Skip to main content
Log in

Block-Centered Finite Difference Method for Simulating Compressible Wormhole Propagation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the block-centered finite difference method is introduced and analyzed to solve the compressible wormhole propagation. The coupled analysis approach to deal with the fully coupling relation of multivariables is employed. By this, stability analysis and error estimates for the pressure, velocity, porosity, concentration and its flux in different discrete norms are established rigorously and carefully on non-uniform grids. Finally, some numerical experiments are presented to verify the theoretical analysis and effectiveness of the given scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kou, J., Sun, S., Wu, Y.: Mixed finite element-based fully conservative methods for simulating wormhole propagation. Comput. Methods Appl. Mech. Eng. 298, 279–302 (2016)

    Article  MathSciNet  Google Scholar 

  2. Panga, M.K., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51, 3231–3248 (2005)

    Article  Google Scholar 

  3. Wu, Y., Salama, A., Sun, S.: Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework. Comput. Geotech. 69, 564–577 (2015)

    Article  Google Scholar 

  4. Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44, 1933–1949 (1998)

    Article  Google Scholar 

  5. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  MATH  Google Scholar 

  6. Liu, M., Zhang, S., Mou, J., Zhou, F.: Wormhole propagation behavior under reservoir condition in carbonate acidizing. Transp. Porous Media 96, 203–220 (2013)

    Article  Google Scholar 

  7. Zhao, C., Hobbs, B., Hornby, P., Ord, A., Peng, S., Liu, L.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Methods Geomech. 32, 1107–1130 (2008)

    Article  MATH  Google Scholar 

  8. Li, X., Rui, H.: Characteristic block-centered finite difference method for simulating incompressible wormhole propagation. Comput. Math. Appl. 73, 2171–2190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Raviart, P.-A., Thomas, J.-M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  10. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34, 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rui, H., Pan, H.: A Block-centered finite difference method for the Darcy–Forchheimer model. SIAM J. Numer. Anal. 50, 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X., Rui, H.: Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation. Int. J. Comput. Math. 94, 384–404 (2015)

  13. Li, X., Rui, H.: A two-grid block-centered finite difference method for nonlinear non-Fickian flow model. Appl. Math. Comput. 281, 300–313 (2016)

    MathSciNet  Google Scholar 

  14. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Japan J. Ind. Appl. Math. 30, 681–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53, 1941–1962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Li, X.: A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Comput. Methods Appl. Mech. Eng. 308, 330–348 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. (2017). doi:10.1007/s10915-017-0380-4

  18. Mauran, S., Rigaud, L., Coudevylle, O.: Application of the Carman–Kozeny correlation to a high-porosity and anisotropic consolidated medium: the compressed expanded natural graphite. Transp. Porous Media 43, 355–376 (2001)

    Article  Google Scholar 

  19. Nédélec, J.-C.: Mixed finite elements in \({\mathbb{R}}\) 3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25, 351–375 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Durán, R.: Superconvergence for rectangular mixed finite elements. Numer. Math. 58, 287–298 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Douglas, J., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comput. 41, 441–459 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Q., Zhang, J.Wang: Error analysis of the semi-discrete local discontinuous Galerkin method for compressible miscible displacement problem in porous media. Appl. Math. Comput. 259, 88–105 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper. This work is supported by the National Natural Science Foundation of China Grant No. 11671233, the Science Challenge Project No. JCKY2016212A502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Rui, H. Block-Centered Finite Difference Method for Simulating Compressible Wormhole Propagation. J Sci Comput 74, 1115–1145 (2018). https://doi.org/10.1007/s10915-017-0484-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0484-x

Keywords

Mathematics Subject Classification

Navigation