . . , N do

i← Jk, j ← aptri

aidxj+Ii
← k

Ii ← Ii + 1
end
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L L

L¡T

©
j

Fig. 3 Visualization of the memory layout A for different stages of the decomposition algo-
rithm. Initially A = Φj , then we compute L and store it in the lower triangular region of A,
finally we invert L and save it in the upper triangular part of A.

substitution L−1f j followed by the pseudo-inverse diagonal scaling D−1(L−1f j),

and the transposed backward-substitution L−T (D−1L−1f j).

As previously mentioned, the main challenge of computing the coefficients cji
for the local interpolants Rj in (3) is the memory management. The interpolation
systems (6) may become very large for s > 2, which precludes the use of private
memory (i.e., static allocation on the stack). This limitation force us to dynam-
ically allocate memory either using local or global address spaces. This implies
that the total amount of memory grows with the number of interpolation systems
solved in parallel.

For avoiding unnecessary memory consumption, we adapt the Cholesky decom-
position to be computed and stored completely in place. Let A ∈ R

n×n be the n2

size storage for both the input matrix Φj and the triangular matrix L. We first fill
A with the entries of Φj (Figure 3 left), then we overwrite them with the entries
of L as shown in Algorithm 3 and Figure 3 middle. Note that this procedure also
computes the vector d = diag(D) ∈ R

n which does not requires special memory
handling since it grows linearly; the same holds for the auxiliary storage vectors
v,w ∈ R

n.

Algorithm 3: In place Cholesky factorization of Φj .

Data: A = Φj ∈ Rn×n,d ∈ Rn, v ∈ Rn ,w ∈ Rn

Result: A = L+ Id,d = diag(D)

v1 ← A1,1, d1 ← A1,1,
A1,1 ← 0

for i = 2, . . . , n do
Ai,1 ← Ai,1/v1

end

for j = 2, . . . , n− 1 do

for k = 1 . . . , j − 1 do
vk ← Aj,k dk

end

vj ← Aj,j

for k = 1, . . . j − 1 do
vj ← vj −Aj,k vk

end

dj ← vj
end

for j = 2, . . . , n− 1 do

for k = j + 1, . . . , n do
wk ← 0
for l = 1, . . . , j − 1
do

wk ←
wk +Ak,l vl

end

end

for k = j + 1, . . . n do
Ak,j ←
(Ak,j − wk)/vj

end

end

for k = 1, . . . n− 1 do
vk ← An,k dk

end

vn ← An,n

for k = 1, . . . n− 1 do
vn ← vn −An,k vk

end

dn ← vn
for k = 1, . . . n do

Ai,i ← 1
end
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Algorithm 4: In place compu-
tation of the inverse transpose
of lower triangular matrix L.

Data: A = L+ Id ∈ Rn×n

Result: A = L+L−T + Id

for k = 1, . . . , n do

for i = k + 1, . . . , n do
Ak,i ← 0
for j = k, . . . , i− 1 do

Ak,i ← Ak,i−Ai,j Ak,j

end

Ak,i ← Ak,i/Ai,i

end

end

Algorithm 5: Simplified com-
putation of the diagonal of Φ−1

j .

Data: A = L+L−T + Id ∈ Rn×n,
d = diag(D) ∈ Rn, g ∈ Rn

Result: g = diag(Φ−1
j )

for k = 1, . . . , n do
gk ← 0

end

for k = 1, . . . , n do

for i = 1, . . . , k do

gk ← gk + (Ai,k)
2 /dk

end

end

4.2.1 Computation of the local error estimator

For computing the optimal ε as introduced in Section 3, we need to evaluate the
error ej , which requires the computation of the diagonal of the inverse of Φj . For
this purpose, we exploit the quantities L and d which are already computed as
explained in the previous section. Again, we need to exploit the allocated storage
A and avoid allocating new memory. At this stage of the algorithm the matrix Φj

is not needed any more, hence we store L−T on the upper triangular part of A as
shown in Figure 3 right. The procedure for computing L−T can be interpreted as
the forward-substitution L−1Id as illustrated in Algorithm 4. Having L−T , allows
computing g = diag(Φ−1

j ) by simplifying the operations in diag(L−TD−1L−1) as
shown in Algorithm 5.

