
ar
X

iv
:1

70
1.

08
56

8v
1 

 [
m

at
h.

N
A

] 
 3

0 
Ja

n 
20

17

Error Inhibiting Block One-Step Schemes for

Ordinary Differential Equations

A. Ditkowski

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

S. Gottlieb

Department of Mathematics, University of Massachusetts, Dartmouth, 285 Old

Westport Road, North Dartmouth, MA 02747

Abstract

The commonly used one step methods and linear multi-step methods all have a
global error that is of the same order as the local truncation error (as defined in
[6,13,1,8,15]). In fact, this is true of the entire class of general linear methods. In
practice, this means that the order of the method is typically defined solely by order
conditions which are derived by studying the local truncation error. In this work we
investigate the interplay between the local truncation error and the global error, and
develop a methodology which defines the construction of explicit error inhibiting

block one-step methods (alternatively written as explicit general linear methods
[2]). These error inhibiting schemes are constructed so that the accumulation of
the local truncation error over time is controlled, which results in a global error
that is one order higher than the local truncation error. In this work, we delineate
how to carefully choose the coefficient matrices so that the growth of the local
truncation error is inhibited. We then use this theoretical understanding to construct
several methods that have higher order global error than local truncation error,
and demonstrate their enhanced order of accuracy on test cases. These methods
demonstrate that the error inhibiting concept is realizable. Future work will further
develop new error inhibiting methods and will analyze the computational efficiency
and linear stability properties of these methods.
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1 Introduction

When solving an ordinary differential equation (ODE) of the form

ut = F (t, u) , t ≥ 0 (1)

u(t = 0) = u0

One can evolve the solution forward in time using the first order forward Euler
method

vn+1 = vn +∆tF (tn, vn) .

To obtain a more accurate solution, one can use methods with multiple steps:

vn+1 =
s
∑

j=1

aj vn+1−j + ∆t
s
∑

j=0

bjF (tn+1−j, vn+1−j), (2)

known as linear multistep methods [3]. Alternatively, one can use multiple
stages, such as Runge–Kutta methods [3]:

yi=F (vn +
m
∑

j=1

aijy
(j), tn +∆t

m
∑

j=1

aij) for j = 1, ..., m

vn+1= vn +∆t
m
∑

j=1

bjyj.

The class of general linear methods described in [2,9] combines the use of
multiple steps and stages, constructing methods of the form:

yi=
s
∑

j=1

Ũijvn +∆t
m
∑

j=1

Ãijf(yj)

vin+1=
s
∑

j=1

Ṽijv
i
n +∆t

m
∑

j=1

B̃ijf(yj) . (3)

The inclusion of multiple derivatives, such as Taylor series methods [3],

vn+1 = vn +∆tF (tn, vn) +
∆t2

2
F ′(tn, vn) +

∆t3

3!
F ′′(vn),

is another possibility, and multiple stages and derivatives have also been de-
veloped and used successfully [17], [18], [11], [10], [4].

For time-dependent problems the global error, which is the difference between
the numerical and exact solution at any given time tn = n∆t:

En = vn − u(tn),

depends on the local truncation error which, roughly speaking, is the accuracy
over one time step. In our case we define the local truncation error as the error
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of the method over one time-step, normalized by ∆t. For example, the local
truncation error for Euler’s method is (following [6,13,1,8,15])

τ =
u(tn+1)− u(tn)−∆tF (tn, u(tn))

∆t
≈ O(∆t).

(To avoid confusion it is important to note that sometimes the truncation error
is defined a little differently than we define it above and is not normalized by
∆t).

A well known theoretical result, known as the Lax-Richtmeyer equivalence
theorem (see e.g. [12], [6], [13]) states that if the numerical scheme is stable
then the global error is at least of the same order as the local truncation er-
ror. In all the schemes for numerically solving ordinary differential equations
(ODEs) that we are familiar with from the literature, the global errors are
indeed of the same order as their local truncation errors 1 . This is common to
other fields in numerical mathematics, such as for finite difference schemes for
partial differential equations (PDEs), see e.g. [6,13]. It was recently demon-
strated, however, that finite difference schemes for PDEs can be constructed
such that their convergence rates, or the order of their global errors, are higher
than the order of the truncation errors [5]. In this work we adopt and adapt
the ideas presented in [5] to show that it is possible to construct numerical
methods for ODEs where the the global error is one order higher than the
local truncation error. As we discuss below, these schemes achieve this higher
order by inhibiting the lowest order term in the local error from accumulating
over time, and so we name them Error Inhibiting Schemes.

Following an idea in [14], an interesting paper by Shampine and Watt in 1969
[16] describes a class of implicit one-step methods that obtain a block of s new
step values at each step. These methods take s initial step values and generate
the next s step values, and so on, all in one step. These methods are in fact
explicit block one-step methods, and can be written as general linear methods
of the form (3) above. Inspired by this form, we construct explicit block one-
step methods which are in the form (3), but where the matrix Ũ is an identity
matrix, and the matrix Ã is all zeros; these are known as Type 3 methods
in [2]. The major feature of our methods is that in addition to satisfying the
appropriate order conditions listed in [2], they have a special structure that
mitigates the accumulation of the truncation error, so we obtain a global error
that is one order higher than predicted by the order conditions in [2], which
describe the local truncation error.

In Section 2 we motivate our approach by describing how typical multistep
methods can be written and analyzed as block one-step methods: these meth-
ods obtain a block of s new step values at each step. We show how this form
allows us to precisely describe the growth of the error over the time-evolution.

1 In the case where the truncation error is defined without the ∆t normalization
the global error is one order lower than the truncation error.
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In Section 3 we then exploit this understanding to develop explicit error in-
hibiting block one-step methods that produce higher order global errors than
possible for typical multistep methods. In Section 4 we present some methods
developed according to the theory in Section 3 and we test these methods on
several numerical examples to demonstrate that the order of convergence is
indeed one order higher than the local truncation error. We also show that,
in contrast to our error inhibiting Type 3 method, a typical Type 3 method
developed by Butcher in [2] does not satisfy the critical condition for a method
to be error inhibiting and therefore produces a global error that is of the same
order as the local truncation error. Finally, we present our conclusions in Sec-
tion 5, and suggest that further investigation of error inhibiting methods shall
include the analysis of their linear stability properties, storage implications,
and computational efficiency.

