Skip to main content
Log in

On Solving an Acoustic Wave Problem Via Frequency-Domain Approach and Tensorial Spline Galerkin Method

  • Review Paper
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a numerical method for solving the dynamical acoustic wave propagation problem with Robin boundary conditions. The method used here is divided into two stages. In the first stage, the equations are transformed, via the Fourier Transform, into an equivalent problem for the frequency variables. This allow us to avoid a discretization of the time variable in the considered system. Existence and uniqueness for the equation in frequency-domain are given. An approximation of the acoustic density in frequency-domain approach is also proposed by using a tensorial spline finite element Galerkin method. In the second stage, a Gauss–Hermite quadrature method is used for the computation of inverse Fourier transform of the frequency acoustic density to obtain the time-dependent solution of the acoustic wave problem. Error estimates in Sobolev spaces and convergence behavior of the presented methods are studied. Several numerical test examples are given to illustrate the performance of the proposed method, effectiveness and good resolution properties for smooth and discontinuous heterogeneous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Addam, M.: Approximation du Problème de Diffusion en Tomographie Optique et Problème Inverse. Dissertation, LMPA, Université Lille-Nord de France (2010)

  2. Addam, M., Bouhamidi, A., Jbilou, K.: A numerical method for one-dimensional diffusion problem using Fourier transform and the B-spline Galerkin method. Appl. Math. Comput. 215, 4067–4079 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Addam, M., Bouhamidi, A., Seaïd, M.: A frequency-domain approach for the \({{\rm P}}_{1}\) approximation of time-dependent radiative transfer. J. Sci. Comput. 62, 623–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, C., Stoffa, P.: Implicit finite-difference simulations of seismic wave propagation. Geophysics 77(2), T57–T67 (2012)

    Article  Google Scholar 

  6. de Boor, C.: A practical guide to splines. Springer-Verlag, New York (1978)

    Book  MATH  Google Scholar 

  7. Diwan, G.C., Mohamed, M.S., Seaïd, M., Trevelyan, J., Laghrouche, O.: Mixed enrichment for the finite element method in heterogeneous media. Int. J. Numer. Meth. Engng. 101(1), 54–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geiger, Hugh D., Daley, Pat F.: Finite difference modelling of the full acoustic wave equation in Matlab. CREWES Res. Report. 15, 1–9 (2003)

    Google Scholar 

  9. Liu, Y., Sen, M.K.: An implicit staggered-grid finite-difference method for seismic modelling. Geophys. J. Int. 179, 459–474 (2009)

    Article  Google Scholar 

  10. Li, Y.-Q., Zhou, H.-C.: Experimental study on acoustic vector tomography of 2-D flow field in an experiment-scale furnace. Flow Meas. Instrum. 17, 113–122 (2006)

    Article  Google Scholar 

  11. Mattsson, Ken, Ham, Frank, Iaccarino, Gianluca: Stable and accurate wave-propagation in discountinuous media. J. Comput. Phys. 227, 8753–8767 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Munk, W., Worchester, P., Wunsch, C.: Ocean acoustic tomography. Cambridge University Press, (1995)

  13. Natterer, F.: Reflection imaging without low frequencies. Inverse Probl. 27, 1–6 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Natterer, F., Wübbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Probl. 11, 1225–1232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Natterer, F., Sielschott, H., Dorn, O., Dierkes, T., Palamodov, V.: Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62(6), 2092–2113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schultz, M.H., Varga, R.S.: \(L\)-splines. Numer. Math. 10, 345–369 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schultz, M.H.: Splines analysis. Prentice-Hall, Englewood cliffs, New Jersey (1973)

    Google Scholar 

  18. Sielschott, H.: Measurement of horizontal flow in a large scale furnace using acoustic vector tomography. Flow Meas. Instrum. 8, 191–197 (1997)

    Article  Google Scholar 

  19. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equation. Springer-Verlag, Berlin (1994)

    MATH  Google Scholar 

  20. Sundnes, J., Lines, G.T., Cai, X., Nielson, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Monographs in computational science and engineering. Springer-Verlag, Berlin Heidelberg (2010)

    Google Scholar 

  21. Das, Sambit, Liao, Wenyuan, Gupta, Aniruch: An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation. J. Comput. Appl. Math. 270, 571–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liao, Wenyuan: On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation. J. Comput. Appl. Math. 258, 151–167 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ma, Youneng, Jinhua, Yu., Wang, Yuanyuan: An efficient complex-frequency shifted-perfectly matched layer for second-order acoustic wave equation. Int. J. meth. Engng. 97, 130–148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  25. Zhao, H., Gao, J., Chen, Z.: Stability and numerical dispersion analysis of finite-difference method for the diffusive-viscous wave equation. Int J. of Num. Anal. Modeling Serie B 5(1–2), 66–78 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Addam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addam, M., Bouhamidi, A. & Heyouni, M. On Solving an Acoustic Wave Problem Via Frequency-Domain Approach and Tensorial Spline Galerkin Method. J Sci Comput 74, 1193–1220 (2018). https://doi.org/10.1007/s10915-017-0490-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0490-z

Keywords

Navigation