4.3 Performance

The algorithms described in the previous sections contain both serial and parallel
parts (e.g., the interpolation is fully parallel while the construction of the com-
pressed storage index is serial). In a shared-memory context, some computations
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Fig. 4 Computational timings for the different parts of the algorithm with respect to the
number N of data-points, evaluating the interpolant (4) at 9 and 8 million points for 2D and
3D respectively. Results for 2D on the left and for 3D on the right.
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J ΓC qΩ cj , ΓΩ

2D 0.2% 3.6% 1.8% 94.4%

3D 0.03% 0.2% 0.6% 99.2%

Table 2 Percentages of the average computational times excluding the evaluation phase.

are more efficient in serial than in parallel since they may require heavy synchro-
nization or replicated memory. For instance, creating the compressed-storage index
in parallel would involve either synchronizing the increment of each entry of the
cell pointer aptr (see Algorithm 2), or replicating aptr for each thread.

Figure 4 shows the times of different computational phases. We see that the
influence of the serial computation of the compressed storage index ΓC on the
overall time is negligible. In fact, it is comparable with the times for computing
the hash-function J and counting the points within the sub-domains qΩ . For
efficiency reason, we combine the computation of the local coefficients cj and the
compressed storage ΓΩ since for both we need to search for points contained in
a sub-domain Ωj . Note that, without considering the evaluation of I, most of
the time is employed in assembling and solving the local interpolation problems
for computing the coefficients cj , as shown in Table 2. The evaluation time of
the global interpolant I is independent from the number of data-points. In our
experiments the number of evaluation points is larger than the number of data-
points which results in longer computation times in the interpolation phase.

Note that, as mentioned in the previous sections, the overall algorithm is lin-
ear with respect to the number of data-points and evaluation points, which is
confirmed in the numerical experiments shown in Figure 5.

We perform strong scaling studies on a cluster with an Intel Xeon E5-2695 at
2.1 GHz processor with 2 x 18 cores where we measure performance as the ratio
between the serial experiment and the parallel experiment with different number
of cores. The results depicted in Figure 6 show that the speed-up is linear with
respect to number of cores and is close to the ideal one.
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Fig. 5 Linear trend of the total time with respect to the number N of data-points, evaluating
the interpolant (4) at 9 million points in 2D and 8 million points in 3D. Results for 2D on the
left and for 3D on the right.
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#cores
time (sec) speed-up

2D 3D 2D 3D
1 91.65 960.89 − −
3 35.20 350.81 2.60 2.74
5 22.57 228.03 4.06 4.21
7 16.72 168.19 5.48 5.71
9 13.39 134.11 6.84 7.16
11 11.68 113.01 7.85 8.50
13 10.32 98.71 8.88 9.73
15 9.27 90.02 9.89 10.67
17 8.34 79.02 10.99 12.16
19 7.43 70.41 12.33 13.65
21 6.76 65.02 13.56 14.78
23 6.22 58.05 14.74 16.55
25 5.71 54.95 16.06 17.49
27 5.35 49.53 17.14 19.40
29 4.96 46.05 18.47 20.87
31 4.68 43.28 19.57 22.20
33 4.41 40.71 20.77 23.60
35 4.18 39.78 21.92 24.15

Fig. 6 Strong scaling experiment for two and three dimensional RBF-PUM interpolation
problems using M4 as local RBF function. The x-axis represents the number of threads while
the y-axis shows the speed-up and the dashed line illustrates the ideal speed-up. In 2D we
use 4 000 000 points and 9 000 000 evaluation points, while in 3D we use 4 913 000 points and
8 000 000 evaluation points.

5 Numerical experiments

In this section we report the performance of our parallel algorithm which is mea-
sured through numerical experiments, illustrated in some tables and figures. All
these experiments have been carried out on a Macbook Pro laptop with an Intel
Core i7 2.3GHz processor and 16GB RAM.

In the following we focus on a wide series of experiments, which usually con-
cern very large interpolation problems in different dimensions and with uniformly
distributed data-points. Though our study is generally devoted to solve “stan-
dard” 2D and 3D problems on scattered data, i.e., problems where the domain
Ω is contained in R

2 or R
3, we consider particular situations in which the do-

main Ω is the surface of a sphere such as the 2-sphere in R
3 [19,23], and we also

comment on experiments in higher dimensions. Note that, for simplicity, we do
not report thorough quantitative analysis in higher dimensions (s > 3), because
from a numerical standpoint the experiments carried out for s ≤ 3 confirm both
the theoretical analysis outlined in Section 2 and the practical study provided in
Section 4.