2 Motivation

In this section we present the analysis of explicit multistep methods in a block
one-step form for a simple linear problem. In this familiar setting we define
the local truncation error, the global error, and the solution operator that
connects them. We also discuss the stability of a method of this form. We
limit our analysis to the linear case so that we can clearly observe the process
by which the solution operator interacts with the local truncation error, and
results in a global error that is of the same order as the local truncation error.
Although we are dealing for the moment with standard multistep methods,
this will set the stage for the construction and analysis of error inhibiting block
one-step methods.

In order to illustrate the main idea we start with a linear ordinary differential
equation (ODE)

ut = f(t) u , t ≥ 0 (4)

u(t = 0) = u0

where f(t) < M , ∀t ≥ 0 and f(t) is analytic.

An s-step explicit multistep method applied to (4) takes the form

vn+s =
s−1
∑

j=0

aj vn+j +∆t
s−1
∑

j=0

bjF (tn+j, vn+j) =
s−1
∑

j=0

aj vn+j +∆t
s−1
∑

j=0

bjf(tn+j) vn+j

(5)
where the time domain is discretized by the sequence tn = n∆t, and vn
denotes the numerical approximation of u(tn). The method (5) is defined by
its coefficients {aj}

s−1
j=0 and {bj}

s−1
j=0, which are constant values.

Following [6] we rewrite the method (5) in its block form. To do this, we first
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introduce the exact solution vector

Un = (u(tn+s−1), . . . , u(tn))
T (6)

and similarly, the numerical solution vector is

Vn = (vn+s−1, . . . , vn)
T . (7)

Now (5) can be written in block form so that it looks like a one step scheme

Vn+1 = QnVn (8)

where

Qn =





















as−1 +∆tbs−1f(tn+s−1) as−2 +∆tbs−2f(tn+s−2) . . . a0 +∆tb0f(tn)

I
. . .

I 0





















.

(9)

From repeated applications of equation (8) we observe that the numerical
solution vector Vn at any time tn can be related to Vν for any previous time tν

Vn = S∆t (tn, tν)Vν , ν ≤ n (10)

where S∆t is the discrete solution operator. This operator can be expressed
explicitly by

S∆t (tn, tν) = Qn−1 . . . Qν+1Qν , S∆t (tn, tn) = I. (11)

For simplicity we can define this by

n−1
∏

µ=ν

Qµ ≡ Qn−1 . . . Qν+1Qν ,
n−1
∏

µ=n

Qµ ≡ I. (12)

Note that if each matrixQµ is independent of µ (in other words, in the constant
coefficient case where f is independent of t), we simply have a product of
matrices Q, and the discrete solution operator becomes

S∆t (tn, tν) = Qn−ν . (13)

The behavior of a method depends in large part on the accuracy of its solution
operator. We begin by defining the local truncation error as the error of the
method over one time-step, normalized by ∆t:
Definition 1: The local truncation error τ n is given by [6,13,1,8,15]

∆t τ n = Un+1 −QnUn (14)
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Note that in the case of the standard multistep method, where Qn is given by
the matrix (9), the truncation error has only one non-zero element:

τ n = (τn, 0, . . . , 0)
T . (15)

The error that we are most interested in is the difference between the exact
error vector and the numerical error vector at time tn,

En = Un − Vn , (16)

known as the global error. At the initial time, we have the error E0 which
is based on the starting values a method of this sort requires: the values vj ,
j = 0, . . . , s − 1 that are prescribed or somehow computed. Typically, v0 is
the initial condition defined in (1) and vj , j = 1, . . . , s − 1 are computed to
sufficient accuracy using some other numerical scheme. Thus, the value of E0

is assumed to be as small as needed.

The evolution of the global error (16) depends on the local truncation error
defined by (14) and the discrete solution operator given in (8):

En+1 = QnEn + ∆t τ n . (17)

Unraveling this equality all the way back to E0 gives

En = S∆t (tn, 0)E0 + ∆t
n−1
∑

ν=0

S∆t (tn, tν+1) τ ν , (18)

or, equivalently

En =
n−1
∏

µ=0

QµE0 + ∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Qµ



 τ ν . (19)

(This formula is obtained from the discrete version of Duhamel’s principle, see
Lemma 5.1.1 in [6]).

It is clear from (18) that the behavior of the discrete solution operator S∆t(tn, tν+1)
must be controlled for this error to converge. This property defines the stabil-
ity of the method. Also here we use the stability definition presented in [6],
namely:
Definition 2: The scheme (8) is called stable if there are constants αs and
Ks, independent of ∆t, such that for all 0 < ∆t ≤ ∆t0

‖S∆t (tn, tν)‖ ≤ Kse
αs(tn−tν) (20)
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If the scheme is stable, we can use (20) and (18) to bound the growth of the
error:

‖En‖ ≤ Ks

[

eαstn ‖E0‖ + max
0≤ν≤n−1

‖τ ν‖φ
∗
h(αs, tn)

]

. (21)

where

φ∗
∆t(αs, tn) = ∆t

n−1
∑

ν=0

eαs(tn−tν+1) ≈
∫ tn

0
eαs(tn−ζ)dζ =











eαs tn−1
αs

αs 6= 0

tn αs = 0
.

(22)
Equation (21) means that stability implies convergence: 2 if the scheme is
stable than the global error is controlled by the local truncation error for any
given final time. In the formula above it is clear that the global error must
have order at least as high as the local truncation error, but the possibility of
having a higher order global error is left open.

