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In this work, we construct novel discretizations for the unsteady convection-
diffusion equation. Our discretization relies on multiderivative time integrators
together with a novel discretization that reduces the total number of unkowns
for the solver. These type of temporal discretizations come from an umbrella
class of methods that include Lax-Wendroff (Taylor) as well as Runge-Kutta
methods as special cases. We include two-point collocation methods with
multiple time derivatives as well as a sixth-order fully implicit collocation
method that only requires a total of three stages. Numerical results for a
number of sample linear problems indicate the expected order of accuracy
and indicate we can take arbitrarily large time steps.

1 Introduction

We consider discretizations of the scalar convection-diffusion equation on a two-dimensional
domain Ω ⊂ R2:

∂tw +∇ · (cw − ε∇w) = g, ∀(x, t) ∈ Ω× (0, Tend], (1)

w(x, 0) = w0(x) ∀x ∈ Ω, (2)
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where c ∈ R2, ε ∈ R and g ∈ L2(R2×R+) are prescribed parameters. Our aim is to apply
a classical discontinuous Galerkin (DG) method to the spatial part of (1), and to advance
the solution in time with an implicit multiderivative Runge-Kutta method [25]. The
novelty in this work is the combination of these implicit multiderivative methods with
the discontinuous Galerkin method, and the result is that we are able to take arbitrarily
large time steps with high-order solvers all the while reducing the total number of stages
that would normally be required to obtain the same order of accuracy.

1.1 Background

This work makes use of multistage multiderivative (MSMD) time integrators, which are
best described in the context of ordinary differential equations (ODEs). For an ODE
defined by ∂ty = f(y), multiderivative schemes make use of higher temporal derivatives
of the unknown solution y. These time derivatives can be expressed recursively in terms
of f and its derivatives. For example, the second time derivative can be expressed as
∂tty = f ′(y)∂ty = f ′(y)f(y), where f ′(y) is the Jacobian of f with respect to y. These
higher derivatives, together with additional stages, form part of the foundation of all
MSMD methods, we well as their even more general multistep-multistage-multiderivative
extensions [23].

Because additional information is fed into the algorithm, MSMD methods can be
constructed to obtain higher order of accuracy than a standard Runge-Kutta scheme with
the same number of stages. For example, with a total of s stages, Butcher showed that it
is possible to construct a Runge-Kutta method that obtains (2s)th-order accuracy [9]. On
the other hand, Stroud and Stancu [47] have shown that it is possible to obtain a method
with a total of (2(s+M))th-order accuracy, when a total of M (even) derivatives of the
right hand side function are considered. This is because the additional degrees of freedom
required to obtain higher order accuracy can be found by searching for higher derivatives
in place of adding additional stages. Methods from this class can be constructed as
explicit or implicit solvers, and the implicit solvers can be designed in a way such that
they fulfill desirable properties, such as A-stability [16]. A special case of these solvers
include all Taylor methods, where a total of one stage is considered, and the coefficients of
the higher derivatives are picked from the Taylor series of the solution. These can also be
used to construct implicit or explicit solvers. Note that introducing a time history of the
solution can serve as an alternative to increasing the order of a (multistage) Runge-Kutta
method. This defines the class of so-called general linear methods [10, 8, 50], that can be
thought of as a multistage multistep method.

In the context of PDEs, the special case of a Taylor discretization is typically called a
Lax-Wendroff solver. This is attributed to the original work of Lax and Wendroff from
1960 where they construct a second-order solver by incorporating the second derivative of
the PDE into their method [33]. More recently, higher order (i.e., solvers with order greater
than two) versions of these solvers have been investigated for finite volume [26], finite
difference [41, 32, 46, 12, 14, 52], and discontinuous Galerkin discretizations [40, 22, 36].
A large community centered around Arbitrary DERivative (ADER) discretizations has
been very successful with constructing arbitrary order explicit solvers for hyperbolic
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problems in this category [48, 51, 15, 7], and much of their work relies on symbolic
software to generate their code base.

Although seldom used, the multistage multiderivative methods have been investigated
(for ODEs) since as early as the 1960’s for problems in celestial mechanics [43], and later
on for various other differential equations [20, 19]. The multistage multiderivative flavor of
these solvers have only recently attracted attention as a mechanism for discretizing partial
differential equations [49, 45]. In [13] it is shown that the multistage multiderivative
formulations can be constructed to contain the so-called strong stability preserving
property, and these solvers are currently being investigated as useful time discretizations
for equations of gas dynamics [34, 39, 38]. An extensive review of these methods can be
found in [45].