We show the results obtained by applying the RBF-PU method using some of
the RBFs contained in Table 1 as local approximants. More precisely, our analysis
is based on considering the family of Matérn functions – essentially M2 and M4 –
as basis functions in (3), and the compactly supported W2 as localizing function
of Shepard’s weight in (7). In this way, we apply the RBF-PUM for computing the
interpolation errors for various fixed values of ε, as well as using the LOOCV ap-
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proach locally as described in Section 3. In fact, the target of our study is two-fold:
i) analyzing the efficiency expressed in terms of CPU times of the proposed algo-
rithm; ii) verifying accuracy of the RBF-PU method with and without employing
the LOOCV based technique for selecting ε.

In the various experiments we thus analyze the performance of the parallel
algorithm taking the data values by three test functions. The former two are
known in literature as bivariate and trivariate Franke’s functions [6,34], whose
analytic expressions are

f2(x1, x2) =
3

4
e−

(9x1−2)2+(9x2−2)2

4 +
3

4
e−

(9x1+1)2

49
− 9x2+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2

and

f3(x1, x2, x3) =
3

4
e−

(9x1−2)2+(9x2−2)2+(9x3−2)2

4 +
3

4
e−

(9x1+1)2

49
− 9x2+1

10
− 9x3+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2+(9x3−5)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2−(9x3−5)2 .

The latter is the s-variate function [16]

gs(x) = 4s
s
∏

i=1

xi(1− xi), x = (x1, . . . , xs) ∈ Ω.

Note that the bivariate and trivariate functions f2 and f3 as well as the multivariate
function gs are commonly used in approximation processes to test and validate new
methods and algorithms, then making them usable in the field of applications.

In order to investigate accuracy of the interpolation method, we compute the
Root Mean Square Error (RMSE), whose formula is given by

RMSE =

√

√

√

√

1

Neval

Neval
∑

i=1

|f(yi)− I(yi)|2. (12)

Therefore, in the sequel we consider more in detail the two aforementioned
cases, i.e., hyper-cubical interpolation in Section 5.1 and 3D interpolation on the
2-sphere in Section 5.2.

5.1 Results for hyper-cubical interpolation

In this section we first show numerical results acquired from tests carried for
2D and 3D interpolation, then we comment results for 4D and 5D problems. As
interpolation nodes, we take some sets of N uniformly random Halton data-points
contained in the unit hypercube Ω = [0, 1]s ⊂ R

s, with s = 2, . . . , 5, (see Figure 7
left) which are generated by using the Matlab program haltonseq.m [16]. This
node distribution is a typical example of scattered data-point set. Moreover, the
computation of interpolation errors is carried out on a grid of Neval evaluation
points.
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Fig. 7 Example of Halton data-point sets on the plane (left) and on the sphere (right).

In Table 3, we deal with bivariate interpolation taking five sets of Halton
points with the number N of interpolation nodes going from 289 to 66 049 for
the function f2. In such experiments we apply the RBF-PUM by locally using
the M4 and M2 interpolants. Then, we compute the RMSEs through the use of
the LOOCV scheme – denoted by opt – and, as a comparison, for fixed values of
ε = 10, 15, 20. In particular, in these tests the cross-validation approach based on
an error prediction results on average in an improvement of about an half order
of magnitude (compared to the best result found for ε fixed). In both tables we
observe a similar behavior of the errors: on the one hand, accuracy is greater for
small values of the shape parameter, while it tends to decrease when ε grows; on
the other hand, errors decrease as the number N and the RBF smoothness increase.
Hence, these tests also confirm from a numerical viewpoint the theoretical results
presented in Section 2.2, Theorem 1.