The first Dahlquist barrier [7,3] states that any explicit s step linear multistep
method can be of order p no higher than s. It is the common experience that
methods have global error of the same order as the local truncation error.
These two together greatly limit the accuracy of the methods we can derive.

Remark 1 In an Adams-Bashforth scheme the entry in the first row and first
column in the term S∆t (tn, tν) =

∏n−1
µ=ν Qµ is equal to 1+O(∆t). Therefore the

error, due to the accumulation of the contributions from the truncation errors,
becomes:

en+s = ∆t
n−1
∑

ν=0

(1 +O(∆t)) τν (23)

which is approximately the average value of τν over ν = 0, .., n− 1. This sug-
gests that we may need to look outside the family of linear multistep methods
to attain a higher order global error.

The analysis in this section suggests that if the operator Qn is properly con-
structed, the growth of the global error described in Equation (19) may be
controlled through the properties of the operator Qn and its relationship with
the local truncation error τ n. However, as implied by the example of the
Adams-Bashforth scheme above, we need to construct methods where the op-
erator Qn is not limited by the structure in this section. In the next section
we present the construction of block one-step methods that are error inhibit-
ing. The class of methods described by this block one-step structure is very
broad: while all classical multistep methods can be written in this block form,
not every such block one-step method can be written as a classical multistep
method. Thus, we rely on the discussion in this section with one main change:
the structure of the operator Qn.

2 For partial differential equations this result is known as one part of the celebrated
Lax-Richtmeyer equivalence theorem. See e.g. [12], [6], [13].
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3 An Error Inhibiting Methodology

In Section 2 we rewrote explicit linear multistep methods in a block one-step
form, and expressed the relationship between its local and global error. We
observed that the growth of the local errors is driven by the behavior of the
discrete solution operator Qn, and in particular its interaction with the local
truncation error. Using this insight we show in this section that it is possible
to construct such explicit block one-step methods (which are also known as
Type 3 DIMSIM methods in [2]) that inhibit the growth of the truncation
error so that the global error (16) gains an order of accuracy over the local
truncation error (14).

We begin in Section 3.1 by describing the construction and analysis of error
inhibiting block one-step schemes for the case of linear constant coefficient
equations. We then show that this approach yields methods that are also error
inhibiting for variable coefficient linear equations in Section 3.2 and nonlinear
equations in Section 3.3.

3.1 Error inhibiting schemes for linear constant coefficient equations

Given a linear ordinary differential equation with constant coefficients:

ut = f · u , for t ≥ 0, (24)

u(t = 0) = u0

where f ∈ R. We define a vector of length s that contains the exact solution
of (24) at times (tn + j∆t/s) for j = 0, . . . , s− 1

Un =
(

u(tn+(s−1)/s), . . . , u(tn+1/s), u(tn)
)T
, (25)

and the corresponding vector of numerical approximations

Vn =
(

vn+(s−1)/s, . . . , vn+1/s, vn
)T
. (26)

Note that although we are assuming that the solution u at any given time is a
scalar, this entire discussion easily generalizes to the case where u is a vector,
with only some cumbersome notation needed. Thus without loss of generality
we continue the discussion with scalar notation.

Remark 2 The notation above emphasizes that this scheme uses s terms for
generating the next s terms, unlike the explicit linear multistep methods in
the section above which use s terms to generate one term. To match with
the notation in Section 2 above, we can replace ∆t′ = s∆t thus defining this
scheme on integer grid points.

We define the block one-step method for the linear constant coefficient problem
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(24)
Vn+1 = QVn (27)

where
Q = A +∆tBf (28)

and A,B ∈ Rs×s. Unlike in the case of classical multistep methods, here we
do not restrict the structure of the matrices A and B. Thus, any multistep
method of the form (5) can be written in this form (as we saw above), but
not every method of the form (28) can be written as a multistep method. In
fact, this methods is a general linear method of the DIMSIM form (3) with
Ã is all zeroes, Ũ is the identity matrix, Ṽ = A, and B̃ = B. This particular
formulation is, as we mentioned above, called a Type 3 DIMSIM in Butcher’s
1993 paper [2].

At any time tn, we know that u(tn + ∆t) = u(tn) + O(∆t), so that for
the numerical solution Vn to converge to the analytic solution Un one of the
eigenvalues of Q must be equal to 1 + O(∆t), and its eigenvector must have
the form:

(1 +O(∆t), . . . , 1 +O(∆t))T . (29)

The structure of the eigensystem of A, which is the leading part of Q, is critical
to the stability of the scheme and the dynamics of the error.

Suppose A is constructed such that:

(1) rank(A) = 1.
(2) Its non-zero eigenvalue is equal to one and its corresponding eigenvector

is (1, . . . , 1)T

(3) A can be diagonalized.

Property (2) assures that the method produces the exact solution for the case
f = 0. Now, since the term ∆tBf is only an O(∆t) perturbation to A, the
matrix Q will have one eigenvalue, z1 = 1+O(∆t) whose eigenvector has the
form

ψ1 = (1 +O(∆t), . . . , 1 +O(∆t))T (30)

and the rest of the eigenvalues satisfy zj = O(∆t) for j = 2, . . . , s.

Since the ‖Q‖ = 1 + O(∆t), we can conclude that there exist constants Ks

and αs such that

‖S∆t (tn, tν)‖ =
∥

∥

∥Qn−ν
∥

∥

∥ ≤ Kse
αs(tn−tν) (31)

where αs = ‖B‖ |f |. Therefore, according to Definition 2, the scheme (27) is
stable. By the same argument used above, we can show that the global error
will have order that is no less than the order of the local truncation error.

We now turn to the task of investigating the truncation error, τ n. The defini-
tion of the local truncation error in this case is still

∆t τ n = Un+1 −QnUn

as defined in the previous section in Equation (14).
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Remark 3 Since Q = A +∆tBf and ut = fu the local truncation error can
be written as

∆t τ n = Un+1 −

(

AUn +∆tB
dUn

dt

)

.