In our previous work [30], we began an attempt to couple DG and two-point two-
derivative methods. This earlier work was based on the Cauchy-Kovalevskaya procedure
[42], which means that one takes the original PDE, and expresses the temporal derivatives
of the unknown w in terms of the spatial derivatives. Based on this ansatz, we introduced
additional variables modeling the spatial derivatives of w to model wtt. This term is
used to express the spatial derivatives of w up to order four. This procedure has lead to
a method that, although having quite large linear systems of equations to solve, is in
runtime comparable to classical time integration schemes. Note that because the scheme
was based on the Cauchy-Kovalevskaya procedure together with similar tricks used to
define Lax-Wendroff discontinuous Galerkin solvers, our previous scheme is not identical
to applying a two-derivative scheme to the ordinary differential equation that results
from the method-of-lines formulation stemming from the DG spatial discretization of
(1). This lead to unwanted features such as a sometimes quite severe loss of stability
reducing an implicit solver to finite time steps on the same order as an explicit method.
The present work is directed at mending this undesirable feature.

1.2 Summary of work

In this work, we redirect our efforts away from discretizing each higher derivative term
separately, and instead construct a discretization that ends up being equivalent to the
method-of-lines (MOL) formulation of the partial differential equation (PDE). That
is, in place of attempting to do anything special to define higher derivatives, which is
commonplace with Taylor type discretizations, we construct a solver that is equivalent to
applying the multiderivative methods directly to the MOL discretization of the PDE.
That is to say, instead of following the common practice of defining higher derivatives by
differentiating basis functions (or using reduced order stencils), we instead take great
care to construct these higher derivatives in such a way that they end up being identical
to differentiating the large system of ODEs defined by the MOL discretization of the
PDE. We make this important modification in order to construct and prove the stability
of our solver. In doing so, one obvious complaint is that this has the potential to increase
the size of the effective stencil of the method. We address this issue by introducing only
one additional variable that is used to define all of the mixed derivatives of the solution.

In this work, we consider a total of two different types of implicit collocation methods,
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and we couple each of these with the classical discontinuous Galerkin discretization of the
PDE. The methods we consider can be classified into a total of two separate categories:

• Two-point multiderivative collocation methods. These methods use a total
of two quadrature points (one at a known time value t = tn, and another at the next
time value t = tn+1). They reach high order accuracy by increasing the number of
derivatives (we consider methods with a total of three derivatives of the unknown)
that are evaluated at each time point.

• Fully implicit multiderivative collocation methods. These methods increase
the order of accuracy by increasing the number of stages, and they too can increase
order by including higher derivatives. These methods can be constructed by
first defining a set of collocation (quadrature) points, fitting a Hermite-Birkhoff
interpolant, and then integrating the result. Because a two-derivative method with
three quadrature points can obtain a total of sixth-order accuracy, we only include
a single method from this category. Because sixth-order accuracy is very high order,
in this work we do not pursue adding additional stages and point to this solver as
a proof of concept.

Both of these classes of methods fall under the umbrella category of multiderivative
Runge-Kutta methods. This broader category also encompasses all classical Runge-Kutta
solvers, as well as Taylor (or Lax-Wendroff) methods, but not all of them are A-stable.
Here, we only consider A-stable solvers, which we show is an important property that we
leverage to define stable numerical discretizations for the PDE.

The paper is structured as follows: in Section 2, we provide a brief review of the
discontinuous Galerkin discretization. This section serves to the notation that is used
throughout the remainder of this work. In Section 3, we review classical multiderivative
time discretizations in the context of ordinary differential equations, and in Section 4, we
couple the two discretizations to define the new fully discrete solver. Finally, in Section 5
we present numerical results, and in Section 6 we wrap up with conclusions and point to
future work.

2 Discontinuous Galerkin discretizations in space

We begin by introducing the DG discretization that we use in this sequel. In principle,
one can substitute the scheme by one’s favorite scheme, as long as it is coercive (and
therefore stable) and in primal form.

Before introducing the scheme in detail, we shortly define the (rather standard) notation
needed. Based on a triangulation of the domain Ω ⊂ R2 into

Ω =

Ne⋃

k=1

Ωk, (3)

we define the standard space of broken polynomials,

Vh := {f ∈ L2(Ω) | f|Ωk
∈ Πp(Ωk)},
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where the set Πp(Ωk) is the space of all polynomials on Ωk having total degree p. Other
choices are possible, in particular, an adaptive polynomial degree does not pose any
particular problems. We do not pursue this any further in this work.

