Skip to main content
Log in

Hybrid Finite Difference Weighted Essentially Non-oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation

  • Review Paper
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present hybrid weighted essentially non-oscillatory (WENO) schemes with several discontinuity detectors for solving the compressible ideal magnetohydrodynamics (MHD) equation. Li and Qiu (J Comput Phys 229:8105–8129, 2010) examined effectiveness and efficiency of several different troubled-cell indicators in hybrid WENO methods for Euler gasdynamics. Later, Li et al. (J Sci Comput 51:527–559, 2012) extended the hybrid methods for solving the shallow water equations with four better indicators. Hybrid WENO schemes reduce the computational costs, maintain non-oscillatory properties and keep sharp transitions for problems. The numerical results of hybrid WENO-JS/WENO-M schemes are presented to compare the ability of several troubled-cell indicators with a variety of test problems. The focus of this paper, we propose optimal and reliable indicators for performance comparison of hybrid method using troubled-cell indicators for efficient numerical method of ideal MHD equations. We propose a modified ATV indicator that uses a second derivative. It is advantageous for differential discontinuity detection such as jump discontinuity and kink. A detailed numerical study of one-dimensional and two-dimensional cases is conducted to address efficiency (CPU time reduction and more accurate numerical solution) and non-oscillatory property problems. We demonstrate that the hybrid WENO-M scheme preserves the advantages of WENO-M and the ratio of computational costs of hybrid WENO-M and hybrid WENO-JS is smaller than that of WENO-M and WENO-JS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151, 149–184 (2004)

    Article  Google Scholar 

  2. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S., Shu, C.W.: Monotonicity preserving WENO schemes with increasingly high-order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christlieb, A.J., Rossmanith, J.A., Tang, Q.: Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J. Comput. Phys. 268, 302–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204, 209–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Dai, W., Woodward, P.R.: A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys. 142, 331–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fitzpatrick, R.: Plasma Physics: An Introduction. CRC Press, Boca Raton (2015)

    Google Scholar 

  12. Gerolymos, G.A., Scénéhal, D., Vallet, I.: Very-high-order WENO schemes. J. Comput. Phys. 228, 8481–8524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasma. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  14. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high-order accurate non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  18. Hill, D.J., Pullin, D.I.: Hybrid tuned center-difference-WENO method for larged eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435–450 (2004)

    Article  MATH  Google Scholar 

  19. Jeffrey, A., Taniuti, T.: Non-linear Wave Propagation. Academic Press, New York (1964)

    MATH  Google Scholar 

  20. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, G., Wu, C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, G., Qiu, J.: Hybrid WENO Schemes different indicators on curvilinear grids. Adv. Comput. Math. 40, 747–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, G., Lu, C., Qiu, J.: Hybrid well-balanced WENO schemes with different indicators for shallow water equations. J. Sci. Comput. 51, 527–559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Orszag, S.A., Tang, C.M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90, 129–143 (1979)

    Article  Google Scholar 

  28. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qiu, J., Shu, C.W.: A comparison of troubled-cell indicator for Runge–Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roe, P.L., Balsara, D.S.: Notes on the eigensystem of magnetohydrodynamics. SIAM. J. Appl. Math. 56(1), 57–67 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rossmanith, J.: A wave propagation method with constrained transport for shallow water and ideal magnetohydrodynamics, Ph.D Thesis, University of Washington, Seattle (2002)

  32. Rossmanith, J.: An unstaggered high-resolution constrained transport method for magnetohydrodynamic flows SIAM. J. Sci. Comput. 28, 1766–1797 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Ryu, D., Miniati, F., Jones, T.W., Frank, A.: A divergence-free upwind code for multi-dimensional magnetohydrodynamic flows. Astrophys. J. 509, 244–255 (1998)

    Article  Google Scholar 

  34. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  35. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tóth, G.: The \(\nabla \cdot B = 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, H., Qiu, J.: Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Youngsoo Ha and Chang Ho Kim were supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014M1A7A1A03029872), also Youngsoo Ha was supported by the National Research Foundation of Korea (NRF) (NRF-2013R1A1A2013793). Kwang-Il You is supported by Ministry of Science, ICT and Future Planning of Korea (NIST Code: 1711046884). We would like to thank the anonymous reviewers for constructive suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsoo Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.H., You, KI. & Ha, Y. Hybrid Finite Difference Weighted Essentially Non-oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation. J Sci Comput 74, 607–630 (2018). https://doi.org/10.1007/s10915-017-0462-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0462-3

Keywords

Navigation