Therefore τ n does not explicitly depend on f . This observation is valid for the
variable coefficients and the nonlinear case as well.

The definition of the error is

En = Un − Vn ,

as in Equation (16). The evolution of the error is still described by Equation
(19)

En =
n−1
∏

µ=0

QµE0 + ∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Qµ



 τ ν ,

which in the linear constant coefficient case becomes

En = QnE0 + ∆t
n−1
∑

ν=0

Qn−ν−1
τ ν . (32)

The main difference between this case and the linear multistep method in
Section 2 is that the structure of Q is different, and that unlike (15), in this
case all the entries in τ n are typically non-zero.

Equation (32) indicates that there are several sources for the error at the time
tn:

(1) The initial error E0 which is the error in the initial condition V0: This
error is caused primarily by the numerical scheme used to compute the
first s− 1 elements in V0. We assume these errors can be made arbitrary
small. The initial value, which is the final element of V0, is taken from
the analytic initial condition and is considered to be accurate to machine
precision.

(2) The term ∆t τ n−1, which is the last term in the sum in the right hand
side of (32): This term is clearly, by definition, of the size O(∆t)‖τ n−1‖.

(3) The summation

∆t
n−2
∑

ν=0

Qn−ν−1
τ ν , (33)

which are all the rest of the terms in the sum in the right hand side of
(18): This is the term we need to bound to control the growth of the
truncation error.

The terms in the sum (33) are all comprised of the discrete solution operatorQ
multiplying the local truncation error. This leads us to the major observation
that is the key to constructing error inhibiting methods: if the local trun-

cation error lives in the subspace of eigenvectors that correspond
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to the eigenvalues of O(∆t), then the growth of the truncation error

will be inhibited, and the global error will be one order higher than

the local truncation error.

Recall that Q has one dominant eigenvalue that has the form 1 +O(∆t) and
all the others are O(∆t). Correspondingly, two subspaces can be defined

Ψ1 = span {ψ1} and Ψc
1 = span {ψ2, ..., ψs}

where ψj is the eigenvector associated with each eigenvalue zj . As ψj can be
normalized, we assume that ‖ψj‖ = O(1). It should be noted that while Ψ1 and
Ψc

1 are linearly independent, they are not orthogonal subspaces. Furthermore,
since the matrix A is diagonalizable by construction, its eigenvectors span Rs.
Since τ ν ∈ Rs, it can be written as

τ ν = γ1ψ1 +
s
∑

j=2

γjψj (34)

where γ1ψ1 ∈ Ψ1 and
∑s

j=2 γjψj ∈ Ψc
1.

Of course, the truncation error τ ν is determined by the entries of Q. To ensure
that the local truncation error is mostly in the space Ψc

1 of eigenvectors which
correspond to the eigenvalues of size O(∆t), we choose the entries of Q (i.e.
the entries of A and B) such that γ1 = O(∆t), which will mean that

‖γ1ψ1‖ = O(∆t) ‖τ ν‖ . (35)

Using this, we can bound product of the discrete solution operator and the
truncation error,

‖Qτ ν‖=

∥

∥

∥

∥

∥

∥

γ1Qψ1 +
s
∑

j=2

γjQψj

∥

∥

∥

∥

∥

∥

≤ ‖γ1Qψ1‖+

∥

∥

∥

∥

∥

∥

s
∑

j=2

γjQψj

∥

∥

∥

∥

∥

∥

= ‖γ1z1ψ1‖+

∥

∥

∥

∥

∥

∥

s
∑

j=2

γjzjψj

∥

∥

∥

∥

∥

∥

≤ |z1| ‖γ1ψ1‖+ max
j=2,...s

|zj |

∥

∥

∥

∥

∥

∥

s
∑

j=2

γjψj

∥

∥

∥

∥

∥

∥

≤ |z1| ‖γ1ψ1‖+ max
j=2,...s

|zj| ‖τ ν − γ1ψ1‖

≤ (1 +O(∆t))O(∆t) ‖τ ν‖+O(∆t) ‖τ ν‖ = O(∆t) ‖τ ν‖

where zj are the eigenvalues of Q. Therefore we have

‖Qτ ν‖ ≤ O(∆t) ‖τ ν‖ . (36)

Whenever the condition (36) is satisfied, we can show that the sum (33) above
is bounded:

11



∥

∥

∥

∥

∥

∆t
n−2
∑

ν=0

Qn−ν−1
τ ν

∥

∥

∥

∥

∥

=∆t

∥

∥

∥

∥

∥

n−2
∑

ν=0

Qn−ν−1
τ ν

∥

∥

∥

∥

∥

≤ ∆t
n−2
∑

ν=0

∥

∥

∥Qn−ν−2
∥

∥

∥ ‖Qτ ν‖

≤∆t
n−2
∑

ν=0

‖Q‖n−ν−2O(∆t)‖τ ν‖

≤∆t
(

max
ν=0,...,n−2

‖τ ν‖
) n−2
∑

ν=0

(1 + c∆t)n−ν−2O(∆t)

≤∆t
(

max
ν=0,...,n−2

‖τ ν‖
) n−2
∑

ν=0

[

ec∆t
(

1 +O(∆t2)
)]n−ν−2

O(∆t)

≤∆t
(

max
ν=0,...,n−2

‖τ ν‖
) n−2
∑

ν=0

[

ec(tn−2−tν) (1 +O(∆t))
]

O(∆t)

≤O(∆t)
(

max
ν=0,...,n−2

‖τ ν‖
)

φ∗
∆t(c, T ). (37)

(Recall (22) for the definition of of φ∗
∆t(c, T ).)

In the final equation, T is the final time, and the term φ∗
∆t(c, T ) is therefore

a constant. Thus we have the bound
∥

∥

∥

∥

∥

∆t
n−2
∑

ν=0

Qn−ν−1
τ ν

∥

∥

∥

∥

∥

≤ O(∆t) max
ν=0,...,n−2

‖τ ν‖ . (38)

Putting this all together into (32), we obtain

‖En‖ = O(∆t) max
ν=0,...,n−1

‖τ ν‖ . (39)

Thus, if the coefficients of A and B are chosen so that we can control the size
of ‖Qτ ν‖ in (36), we can obtain a scheme that inhibits the growth of the local
truncation error, so that the global error is one order more accurate than its
truncation error.