Cell-wise integration over Ω is denoted by the scalar product (·, ·), while 〈·, ·〉 denotes
edge-wise integration over the skeleton of the triangulation. To consider functions on
an edge ek,l := Ωk ∩ Ωl, k 6= l, we need to define ‘inner’ and ‘outer’ values. Let ek,l be
equipped with a normal vector n, and let x ∈ ek,l, then we define for a function ϕh ∈ Vh,

ϕ±h := lim
δ→0

ϕh(x± δn).

Furthermore, we define average and jump, respectively, as

{ϕh} :=
ϕ−h + ϕ+

h

2
n, JϕhK :=

(
ϕ−h − ϕ+

h

)
n.

Note that, while ϕ±h depends on the orientation of the normal, jumps and average do not.
To discretize the convective terms, we employ a standard upwinding technique. To

this end, we define

wuph :=

{
w−h , c · n > 0,

w+
h , otherwise.

Note that this definition is independent of the orientation of n. We discretize the viscous
term with a symmetric interior penalty method [3].

With these definitions in place, the discretization of (1) in space yields the task of
seeking wh ∈ C0([0, Tend], Vh), such that

(∂twh, ϕh)− (R(wh),∇ϕh) + 〈Re(wh;ϕh)〉 = (g, ϕh), ∀ϕh ∈ Vh, (4)

where R(wh) ≡ R(wh,∇wh) and Re(wh;ϕh) ≡ Re(wh,∇wh;n;ϕh,∇ϕh) are the cell and
edge discretizations of DG-type given by

R(wh) := cwh − ε∇wh, (5)

Re(wh;ϕh) := −{cwuph } · JϕhK + ε

(
{∇wh} −

η

he
JwhK

)
· JϕhK

+ εJwhK{∇ϕh}. (6)

Note that these operators are linear in wh and ϕh. The value he is the length of an
edge, and η is a user-defined parameter that must be positive and larger than a certain
threshold, (see [3] for details). Upon inserting a basis for Vh into (4), we rewrite this as a
large complex linear system of differential equations,

∂twDG = ADGwDG + bDG, (7)

where wDG is a vector of unknowns, ADG is a matrix representing the difference operators,
and bDG is a vector representing the source terms.
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Remark 1. Note that for ε > 0 and polynomial order p = 0, the method presented above
is not meaningful. For the case where diffusion appears, we will therefore not show any
results produced with piecewise constant ansatz functions. However, the methodology we
present does not rely on the particular choice of the DG discretization, it is therefore
possible to substitute R and Re by other stable discretization types which can handle the
p = 0 case for diffusion.

The proof of stability of our solver relies on the following lemma (whose proof can be
found in [3, 28, 27]):

Lemma 1. Let the triangulation be conforming and shape-regular; and let p > 0. Then,
there exist an η∗ > 0, such that for all η > η∗ and ϕh ∈ Vh, we have

−(R(ϕh),∇ϕh) + 〈Re(ϕh;ϕh)〉 ≥ 0. (8)

The above statement means that under the conditions mentioned in the Lemma, the
matrix ADG is negative semi-definite (for ε > 0, it is negative definite). This means that
the real part of each eigenvalues of the matrix is negative:

Corollary 1. Let λ be an eigenvalue of ADG under the conditions of Lemma 1. Then,
the real part of lambda is negative. That is, if λ is an eigenvalue of ADG, then <(λ) ≤ 0.
Furthermore, if ε > 0, then <(λ) < 0.

When c 6= 0, the matrix is not symmetric, and therefore the statement of this Corollary
is not directly clear. Here, we prove the case where ε > 0. The case where ε = 0 is
nominally different.

Proof. Thanks to Eqn. (8), we have that mTADGm < 0 for all non-zero vectors m. Fur-
thermore, because ADGv = λv, we have ADGv = λv because ADG has real coefficients.
Therefore, we can write

ADG<(v) = <(λ)<(v) + =(λ)=(v),

ADG=(v) = −=(λ)<(v) + <(λ)=(v).

(Note that < and = denote real and imaginary part, respectively.) We multiply the first
line from the left with <(v)T , and the second line with =(v)T , and further exploit the
negative semi-definiteness of the operators to observe

0 > <(λ)‖<(v)‖2 + =(λ)<(v)T=(v),

0 > −=(λ)=(v)T<(v) + <(λ)‖=(v)‖2.
Upon adding terms, we observe

0 > <(λ)
(
‖<(v)‖2 + ‖=(v)‖2

)
,

which proves the claim.

Remark 2. Corollary 1 is the reason we favor A-stable schemes.

With these preliminaries out of the way, we are now prepared to discuss the various
temporal discretizations that we use in this work. We begin with a description of how
these solvers operate on ordinary differential equations.
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3 Multiderivative discretization in time

In this section, we briefly review multiderivative Runge-Kutta methods. In the subsequent
section, we apply the temporal discretization of (4) to these solvers.