M2

ε\N 289 1 089 4 225 16 641 66 049

10 1.00E− 2 2.60E− 3 6.01E− 4 1.15E− 4 3.58E− 5

15 2.05E− 2 5.73E− 3 1.33E− 3 3.23E− 4 7.79E− 5

20 3.41E− 2 1.01E− 2 2.36E− 3 5.74E− 4 1.38E− 4

opt 3.02E− 3 6.14E− 4 1.31E− 4 3.20E− 5 7.38E− 6

M4

10 3.40E− 3 4.73E− 4 5.98E− 5 7.70E− 6 9.25E− 7

15 8.30E− 3 1.36E− 3 1.80E− 4 2.27E− 5 2.83E− 6

20 1.59E− 2 2.96E− 3 4.09E− 4 5.21E− 5 6.58E− 6

opt 1.95E− 3 1.75E− 4 2.00E− 5 2.34E− 6 1.97E− 7

Table 3 RMSEs computed on Halton points by applying the RBF-PUM with the M2 and
M4 as local interpolant for f2. Interpolation errors are obtained by using the LOOCV scheme
(opt) and, as a comparison, for various values of ε. The interpolant (4) is evaluated at 90
thousand points.
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ε\N 4 913 35 937 274 625 2 146 689 16 974 593

10 6.68E− 4 6.93E− 5 7.03E− 6 7.98E− 7 9.38E− 8

15 1.52E− 3 1.76E− 4 1.87E− 5 2.12E− 6 2.47E− 7

20 2.97E− 3 3.81E− 4 4.19E− 5 4.77E− 6 5.53E− 7

opt 3.02E− 4 2.99E− 5 2.83E− 6 3.36E− 7 −−

Table 4 RMSEs computed on Halton points by applying the RBF-PUM with the M4 as local
interpolant for f3. Interpolation errors are obtained by using the LOOCV scheme (opt) and,
as a comparison, for various values of ε. The interpolant (4) is evaluated at 9 million points.

In Table 4 we instead focus on trivariate interpolation considering other five
sets of Halton points, where N is now included in the range between 4 913 and
16 974 593. The experiments for interpolating the function f3 follow the same guide-
lines outlined earlier. In particular, we test our OpenCL algorithm with the M4 as
local RBF interpolant by varying the shape parameter, i.e., taking ε = 10, 15, 20,
and also applying the LOOCV approach to find an optimal value of ε for each PU
sub-domain. From this analysis we can extend our previous remarks also to 3D
interpolation, thus drawing similar conclusions. Note that we omit error compu-
tation with LOOCV in the case of more than 16 million points because – even if
computable – it is quite expensive from a computational time viewpoint.
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Fig. 8 Interpolation error against total computational time (left) and data-point number
(right) computed on 2D Halton points by using the RBF-PUM with the M4 as local interpolant
for f2. Errors and times are obtained by taking ε = 10 for different evaluation points.
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RMSEs CPU times

s N OpenCL opt OpenCL Matlab opt speed-up

9 216 2.63E− 5 3.78E− 6 3.05 45.05 3.73 14.8

2 250 000 1.50E− 7 1.53E− 7 3.58 240.46 22.39 67.2

1 000 000 1.93E− 8 1.36E− 9 4.59 879.74 73.20 191.7

19 683 3.94E− 4 8.18E− 5 23.70 197.63 40.98 8.3

3 110 592 6.56E− 5 1.08E− 5 26.65 277.47 121.41 10.4

884 736 7.43E− 6 1.11E− 6 42.13 715.67 1030.69 17.0

Table 5 RMSEs and CPU times (in seconds) computed on Halton points by using the RBF-
PUM with the M4 as local interpolant for gs, s = 2, 3. Errors and times are obtained by using
the LOOCV scheme (opt) and taking ε = 10; in the latter case, the speed-up between our
OpenCL algorithm and Matlab implementation [6] is given. The 2D and 3D interpolants (4)
are evaluated at 2 250 000 and 3 375 000 points, respectively.

Moreover, a more extensive and detailed analysis on the behavior of compu-
tational error against computational time and interpolation data-point number is
shown in Figure 8 for 2D and 3D, left to right, respectively. From such plots it
is evident how fast the RMSEs decrease when increasing the number of points
interpolated, although the CPU times do not suffer from a significant growth as
N becomes very large (for instance, N > 106). These pictures refer to numeri-
cal experiments shown in Figure 5, and therefore complete the study started in
Section 4.3.