3.2 Linear variable-coefficient equations

In the previous section we showed how to construct an error inhibiting method
by choosing the coefficients in A and B so that the local truncation error lives
(mostly) in the space that is spanned by the eigenvectors corresponding to
eigenvalues that are of O(∆t). In this section we show that under the same
criteria as above, these methods are also error inhibiting when applied to a
variable coefficient linear ordinary differential equation:

ut = f(t)u , t ≥ 0

u(t = 0) = u0 (40)

where f(t) assumed to be analytic or as smooth as needed, and bounded. In
this case the scheme is given by a time-dependent evolution operator Qn which

12



may change each time-step:

Vn+1 = QnVn (41)

where

Qn = A+∆tB





















f
(

tn+(s−1)/s

)

f
(

tn+(s−2)/s

)

. . .

f (tn)





















(42)

and the matrices A and B are the same as described above for the constant
coefficient scheme.

Since f(t) is an analytic function, Qn can be written as

Qn = A+∆tBf(tn)+∆t2Bf ′(tn)





















((s− 1)/s)

((s− 2)/s)
. . .

0





















+O(∆t3)

(43)
We can also say then that

Qn = A+∆tBf(tn) +O(∆t2)Bf ′(tn) = Q̃n +O(∆t2). (44)

Each Q̃n has the same structure as Q in the constant coefficient case. In
particular

‖Q̃n‖ = (1 +O(∆t)) ≤ 1 + c∆t, ∀n . (45)

Furthermore, as was pointed out in Remark 3, since the local truncation error
τ n does not depend explicitly on f(t) at any time tn, we can write τ n as a linear
combination of the eigenvectors of A that correspond to the zero eigenvalues.
Thus, τ n lives (mostly) in the space that is spanned by the eigenvectors of
any matrix Q̃n corresponding to eigenvalues that are of O(∆t). We can then
follow the same analysis as in (35)–(36), to obtain the bound

‖Q̃n+1τ n‖ = O(∆t)‖τ n‖, ∀n . (46)

In this case, Equation (18) takes the modified form (for n ≥ 1)

En =
n−1
∏

µ=0

QµE0 + ∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Qµ



 τ ν

=
n−1
∏

µ=0

QµE0 + ∆t
n−2
∑

ν=0

n−1
∏

µ=ν+1

(

Q̃µ +O(∆t2)
)

τ ν +∆tτ n−1

13



The first term is negligible because we assume that the initial error can be
made arbitrarily small, and the final term is clearly of order ∆tτ n−1. Using
(45), (46) and the same analysis as in (35)–(38) we have

∥

∥

∥

∥

∥

∥

∆t
n−2
∑

ν=0





n−1
∏

µ=ν+1

Q̃µ



 τ ν

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∆t
n−2
∑

ν=0





n−1
∏

µ=ν+2

Q̃µ





(

Q̃ν+1τ ν

)

∥

∥

∥

∥

∥

∥

≤∆t
n−2
∑

ν=0

∥

∥

∥

∥

∥

∥

n−1
∏

µ=ν+2

Q̃µ

∥

∥

∥

∥

∥

∥

∥

∥

∥Q̃ν+1τ ν

∥

∥

∥

≤∆t
n−2
∑

ν=0

O (1 +O(∆t))n−ν−2O(∆t) ‖τ ν‖

≤O(∆t) max
ν=0,...,n−2

‖τ ν‖ .

Putting these all together we have

‖En‖ = O(∆t) max
ν=0,...,n−1

‖τ ν‖ . (47)

This simple proof shows that even for the variable coefficient case, the schemes
constructed as described above have a higher order error than would be ex-
pected from the truncation error. In the next subsection we extend this anal-
ysis to the general nonlinear case.

3.3 Nonlinear equations

Finally, we analyze the behavior of methods satisfying the assumptions in Sec-
tion 3.1 when applied to nonlinear problems. Consider the nonlinear equation

ut = f(u(t), t) , t ≥ 0

u(t = 0) = u0 (48)

where f(u, t) assumed to be analytic in u and t. We now use the scheme

Vn+1 = AVn +∆tB















f
(

vn+(s−1)/s, tn+(s−1)/s

)

...

f (vn, tn)















(49)

where the matrices A and B are as constructed above for the constant coeffi-
cients problem.

As defined in (14), the exact solution to (48) and the truncation error are

14



related by

Un+1 = AUn +∆tB















f
(

un+(s−1)/s, tn+(s−1)/s

)

...

f (un, tn)















+∆tτ n. (50)

Note that by Taylor expansion

f (vν , tν) = f (uν , tν) + fu (uν , tν) (vν − uν) + r(vν − uν) ,

wherefu(u, t) = ∂f(u, t)/∂u and |r(vν − uν)| ≤ c1|vν − uν |
2. Subtracting (49)

from (50) and assuming that En = Un − Vn ≪ 1 gives

En+1 = AEn−∆tB















fu
(

un+(s−1)/s, tn+(s−1)/s

)

. . .

fu (un, tn)















En+∆tτ n+∆tR(En)

(51)
where ‖R(En)‖ ≤ c1‖En‖

2. Equation (51) means that as long as O(E2
n) ≪

O(τ n), the equation for the error En can be analyzed in essentially the same
way as for the linear variable coefficient case, and the same estimates hold.