An M -derivative Runge-Kutta solver is defined by a total of M Butcher tableaux{
a(1), a(2), . . . , a(M)

}
, each of size s× s, where s refers to the total number of stages of

the solver, and M is the total number of derivatives under consideration. The internal
stages of an M -derivative Runge-Kutta scheme are defined as

yn(i) = yn +
M∑

m=1

∆tm
s∑

j=1

a
(m)
ij ∂mt y

n
(j), i = 1, . . . , s, (9a)

and the final update is given by

yn+1 = yn +
M∑

m=1

∆tm
s∑

i=1

b
(m)
i ∂mt y

n
(i). (9b)

The two-point collocation schemes we consider have a total of s = 2 stages, and up
to M = 3 time derivatives of the unknown. The fully implicit collocation method we
consider has a total of s = 3 stages, and M = 2 derivatives of the unknown.

3.1 Two-point multiderivative collocation methods

The first class of solvers we consider are two-point multiderivative collocation methods.
These methods have a total of s = 2 stages, and the abscissa are sampled at times t = tn

and t = tn+1 only. These methods can be derived from the rational that one ‘prescribes’ k
derivatives at time tn and l derivatives at time tn+1. That is, we first fit Hermite-Birkhoff
interpolant [29, 37] to the unknown function y(t), and then integrate the result to define
the solver. This results in the following explicit expression for the numerical solver:

m∑

j=0

∆tj(∂jt y)n+1P (m−j)(0) =
m∑

j=0

∆tj(∂jt y)nP (m−j)(1), (10)

where P (t) = tk(t−1)l

(k+l)! and ∂jt y is the j−th temporal derivative of the solution y to the

ODE [24]. In this work, we employ two-point schemes for two and three derivatives,
respectively. Each of these schemes can be written in the form

yn+1 − yn
∆t

=
(
α1∂ty

n − β1∂ty
n+1
)

+ ∆t
(
α2∂

2
t y

n − β2∂
2
t y

n+1
)

+ ∆t2
(
α3∂

3
t y

n − β3∂
3
t y

n+1
)
, (11)

for some values of α = (α1, α2, . . . ) and β = (β1, β2, . . . ). The values that we use in this
work are summarized in Table 1, where we categorize the solvers based on the order of
the method.
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Table 1: Two-point multiderivative schemes. Those with α3 = β3 = 0 only need two
derivatives, which means additional variables do not need to be computed.

Order (k, l) α1 α2 α3 β1 β2 β3

3 (1, 2) 1/3 0 0 −2/3 1/6 0
4 (2, 2) 1/2 1/12 0 −1/2 1/12 0
5 (2, 3) 2/5 1/20 0 −3/5 3/20 −1/60
6 (3, 3) 1/2 1/10 1/120 −1/2 1/10 −1/120

Remark 3. The values in Table 1 are very much related to Padé approximations for the
exponential function. As an example, the Padé-approximation of the exponential function
of order (2, 3) is given by

P2,3(z) =
1 + 2/5z + 1/20z2

1− 3/5z + 3/20z2 − 1/60z3
.

These coefficients are identical to those found in the fifth-order scheme defined in Table 1.

The following very important Lemma comments on the stability of these schemes, and
is critical for us to define a stable numerical solver:

Lemma 2. All of the methods shown in Table 1 are A-stable.

Proof. Thanks to Remark 3, all of these methods are on the first or second subdiagonal
in the set of Padé approximations to ez. In [17], it is shown that each these entries are
A-stable. Moreover, the methods on the sub-diagonal exhibit stiff decay, and therefore
those methods are L-stable.

3.2 Fully implicit multiderivative collocation methods

Extensions of two-point collocation methods can proceed in several directions. For
example, it is possible to add more stages, more derivatives, or more steps to the solver to
increase the order of accuracy [24]. For example, the so-called multistep multiderivative
methods [18, 21, 31] increase the order of accuracy by adding a time history of the
solution. In this work, we prefer to restrict our attention to self-starting single-step
methods, and therefore we only consider additional stages in order to improve the order
of accuracy of the method. Again, a fully implicit multiderivative collocation method
can be easily derived by first fitting a Hermite-Birkhoff interpolant to the unknown
function y(t), and then integrating the result. The resulting scheme takes the form of a
multiderivative Runge-Kutta method.

One nice property is that by deriving fully implicit multiderivative solvers in this
manner we automatically know that they satisfy the correct order conditions. This is
a result of Obreshkov’s formula [35], which can be thought of as a generalization of
Taylor’s theorem to Hermite-Birkhoff interpolation. For general Runge-Kutta methods,
this is normally a non-trivial task to accomplish, and more to the point, finding A-stable
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methods is already a difficult enough task to accomplish, let alone trying to find one that
is high-order.

