Skip to main content
Log in

Function, Derivative and High-Order Derivatives Recovery Methods Using the Local Symmetry Projection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop the function, derivative and high-order derivatives recovery methods for the piecewise \(L^2\) projection and piecewise Lagrange interpolation. The presented recovery methods fully exploit the symmetry property to obtain the superconvergent recovered quantities. The analysis given here is based on Taylor expansion and to identify a symmetry sub-domain for superconvergence. Numerical examples are provided which demonstrate the superconvergence properties of the proposed recovery methods and its performance when applying to finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The results of derivative recovery is the same as in [14], we present here for the reader’s convenience.

References

  1. Agouzal, A., Vassilevski, Y.: On a discrete Hessian recovery for \(P^1\) finite elements. J. Numer. Math. 10, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 74–111 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carstensen, C., Bartels, A.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)

    Article  MATH  Google Scholar 

  5. Chen, C.M., Huang, Y.Q.: High Accuracy Theory of Finite Element Methods. Hunan Science Press, Hunan (1995). (in Chinese)

    Google Scholar 

  6. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \(C^0\) linear fintie element method for two fourth-order eigenvalue problems. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drw051

    Google Scholar 

  7. Chen, H., Zhang, Z., Zou, Q.: A recovery based linear finite element method for 1D bi-harmonic problems. J. Sci. Comput. 68, 375–394 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gan, X., Akin, J.E.: Superconvergent second derivative recovery technieque and its application in a nonlocal damage mechanics model. Finite Elem. Anal. Des. 70, 27–35 (2013)

    Article  Google Scholar 

  9. Guo, H., Zhang, Z., Zhao, R.: Hessian recovery for finite element methods. Math. Comput. 86, 1671–1692 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, H., Zhang, Z., Zhao, R., Zou, Q.: Polynomial preserving recovery on boundary. J. Comput. Appl. Math. 307, 119–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heimsund, B., Tai, X., Wang, J.: Superconvergence for the gradient of the finite element approximations by \(L^2\) projections. SIAM J. Numer. Anal. 40, 1538–1560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Y.Q., Jiang, K., Yi, N.Y.: Some weighted averaging methods for gradient recovery. Adv. Appl. Math. Mech. 4, 131–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y.Q., Liang, Q., Yi, N.Y.: High order compact schemes for gradient approximation. Sci. China Math. 53, 1903–1918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, Y.Q., Liu, H.L., Yi, N.Y.: Recovery of normal derivatives from the piecewise \(L^2\) projection. J. Comput. Phys. 231, 1230–1243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, Y.Q., Yang, W., Yi, N.Y.: Superconvergence analysis for the explicit polynomial recovery method. J. Comput. Appl. Math. 265, 187–198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, Y.Q., Yi, N.Y.: The superconvergent cluster recovery method. J. Sci. Comput. 44, 301–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lakhany, A.M., Whiteman, J.R.: Superconvergent recovery operators: derivative recovery techniques. In: Krizek, M., Neittaanmaki, P., Stenberg, R. (eds.) Finite Element Methods: Superconvergence, Post-processing, and a Posteriori Estimates. Marcel Dekker INC, Newyork (1998)

    Google Scholar 

  18. Lamichhane, B.: A finite element method for a biharmonic equation based on gradient recovery operators. BIT Numer. Math. 54, 469–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Naga, A., Zhang, Z.: Function value recovery and its application in eigenvalue problems. SIAM J. Numer. Anal. 50, 272–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ovall, J.: Function, gradient, and Hessian recovery using quadratic edge-bump functions. SIAM J. Numer. Anal. 45, 1064–1080 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Picasso, M., Alauzet, F., Borouchaki, H., George, P.: A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. SIAM J. Sci. Comput. 33, 1058–1076 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference, AIAA-2005-5108 (2005)

  23. van Raalte, M., van Leer, B.: Bilinear forms for the recovery-based discontinuous Galerkin method for diffusion. Commun. Comput. Phys. 5, 683–693 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Vallet, M.G., Manole, C.M., Dompierre, J., Dufour, S., Guibault, F.: Numerical comparsion of some Hessian techniques. Int. J. Numer. Methods Eng. 72, 987–1007 (2007)

    Article  MATH  Google Scholar 

  25. Yan, N.: Superconvergence Analysis and A Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  26. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J.Z., Zienkiewicz, O.C.: Superconvergence recovery technique and a posteriori error estimates. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)

    Article  MATH  Google Scholar 

  28. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Yi’s research was partially supported by NSFC Project (11671341), Hunan Provincial NSF Project (2015JJ2145) and Hunan Education Department Project (16A206). Huang’s research was partially supported by NSFC Project (91430213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianyu Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, N., Huang, Y. & Yang, W. Function, Derivative and High-Order Derivatives Recovery Methods Using the Local Symmetry Projection. J Sci Comput 74, 536–572 (2018). https://doi.org/10.1007/s10915-017-0451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0451-6

Keywords

Mathematics Subject Classification

Navigation