In order to evaluate the time interval in which O(E2
n) ≪ O(τn) we note that

although the term R(En) in (51) is not a non-homogeneous term but rather
a function of En, we can still use the approach used in [6, Theorem 5.1.2]) to
prove stability for a perturbed solution operator. As in [6, Theorem 5.1.2]),
we use the discrete version of Duhamel’s principle to obtain

En =
n−1
∏

µ=0

Q̂µE0 + ∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Q̂µ



 τ ν +∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Q̂µ



R(Eν)

(52)

where

Q̂n = A−∆tB















fu
(

un+(s−1)/s, tn+(s−1)/s

)

. . .

fu (un, tn)















. (53)

Taking the norm of (52) and using the triangle inequality we obtain

‖En‖≤

∥

∥

∥

∥

∥

∥

n−1
∏

µ=0

Q̂µE0

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Q̂µ



 τ ν

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Q̂µ



R(Eν)

∥

∥

∥

∥

∥

∥

.

(54)
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As in the linear case we assume that the initial error, E0 is arbitrary small,
so the first term is negligible. If Q̂ν+1 is constructed such that ‖Q̂ν+1τ ν‖ =
∆tO(τ ν) then using the same analysis as in variable coefficient case the second
term in (54) is less or equal to ∆tc0φ

∗
h(c, tn)maxν=0,...,n−1 ‖τ ν‖. As to the third

term, the same arguments can be used to show that it is bounded by

∥

∥

∥

∥

∥

∥

∆t
n−1
∑

ν=0





n−1
∏

µ=ν+1

Q̂µ



R(Eν)

∥

∥

∥

∥

∥

∥

≤ c1φ
∗
h(c, tn) ‖En‖

2 , (55)

so that (54) (with the substitution of (55) for the final term) can be re-arranged
to obtain

‖En‖ (1− c1φ
∗
h(c, tn) ‖En‖)≤∆tc0φ

∗
h(c, tn) max

ν=0,...,n−1
‖τ ν‖ . (56)

If c1φ
∗
h(c, tn) ‖En‖ < 1/2, we obtain

‖En‖≤ 2∆tc0φ
∗
h(c, tn) max

ν=0,...,n−1
‖τ ν‖ (57)

This estimate holds as long as

c1φ
∗
h(c, tn) ‖En‖≤ 2∆tc0c1 (φ

∗
h(c, tn))

2 max
ν=0,...,n−1

‖τ ν‖ ≤
1

2
, (58)

which is satisfied for all times tn such that ∆tφ∗
h(c, tn) = O(1).

Therefore

‖En‖ = O(∆t) max
ν=0,...,n−1

‖τ ν‖ .

for the nonlinear case as well.

4 Some Error Inhibiting Explicit Schemes

In the previous section we define sufficient conditions for methods of the form

Vn+1 = QVn (59)

where

Q = A +∆tBf

to be error inhibiting. These are

C1. rank(A) = 1.
C2. Its non-zero eigenvalue is equal to 1 and its corresponding eigenvector is

(1, . . . , 1)T .

C3. A can be diagonalized.
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C4. The matrices A and B are constructed such that when the local trun-
cation error is multiplied by the discrete solution operator we have the
bound:

‖Qτ ν‖ ≤ O(∆t) ‖τ ν‖ .

This is accomplished by requiring the local truncation error to live in the
space of the eigenvectors of A that correspond to the zero eigenvalues.

In this section we present several schemes which were constructed using the
approach presented in the previous section. In Section 4.1, we present a block
one-step method that evolves two steps (vn and vn+ 1

2

) to obtain the next two

steps (vn+1 and vn+ 3

2

). This method has truncation error (14) that is second

order, while its global order (16) is third order. We demonstrate that the
expected convergence rate is attained on several sample nonlinear problems.
In this section we also show that a typical Type 3 DIMSIM method (derived
in [2]) that satisfies the first three conditions above but not the fourth, has
truncation error of order two, and its global error is of the same order. This
demonstrates the importance of condition C4.

Next, in Section 4.2 we present a block one-step method that evolves three
steps vn, vn+ 1

3

andvn+ 2

3

to obtain vn+1, vn+ 4

3

and vn+ 5

3

. This method has trun-

cation error (14) that is third order, while its global order (16) is fourth order,
as we demonstrate on several sample problems. Finally, to show that the meth-
ods in each class are not unique, we present two other methods of this type and
show that their global error is of one order higher than the local truncation
error on a sample nonlinear system.

4.1 A third order error inhibiting method with s = 2.

In this subsection we define an explicit block one-step with s = 2 that satisfies
the conditions C1 – C4 above. This method takes the values of the solution
at the times tn and tn+ 1

2

and obtains the solution at the time-level tn+1 and
tn+ 3

2

. The exact solution vector for this problem is

Un =
(

u(tn+1/2), u(tn)
)T

and, similarly, the corresponding vector of numerical approximations is

Vn =
(

vn+1/2, vn
)T
.

The scheme is given by:

Vn+1 =
1

6







−1 7

−1 7





Vn +
∆t

24







55 −17

25 1













f
(

vn+1/2, tn+1/2

)

f (vn, tn)





 , (60)
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and has truncation error

τ n =
23

576







7

1







d3

dt3
u(tn)∆t

2 + O(∆t3) . (61)

The matrix A can be diagonalized as follows:

A =
1

6







−1 7

−1 7





 =
1

6







1 7

1 1













1

0













−1 7

1 −1





 . (62)

Observe that the leading order of the truncation error (61) is in the space of
the second eigenvector of A, the one that corresponds to the zero eigenvalue.
Also, as was pointed out in Remark 3, τ n depends only on this eigenvector of
A and a multiple that is not directly dependent on f but only on the third
derivative of the solution u. This underscores the analysis in Sections 3.2 and
3.3 that demonstrates that the error inhibiting property carries through for
variable coefficient and nonlinear problems.