Finally, in Table 5 we further test our parallel algorithm with the multivariate
test function gs, for s = 2, 3. In both dimensions, we report the results computed
with the M4 and for three sets of Halton data-points. Specifically, here we show
RMSEs and CPU times obtained via LOOCV and fixing ε = 10. In the latter case,
errors and times are labelled by OpenCL, so as to emphasize the use of our new
code. In fact, we also compare our algorithm with the only – at the best of our
knowledge – Matlab software [6] so far implemented for RBF-PUM interpolation
in R

s, for any s ≥ 2. We note that this implementation uses a different algorithm,
in particular the search for the cells is performed trough a kd-tree which has
run-time complexity of O(n log n). In particular, we highlight the great speed-up
between the two algorithms, furthermore underlining as this gap tends to be more
and more remarkable when the number of interpolation nodes increases. Note that,
despite the fact that the Matlab code is not parallel, Matlab parallelizes many
parts thus exploiting the four cores of our machine.

For higher dimensions the results are similar. In fact, we performed two exper-
iments in 4D for 531 441 and 5 308 416 data-points evaluated at 12 960 000 points,
which took 12.7 and 36.2 minutes (Matlab took 69.9 minutes and about 5 hours)
with RMSE 1.91E− 4 and 3.04E− 5 respectively. In 5D, we considered an experi-
ment with 1 048 576 data-points and 14 348 907 evaluation points, which lasted for
148 minutes with a RMSE of 6.31E− 4.
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M2

ε\N 16 641 66 049 263 169 1 050 625

5 2.83E− 5 5.76E− 6 1.00E− 6 1.88E− 7

10 6.75E− 5 1.32E− 5 2.23E− 6 4.21E− 7

15 1.43E− 4 2.70E− 5 4.48E− 6 8.46E− 7

20 2.56E− 4 4.76E− 5 7.79E− 6 1.47E− 6

25 4.10E− 4 7.54E− 5 1.22E− 5 2.29E− 6

30 6.04E− 4 1.11E− 4 1.79E− 5 3.33E− 6

M4

5 2.05E− 6 2.42E− 7 1.76E− 8 1.20E− 5

10 5.40E− 6 6.77E− 7 4.84E− 8 7.37E− 9

15 1.51E− 5 1.88E− 6 1.27E− 7 1.57E− 8

20 3.46E− 5 4.08E− 6 2.81E− 7 3.10E− 8

25 6.68E− 5 7.55E− 6 5.37E− 7 5.59E− 8

30 1.15E− 4 1.26E− 5 9.26E− 7 9.33E− 8

Table 6 RMSEs computed on spherical Halton points by applying the RBF-PUM with the
local M2 and M4 interpolant for f3. Interpolation errors are obtained for various values of ε.
The interpolant (4) is evaluated at 1 million points.

5.2 Results for spherical interpolation

In this section we present some of the numerical experiments we made to test our
parallel algorithm for data-point interpolation on the sphere. For this purpose,
as interpolation nodes we consider some sets of N Halton data-points [44], which
are uniformly random distributed on the unit sphere S

2 ⊂ R
3 (see Figure 7 right).

Instead, interpolation errors are evaluated on a nearly uniform distribution of Neval

spiral points [37], which uniformly fill up the sphere by tracing out an imaginary
spiral from the south pole to the north pole.

To test the OpenCL algorithm for spherical interpolation, we take four sets
of Halton points with N varying from 16 641 up to 1 050 625 for f3. In Table 6,
we apply the RBF-PUM by using local M2 and M4 interpolants, respectively.
In particular, we report the errors committed for various values of ε fixed, i.e.,
ε = 5, 10, 15, 20, 25, 30. Analyzing the results, we can observe good RMSEs in both
cases, even if as expected the M4 turns out to be roughly more accurate (from one
to two orders of magnitude) than the M2. Moreover, though the errors gradually
increase as ε grows, for N = 1050 625 and ε = 5 we point out a sudden loss of
accuracy due to ill-conditioning of some of the local interpolation matrices in (6).

6 Application

In this section we consider an application to Earth’s topography, which consists
of interpolating with our OpenCL algorithm a set of real world data, i.e. the
Maunga Whau volcano data-points, available in [32]. The data represents 5307
elevation measurements obtained from Maunga Whau (Mt. Eden) in Auckland,
New Zealand, sampled on a grid made by 10 m × 10 m cells.
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ε\ RBF M2 M4 M6

10 0.73 0.83 1.14

15 0.84 0.83 1.12

20 1.07 0.84 1.09

opt 0.73 0.83 1.09

Table 7 RMSEs in meters computed on 5 200 Maunga Whau volcano points by using the
RBF-PUM with M2, M4, M6 as local interpolants. Interpolation errors are obtained via
LOOCV scheme (opt) and for various values of ε. The interpolant (4) is evaluated at 107
points.