As a proof of concept, we restrict our attention to a single method that we derive in
this manner. More specifically, the method we consider is a fully implicit two-derivative
collocation method that we find to be A-stable. The development of higher order A-stable
multistage multiderivative methods is reserved for future work.

Based on the work in [47], we compute the coefficients for a sixth-order scheme involving
s = 3 stages. The collocation points are at the (normalized) time instances t = (0, 1/2, 1)T ,
which is important to know when considering non-autonomous differential equations.
The Butcher tableau a(1) (for first derivative) and a(2) (for second derivative) read as
follows:

a(1) =




0 0 0
101/480 8/30 55/2400

7/30 16/30 7/30


 , a(2) =




0 0 0
65/4800 −25/600 −25/8000
5/300 0 −5/300


 .

(12)

Because there are a total of six pieces of information used to define the Hermite-Birkhoff
fit for the right hand side function (two each at times tn, tn+1/2, and tn+1), this method
achieves a total of sixth-order accuracy. More specifically, the error in this approximation
can be found from Obreshkov’s formula [35]. We stop to point out that one advantage of
this solver is that it does not require extra derivatives of the unknown function, but this
comes at the expense of adding an additional stage.

Lemma 3. The method defined by Butcher tableaux (12) is A-stable.

The proof of this Lemma is straightforward and is omitted for brevity.

4 The fully discrete solver

With these preliminaries out of the way, we are now prepared to describe the fully discrete
solver proposed in this work. In a straightforward way, one can of course differentiate (7)
and obtain an explicit expression for ∂ttwDG. Together with Lemma 1 and the A-stability
of the methods involved, this yields a stable algorithm.

Lemma 4. With the A-stability of the involved time discretization schemes, and the
coercivity of ADG, see Lemma 1 and Corollary 1, the application of those time integration
schemes to the DG semi-discretization (7) yields a stable scheme.

As the matrix A2
DG occurs in the explicit representation of ∂ttwDG, this involves an

increase of the stencil of the method. To keep the compact stencil of the DG method -
which is one of its many advantages - we introduce the additional variable σh (which is
assumed to have the same dimensionality as wh, thus is a scalar) that fulfills

(σh, ϕh)− (R(wh),∇ϕh) + 〈Re(wh;ϕh)〉 = (g, ϕh) ∀ϕh ∈ Vh. (13)

Note that this definition is very similar to (4), in fact, only the first term differs.
With the help of this variable, we can express ∂ttwh as follows:
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Lemma 5. Let σh be defined as in (13). Then, for wh as defined in (4), there holds

(∂ttwh, ϕh) = (R(σh),∇ϕh)− 〈Re(σh;ϕh)〉+ (∂tg, ϕh). (14)

Proof. As both R and Re are linear functions, the vector wDG containing the basis
coefficients of wh for a certain set of basis functions fulfills

∂twDG = ADGwDG + bDG, (7)

and its second derivative can be easily computed as

∂ttwDG = ADG (ADGwDG + bDG) + ∂tbDG.

By the construction of σh, we know that its associated vector σDG of basis coefficients
fulfills σDG = ADGwDG+bDG. Applying ADG once more, done in (14) on the right-hand
side, completes the proof.

Remark 4. Note that, as said earlier, A2
DG is an operator that has a larger stencil than

ADG has. In fact, one has to incorporate neighbor-neighbors. If one defines σh ≈ ∂twh
as auxiliary variable instead and expresses ∂ttwh as in (14), the stencil is not enlarged.
Furthermore, the assembly process is quite simple, as the terms used for σh are the same
as those for wh, so most computations must be done only once.

Remark 5. Note that the proof of Lemma 5 already gives a glimpse on how to obtain a
scheme in the case of a nonlinear operator ADG(wDG). For example, when discretizing
the Navier-Stokes equations: Use the same trick on σh, and then multiply it with the
derivative of ADG, evaluated at wDG. This will include some tedious differentiation
operations that, however, can be simplified by using automatic differentiation. Also, tricks
similar to those recently performed in [52], where higher derivatives of the flux function
are approximated using high-order finite differences, can most certainly be applied here.
The performance, analysis, and implementation of such a type of algorithm will be left
for future work.

Remark 6. Of course with the same reasoning, one can introduce higher derivatives. In
this work, we consider algorithms with up to three (temporal) derivatives. This means
that beyond σh, there must be a third variable which we call τh. It is defined in close
analogy to (13) as

(τh, ϕh)− (R(σh),∇ϕh) + 〈Re(σh;ϕh)〉 = (∂tg, ϕh) ∀ϕh ∈ Vh. (15)

Lemma 5 holds with obvious modifications.