To study the behavior of the global error we use the fact shown in Section 3.3
that even for a nonlinear equation it is sufficient to analyze the matrix

Q = A +∆t B f (63)

where f is a constant. In this case:

Q=
1

6







1 + f∆t
2

+ f2∆t2

8
+O(∆t3) 7 + 36f∆t+ 228f 2∆t2 +O(∆t3)

1 1













1 + f∆t+ f2∆t2

2
+ f3∆t3

6
+O(∆t4)

4f∆t
3

− f2∆t2

2
− f3∆t3

6
+O(∆t4)













−1 + 71f∆t
12

+ 107f2∆t2

36
+O(∆t3) 7− 65fk

12
− 209f2∆t2

36
+O(∆t3)

1− 71f∆t
12

− 107f2∆t2

36
+O(∆t3) −1 + 65fk

12
+ 209f2∆t2

36
+O(∆t3)







(64)

Recall that, neglecting the initial error E0, we can say that the global error is
(16)

En = ∆t
n−1
∑

ν=0

Qn−ν−1τν

Putting together equations (61) and (64) we see that each term Q τ ν con-
tributes to the error in two ways:
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• The first contribution is due to the fact that τ ν is almost co-linear with the
second eigenvector ψ2. The order of this contribution is

|z2|‖ψ2τ ν‖ = O(∆t) · O(‖∆tτ ν‖) = O(∆t3)

where the term |z2| is the second eigenvalue which is of order O(∆t).
• The second contribution to the error comes from the component of τ ν that
is a multiple γ1 of the first eigenvector ψ1,

|z1|‖γ1ψ1τ ν‖ = O(∆t) · O(‖τ ν‖) = O(∆t3)

the term γ1 is of O(∆t) because τ ν lives mostly in the space of ψ2.

While each of the terms in ∆tQ τ ν has order O(∆t2) · O(‖τ ν‖) = O(∆t4), as
the method is evolved forward, the errors accumulate over time, and sum of
all contributions from all the times gives us a global error of order O(∆t) ·
O(‖τn‖) = O(∆t3).

Example 1a: To demonstrate that this method indeed performs as designed
we study its behavior on a nonlinear scalar equation of the form:

ut = −u2 = f(u) , t ≥ 0

u(t = 0) = 1 . (65)

We evolve the solution of this equation to time T = 1 using the scheme (60).
The initial steps are computed exactly. The plots of the errors and the trun-
cation errors are presented in Figure 1(a). Both errors are shown for the first
component, vn+1/2 (denoted v(1) in the legend) and the second component,
vn (denoted v(2) in the legend). Clearly, although the truncation error is only
second order (denoted tr err v(1) and tr err v(2) in the legend), the global
error is third order, as predicted by the theory.

Example 1b: It is important that the method will perform as designed on a
nonlinear system as well. To demonstrate this, we solve the the van der Pol
system

u
(1)
t =u(2)

u
(2)
t =0.1[1− (u(1))2]u(2) − u(1) (66)

using the same scheme (60). As this is a system, it is important that both
components are examined. Thus, the vector of the numerical solution has two
components for the time level tn, denoted by v(2), and two components for
the time level tn+ 1

2

, denoted by v(1). In Figure 1(b) the convergence plot of

the components of u(1) and u(2) are presented. Once again, we see that the
convergence rate is indeed third order.

Remark 4 It is important to note that not all Type 3 DIMSIM methods have
the EIS property! The property that the local truncation error lives in the
space spanned by the eigenvectors of A that correspond to the zero eigenvalues
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v(1) second component, slope=3.20035

(b)

Fig. 1. Convergence plots using the scheme (60). (a) The errors and truncation
errors vs. ∆t, for several values of ∆t, for the numerical solution of (65). (b) The
errors vs. ∆t for each component of the solution, computed for several values of ∆t,
for the numerical solution of the van der Pol equation (66).

is needed for the error inhibiting behavior to occur, and this property is not
generally satisfied. To observe this, we study the DIMSIM scheme of types 3
presented by J. C. Butcher in [2].

Consider the scheme






vn+2

vn+1





 =
1

4







7 −3

7 −3













vn+1

vn





+
∆t

8







9 −7

−3 −3













f (vn+1, tn+1)

f (vn, tn)





 (67)

given in [2]. This scheme has truncation error

τ n =
1

48







23

3







d3

dt3
u(tn)∆t

2 + O(∆t3) . (68)

The matrix A can be diagonalized as follows:

A =
1

4







7 −3

7 −3





 =







1 3/7

1 1













1

0







1

4







7 −3

−7 7





 . (69)

The truncation error τ n can be written as a linear combination of the two
eigenvectors of A as follows:

τ n =







19

24







1

1





−
35

48







3/7

1













d3

dt3
u(tn)∆t

2 + O(∆t3) . (70)

Unlike the EIS scheme (60), here the first term in this expansion is of the order
of O(τ n) = O(∆t2). Therefore a term of the order of ∆tO(τ n) = O(∆t3) is
accumulated at each time step, so that the global error is second order.
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Fig. 2. Convergence plots using Butcher’s scheme (67). (a) The errors and truncation
errors vs. ∆t, for several values of ∆t, for the numerical solution of (65). Note that
the errors for v(1) and v(2) are virtually identical so these error lines coincide. (b)
The errors vs. ∆t for each component of the solution, computed for several values
of ∆t, for the numerical solution of the van der Pol equation (66). Note that for
this problem as well the behavior of this method on both components is virtually
identical, so the error lines for each component of the solution coincide. Both the
local truncation errors and the global errors are second order: this is not an error
inhibiting scheme.

We note that both this method (67) and our error inhibiting method (60)
satisfy the order conditions in Theorem 3.1 of [2] only up to second order
(p = 2). However, as we see in Figure 2, when the method (67) is used to
simulate the solution of the problems (65) and (66) we have second order
accuracy, while the error inhibiting method (60) gave third order accuracy
(Figure 1).

4.2 A fourth order error inhibiting method with s = 3.

In this subsection we present an error inhibiting method with s = 3 that takes
the values of the solution at the times tn, tn+ 1

3

, and tn+ 2

3

and uses these three
values to obtain the solution at the time-level tn+1, tn+ 4

3

, and tn+ 5

3

. The exact
solution vector is given by

Un =
(

u(tn+2/3), u(tn+1/3), u(tn)
)T
,

and the corresponding vector of numerical approximations is

Vn =
(

vn+2/3, vn+1/3, vn
)T
.