From a geographical viewpoint, Maunga Whau is a scoria cone in the Mount
Eden suburb of Auckland. It is a dormant volcano whose summit is at 196 meters
above sea level, and is one the most prominent volcanic cones remaining in the
Auckland region. Erupting more than 10 thousand years ago from three overlap-
ping scoria cones, it formed a huge scoria mound with a central crater from the
last eruption. Lava flowed out from the base of the mound, and in some places the
lava is more than 60 meters thick.

After this brief historical and geographical footnote, we come back now to our
interpolation/application purpose. Hence, from [32] we have 5 307 volcano data-
points, which we subdivide into two subsets: first, we randomly select N = 5200
nodes for the interpolation process; second, we reserve the remaining Neval = 107
evaluation points for the cross-validation. The latter technique is commonly used
in applications to assess reliability of approximation results and, accordingly, to
verify the accuracy provided by the RBF-PUM, by comparing the predicted values
with the original ones. In particular, in Table 7 we report the RMSEs in meters
computed by using M2, M4 and M6 (as local RBF interpolants) and varying the
value of the shape parameter ε, i.e. for ε = 10, 15, 20. These interpolation errors
are also compared with ones obtained by applying the LOOCV approach. Note
that, although such errors are larger than the ones shown in Section 5, they turn
out to be consistent with the previous results; in fact, in this real case, the error
in (12) is computed in absolute value and measured in meters.

From this study we can observe that the M2 provides in general the best results,
while it seems that an increase of RBF smoothness leads to a gradual accuracy
decrease. Moreover, the use of a cross-validation approach for selecting suitable
values of ε confirms the results obtained for ε fixed, thus showing our algorithm
turns to be effective also in real-life applications.

7 Conclusions and future work

In this paper we proposed a new parallel algorithm for multivariate interpolation
of scattered data-points via the RBF-PUM. Exploiting the concurrent nature of
the PUM and its applicability in high space dimensions, we efficiently implemented
an OpenCL algorithm that makes use of shared-memory parallel processors. This
strategy allowed us to reach linear computational time complexity with respect
to the number of data-points. Additionally, we combined the RBF-PUM with a
LOOCV based technique that effectively finds optimal values of the RBF shape
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Fig. 9 GPU based two-dimensional experiment with 4 225 data-points and 5 000 evaluation
points performed on a Macbook Pro laptop with a GeForce GT 650M. The base experiment
with one thread lasts for 10.9 seconds.

parameters. The latter also provided a way to reduce the global interpolation
error as illustrated in our numerical experiments. Finally, we applied our OpenCL

algorithm to real-life data.

While our algorithm is tailored for CPU-based computations, we plan to ex-
tend it for GPUs. As explained, our algorithm requires dedicated memory for
each thread for storing the local interpolation system (6). For CPUs this is not a
problem since usually the number of cores is small (typically less than 100) and
the memory large. GPUs usually have smaller memory and many computational
units. To overcome this limitation we require work-group synchronization and
proper handling of memory hierarchies. This problem dramatically affects scaling
performance as shown in Figure 9. In fact, when exploiting the full resources of
the GPU, the measured performance is similar to the CPU runs.

As future work we propose a new algorithm that allows us to consider sub-
domains with variable shape and size. This approach turns out to be particularly
meaningful when strongly non-uniform data-points are considered as in [3]. More-
over, further extensions could concern the parallel implementation of new schemes
for Hermite-Birkhoff interpolation [12] and based on rescaled RBFs [13].

For large number of data-points the required amount of memory becomes very
large and it can exceed the capacity of the physical memory of one machine.
To overcome this limitation, standards such as MPI allow exploiting most modern
super-computers which have dedicated memory for each computational node. This
means that the available memory grows with the number of computational units
used, therefore enabling the treatment of very large data-sets. We envision to adapt
our shared-memory algorithm to exploit these parallel computing architecture.

The OpenCL kernels described in this paper, a Python script, and a C++

code can be found at https://bitbucket.org/zulianp/opencl-rbf-pum.
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