With these remarks, the algorithm is completely defined. As an example, the method
for a two-point scheme can be written as follows:

wn+1
DG −wn

DG

∆t
= ADG

(
α1w

n
DG − β1w

n+1
DG

)
+ ∆tADG

(
α2σ

n
DG − β2σ

n+1
DG

)

+ ∆t2ADG

(
α3τ

n
DG − β3τ

n+1
DG

)
, (16)
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where we assume bDG = 0 for the sake of readability. Here, the definition of τDG
is similar to the ones of wDG and σDG, it denotes the vector with basis coefficients
associated to τh. Integrating the source term is straightforward, following the lines of
(11).

5 Numerical results

In this section, we present numerical results, demonstrating the performance of the scheme.
In all the results, we work with periodic boundary conditions to alleviate influence from
the boundary. We note, though, that the algorithm can be easily adapted to handle
non-periodic boundary conditions. In fact, the treatment of the boundary conditions is
usually hidden in ADG and bDG, and so the multiderivative algorithm does not need to
explicitly deal with it. This is in contrast with Lax-Wendroff schemes, where of course
the boundary conditions influence the representation of ∂ttw.

The meshing tool Netgen [44] serves as a basis for the code. The linear systems of
equations are solved through PETSc [6, 5, 4], either using a GMRES scheme that is
converged up to a relative tolerance of 10−10 with ILU(2) preconditioner; or through a
direct solver. The error eh is always defined as L2−error at time Tend, i.e.,

eh := ‖w(t = Tend)− wh(t = Tend)‖L2 .

5.1 Convection equation

We start with the relatively simple convection test case, characterized by a constant
advection speed c = (1, 1)T , a zero diffusion coefficient ε = 0 and the initial conditions
w0(x, y) = sin(2πx) sin(2πy). The domain Ω = [0, 1]2 is the unit cube. The solution is a
transport of the initial conditions in direction c, and we choose a final time of Tend = 1.0.

5.1.1 The convection equation: Two-point schemes

We begin with the third and fourth order two-point schemes defined by (11) and Tbl. 1.
These schemes only need one additional temporal derivative, thus τh is not computed.

Convergence of the error eh versus time step size ∆t is plotted in Fig. 1 for various
polynomials orders; the smallest mesh consists of two triangular elements, both spatial
and temporal refinement is uniform. On the left-hand side, the third-order method is
plotted, the right-hand side shows the fourth-order method. It can be seen that optimal
convergence orders min{p+ 1, 3} and min{p+ 1, 4}, respectively, are reached. We have
performed this exercise for different values of the CFL number (smaller and larger than
one), and the error plots look quite similar. It is only that for large CFL numbers that
it takes longer until optimal order is reached due to the under-resolution of time. This,
however, is common to all time integration schemes.

In contrast to some of the multiderivative test cases reported on in [30], we do not
observe any stability problems. What seems to be quite relevant is the choice of the
preconditioner. We find that using too simple of a preconditioner (e.g., Jacobi) results in
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a non-convergence of the linear system for CFL numbers above one. We find that using
the ILU(2) choice is highly robust for the convection equation.
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Figure 1: Numerical results for the convection equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0. Two temporal derivatives of the DG scheme were needed.
Time step size for the smallest triangular mesh, consisting of two elements,
was chosen to be ∆t = 0.25. Left plot: results using the third-order two-point
scheme, see Tbl. 1; right plot: results using the fourth-order two-point scheme,
see Tbl. 1.
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Figure 2: Numerical results for the convection equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0. The polynomial order was chosen to be p = 3, and we
compare multiple time integration schemes against each other. ∆t = 0.25 was
chosen on the coarsest mesh, consisting of two triangular elements.

In Fig. 2, we compare the performance of the third- and fourth-order two-point schemes
to those of the more established schemes of diagonally implicit Runge-Kutta (DIRK) type.
More precisely, we test the schemes for polynomial order p = 3 against the more or less
classical DIRK schemes by Cash [11] (this scheme is also due to Alexander [2]), Al-Rabeh
[1] and Hairer and Wanner [25]. The last two DIRK schemes are of order four, the first
one is of order three. They consist of three, four and five stages, respectively. (Note
that a two-point scheme formally consists of two stages, but the schemes we investigate
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also have additional derivatives.) The parameters are the same as those in Fig. 1. It is
obvious that the two-point schemes behave as good (or sometimes even slightly better)
than the classical DIRK schemes. With regard to stability, all methods perform equally.
Computing equations with ∆t� ∆x is done in a stable way, and also the error curves
behave quite similarly.