Consider the error inhibiting scheme
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Vn+1=
1

768















467 −1996 2297

467 −1996 2297

467 −1996 2297















Vn +

∆t

1152















5439 −6046 3058

2399 −1694 1362

703 354 626





























f
(

vn+2/3, tn+2/3

)

f
(

vn+1/3, tn+1/3

)

f (vn, tn)















, (71)

which has a local truncation error of third order,

τ n =
1

373248















43699

12787

2227















d4

dt4
u(tn)∆t

3 + O(∆t4)

≈















0.117078

0.0342587

0.00596654















d4

dt4
u(tn)∆t

3 + O(∆t4) . (72)

However, it can be verified that for the linear case, the product

Qnτ n = O(∆tτ n) = O(∆t4) .

Given the analysis in Section 3.3 above, this result will carry over to the
nonlinear case, and thus this method will have a fourth order global error,
despite the third order truncation error.

To demonstrate this result we revisit the two examples (65) and (66) in the
previous subsection and use the scheme (71) to evolve them forward in time.
The results, shown in Figure 3, are exactly as we expect: although the trunca-
tion errors (seen for the problem (65) in Figure 3(a)) are only third order, the
errors are fourth order for both problems (65) and the van der Pol problem
(66).

4.2.1 Other fourth order error inhibiting methods with s = 3.

The methods above are not unique, in fact other methods can be derived
using this approach. In this section we present two additional error inhibiting
methods with s = 3 that have local truncation error that is third order but
demonstrate fourth order global error on a nonlinear system.

The first method is
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∆ t
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||E
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10-8
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v(2) first component, slope=3.86984
v(2) second component, slope=4.74651
v(1) first component, slope=3.95006
v(1) second component, slope=4.06228

(b)

Fig. 3. Convergence plots using the scheme (71). (a) The errors and truncation
errors vs. ∆t, for several values of ∆t, for the numerical solution of (65). (b) The
errors vs. ∆t for each component of the solution, computed for several values of ∆t,
for the numerical solution of the van der Pol equation (66). As expected, we observe
fourth order accuracy for the errors, although the truncation errors are third order.

Vn+1=
1

1020















449 −1966 2537

449 −1966 2537

449 −1966 2537















Vn +

∆t

6120















29123 −32576 15789

12973 −9456 6779

3963 1424 2869





























f
(

vn+2/3, tn+2/3

)

f
(

vn+1/3, tn+1/3

)

f (vn, tn)















, (73)

and has a local truncation error of third order,

τ n =
1

991440















115733

33623

5573















d4

dt4
u(tn)∆t

3 + O(∆t4)

≈















0.116732

0.0339133

0.00562112















d4

dt4
u(tn)∆t

3 + O(∆t4) . (74)

The second method is
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Fig. 4. Convergence plots van der Pol equation (66). The plots show the errors vs.
∆t for each component of the solution, computed for several values of ∆t for (a) the
scheme (73) and (b) the scheme (75). As expected, we observe fourth order accuracy
for the errors, although the truncation errors computed above are third order.

Vn+1=








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24
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24
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

Vn +∆t














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144
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


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





















f
(

vn+2/3, tn+2/3

)

f
(

vn+1/3, tn+1/3

)

f (vn, tn)















.

(75)

The truncation error is also third order

τ n =















5303
46656

1439
46656

119
46656















d4

dt4
u(tn)∆t

3 + O(∆t4) (76)

=















0.113662

0.0308428

0.00255058















d4

dt4
u(tn)∆t

3 + O(∆t4)

Both these methods satisfy

Qnτ n = O(∆tτ n) = O(∆t4)

as well. As above, this property results in an error inhibiting mechanism that
produced a global error of order four. This can be seen once again in Figure
4, using the nonlinear problem (66) above. The results of method (73) are on
the left and of (75) are on the right.
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5 Conclusions

While it is generally assumed that the global error will be of the order of
the local truncation error, in this work we presented an approach to creating
methods that have a global error of higher order than predicted by the lo-
cal truncation error. To accomplish this, we used the block formulation of a
method Vn+1 = QnVn where the discrete solution operator Qn = A +∆tBFn

is comprised of matrices of coefficients A and B, and the matrix operator Fn.

We show that if A is a diagonalizable matrix of rank one, that has only one
nonzero eigenvalue, z1 = 1, that corresponds to the eigenvector of all ones,
then the error inhibiting property will occur if the leading part of the local
truncation error error for the linear constant coefficient case (Fn = F = a
constant) is spanned by the eigenvectors corresponding to the zero eigenvalues
of A (to the leading order). We show that a method that has these properties
will have a global error that has higher order than the local error, on nonlinear
problems.

After presenting the concept behind these methods we use the theoretical
properties above to develop block one-step methods that are in the family
of Type 3 DIMSIM methods presented in [2]. We demonstrate in numerical
examples on nonlinear problems (including a nonlinear system) that these
methods have global error that is one order higher than the local truncation
errors. We also show that this is in contrast to another Type 3 DIMSIM
method which has a matrix A that satisfies the first three properties C1 – C3,
but does not satisfy the error inhibiting property C4, that the local truncation
error is in the space spanned by the eigenvectors of A that correspond to the
zero eigenvalues, and indeed does not give us a global error that is higher than
the local truncation error on nonlinear test problems.

The major development in this work is the concept of an error inhibiting
method and the new approach for developing methods that are constructed
to control the growth of the local truncation error. While the newly developed
methods presented in this work can be used in place of currently standard
methods (particularly in place of type 3 DIMSIM methods) to obtain higher
order accuracy, it is not yet known how they compare to other methods in
terms of other important properties. In future work we intend to the study of
the computational efficiency and storage requirements of these methods and
the analysis of their linear stability regions. We expect that this will also lead
to further development of error inhibiting methods that have other favorable
properties.
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