5.1.2 The convection equation: Higher-order derivatives

We continue with the use of the three-derivative two-point schemes presented in Tbl. 1,
being of order five and six, respectively. The reason we are studying these schemes is to
test how well the method can be extended to higher orders, not only using stages but
also using additional derivatives. Fig. 3 shows numerical results for the same test case
presented above. As the methods are of higher order than before, we include polynomial
orders up to p = 5. Again, optimal orders of convergence (here, it is min{p+ 1, 5} and
min{p+ 1, 6}, respectively) are obtained.
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Figure 3: Numerical results for the convection equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0. Three temporal derivatives of the DG scheme are needed.
Time step size for the smallest triangular mesh, consisting of two elements,
was chosen to be ∆t = 0.25. Left plot: results using the fifth-order two-point
scheme, see Tbl. 1; right plot: results using the sixth-order two-point scheme,
see Tbl. 1.

5.1.3 The convection equation: A three point scheme

We next test the utility of adding additional stages to the solver. Because a two-
derivative method with a single additional stage can obtain sixth-order accuracy, we only
consider one method of this type in this work. Ultimately, tests with the multiderivative
collocation scheme given in (9) (with Butcher tableaux in (12)) are performed using
the same parameters as above. Results can be seen in Fig. 4; the optimal order of
min{p+ 1, 6} is achieved in all cases. Again no stability problems are observed.

We find that this method is competitive against other well-known implicit methods,
such as the Gauß-Legendre or Radau methods. For example, in Fig. 5, we compare the
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Figure 4: Numerical results for the convection equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0. Two temporal derivatives of the DG scheme are needed.
Time step size for the smallest triangular mesh, consisting of two elements,
was chosen to be ∆t = 0.25. Results are computed using the multiderivative
collocation method (9) with Butcher tableaux (12).

sixth-order Gauß-Legendre Runge-Kutta method against the multiderivative collocation
method used in this work. The polynomial order used is p = 5, so that one can indeed
observe sixth order convergence for all the methods. With the same parameters that we
use in the previous figures, we are unable to discern any difference between the schemes,
which tells us that the spatial error is dominating. In order to elucidate the difference
between the solvers we re-compute the test case with an initial time step of size ∆t = 1.0
on the coarsest mesh and then refine from there. We observe that the multiderivative
scheme shows a slight advantage in terms of the error.
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Figure 5: Numerical results for the convection equation with parameters c = (1, 1)T ,
Tend = 1.0 and ε = 0. The polynomial order was chosen to be p = 5, and
we compare the multiderivative collocation method against a Gauss-Legendre
method. Both methods have formal order of six. Unlike in the previous figures,
∆t = 1.0 was chosen on the coarsest mesh, consisting of two triangular elements.
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5.2 Convection-diffusion equation

After having discussed the convection equation, we now turn to the convection-diffusion
equation. If not stated otherwise, the interior penalty parameter is chosen to be η = 20 for
a polynomial order of p < 4, and η = 30 for a polynomial order of p = 5. The numerical
results being shown are all made for the equation characterized by the parameters
c = (1, 1)T , ε = 0.1 and a final time of Tend = 1.

Because it is rather subtle to obtain interesting exact solutions of the convection-
diffusion equation, we make use of the method of manufactured solutions and define a
source term g so that

u(x, y, t) = e−t sin(2π(x− t)) sin(2π(y − t)) (17)

is the exact solution to the equation. This has the added benefit of testing the ability
of our algorithm (as well as our code) to handle source terms. However one drawback,
from a practical point of view, is that ∂tg and ∂ttg also need to be computed. This can
become extremely tedious, but the process can be simplified via symbolic software tools.

5.2.1 The convection-diffusion equation: Two-point schemes

Beginning again with the two-point schemes of order three and four, respectively, we
show numerical results in Fig. 6 (third-order scheme on the left, fourth-order scheme
on the right). Numerical results are computed with time step of size ∆t = 0.5 on the
coarsest mesh that consisted of only two triangular elements. The time step size is halved
in each refinement, and the spatial mesh is uniformly refined. Our results indicate that
the optimal orders are obtained. The plots look similar to those of the previous section.
Note that we do not compute the p = 0 case, because SIPG is not meaningful for that.
See also Rem. 1.

Also for this test problem, we have computed the cases for other choices of ∆t, and
again, we find no stability issues. This is again different to the results obtained in [30],
where we in particular had problems with the stability of the diffusion terms. In this work
we circumvent that issue by defining a method that is equivalent to directly differentiating
the method-of-lines formulation of the PDE. That, coupled with the fact that all the
solvers we consider in this work are A-stable, leads to a stable numerical method. This
is different than most Lax-Wendroff type of discretizations, where higher derivatives
are typically computed using a different method than what is performed for the first
derivative.

Fig. 7 shows a comparison of the two-point two-derivative schemes against the DIRK
schemes already mentioned in Sec. 5.1. The picture is the same as before: the methods
behave quite similarly with sometimes a slight advantage for the two-derivative schemes.

5.2.2 The convection-diffusion equation: Higher-order derivatives

We continue with the higher order two-point time integration schemes of order five and
six, respectively, see Tbl. 1. Numerical results are presented in Fig. 8, again optimal
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Figure 6: Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. Two temporal derivatives of the DG scheme
were needed. Time step size for the smallest triangular mesh, consisting of two
elements, was chosen to be ∆t = 0.5. The SIPG parameter η was chosen to be
20. Left plot: results using the third-order two-point scheme, see Tbl. 1; right
plot: results using the fourth-order two-point scheme, see Tbl. 1.

order is obtained and stability problems have not been observed. However, for the p = 5
case, we find that GMRES occasionally fails to converge. This happens also for standard
DIRK schemes, and even for implicit Euler. In some sense, this is to be expected, as the
stiffness matrices become increasingly stiff with higher polynomial degree. We find that
the direct solver included in PETSc solves the issue, however, this needs to be fixed in
the future, as a direct solver is in general not feasible. Ad-hoc solution ideas include the
initialization of the GMRES routine with the outcome of a lower order method.

5.2.3 The convection-diffusion equation: A three point scheme

As in the convective case, we conclude the section by showing results for the multiderivative
collocation method given in (9) with Butcher tableaux as in (12). Numerical results can
be seen in Fig. 9. The optimal order of min{p+ 1, 6} is attained. A comparison of the
multiderivative collocation scheme against a sixth-order Gauß-Legendre scheme is made
in Fig. 10. Again, we can observe a slight advantage for the multiderivative collocation
scheme.

6 Conclusion and outlook

In this work, we introduced fully implicit multiderivative time integrators as a mechanism
for discretizing convection-diffusion equations with the discontinuous Galerkin (DG)
spatial discretization. Unlike most versions of DG discretizations that make use of higher
derivatives such as Lax-Wendroff DG solvers, we step back and construct a solver that
is equivalent to discretizing the original method-of-lines formulation of the PDE. In
doing so, we sacrifice favorable properties such as being able to locally define all of
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Figure 7: Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. The polynomial order was chosen to be p = 3,
and we compare multiple time integration schemes against each other. ∆t = 0.5
was chosen on the coarsest mesh, consisting of two triangular elements. The
SIPG parameter η was chosen to be 20.

our spatial operators, but the benefit of doing so includes being able to define methods
that can take arbitrarily large time steps. In addition, we are able to define a single
(scalar) quantity that is used to define mixed derivatives of the unknown in order to
streamline the implementation and reduce the computational footprint of the solver.
Future work in this direction includes considering the utility of using Gauß-Túran points
for constructing higher order implicit solvers, as well as revisiting the original formulation
and performing a fully discrete stability analysis in order to reduce the size of the
computational stencil. In addition, we would like to implement the existing proposed
solver to linear electromagnetic as well as transport dominated plasma applications such
as the Vlasov-Poisson and Vlasov-Maxwell system of equations.
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Figure 8: Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. Three temporal derivatives of the DG scheme
were needed. Time step size for the smallest triangular mesh, consisting of two
elements, was chosen to be ∆t = 0.5. The SIPG parameter η was chosen to be
20 (p < 5) and 30 (p = 5), respectively. Left plot: results using the fifth-order
two-point scheme, see Tbl. 1; right plot: results using the sixth-order two-point
scheme, see Tbl. 1.
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Figure 9: Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. Two temporal derivatives of the DG scheme
were needed. Time step size for the smallest triangular mesh, consisting of two
elements, was chosen to be ∆t = 0.5. The SIPG parameter η was chosen to
be 20 (p < 5) and 30 (p = 5), respectively. Results were computed using the
multiderivative collocation method (9) with Butcher tableaux (12).
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Figure 10: Numerical results for the convection-diffusion equation with parameters c =
(1, 1)T , Tend = 1.0 and ε = 0.1. The polynomial order was chosen to be
p = 5, and we compare the multiderivative collocation method against a
Gauss-Legendre method. Both methods have formal order of six. ∆t = 0.5
was chosen on the coarsest mesh, consisting of two triangular elements. The
SIPG parameter η was chosen to be 30.
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