Skip to main content
Log in

Laguerre Functions and Their Applications to Tempered Fractional Differential Equations on Infinite Intervals

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Tempered fractional diffusion equations (TFDEs) involving tempered fractional derivatives on the whole space were first introduced in Sabzikar et al. (J Comput Phys 293:14–28, 2015), but only the finite-difference approximation to a truncated problem on a finite interval was proposed therein. In this paper, we rigorously show the well-posedness of the models in Sabzikar et al. (2015), and tackle them directly in infinite domains by using generalized Laguerre functions (GLFs) as basis functions. We define a family of GLFs and derive some useful formulas of tempered fractional integrals/derivatives. Moreover, we establish the related GLF-approximation results. In addition, we provide ample numerical evidences to demonstrate the efficiency and “tempered” effect of the underlying solutions of TFDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Baeumer, B., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W.: Subordinated advection–dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543–1550 (2001)

    Article  Google Scholar 

  4. Baeumer, B., Kovács, M., Meerschaert, M.M.: Fractional reproduction–dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69(7), 2281–2297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75(2), 305–333 (2002)

    Article  Google Scholar 

  6. Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cushman, J.H., Ginn, T.R.: Fractional advection–dispersion equation: a classical mass balance with convolution-fickian flux. Water Resour. Res. 36(12), 3763–3766 (2000)

    Article  Google Scholar 

  8. Deng, Z.Q., Bengtsson, L., Singh, V.P.: Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 6(5), 451–475 (2006)

    Article  Google Scholar 

  9. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Math, vol. 2004. Springer, Berlin (2010)

  10. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. Math. Financ. 171–180 (2001)

  11. Huang, C., Song, Q., Zhang, Z.: Spectral collocation method for substantial fractional differential equations. arXiv:1408.5997 [math.NA] (2014)

  12. Jeon, J.H., Monne, H.M.S., Javanainen, M., Metzler, R.: Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109(18), 188103 (2012)

    Article  Google Scholar 

  13. Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Magdziarz, M., Weron, A., Weron, K.: Fractional Fokker–Planck dynamics: stochastic representation and computer simulation. Phys. Rev. E 75(1), 016708 (2007)

    Article  MATH  Google Scholar 

  15. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, L17403 (2008). doi:10.1029/2008GL034899

  16. Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. J. Phys. A Stat. Mech. Appl. 370(1), 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  17. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37(31), R161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Piryatinska, A., Saichev, A., Woyczynski, W.: Models of anomalous diffusion: the subdiffusive case. J. Phys. A Stat. Mech. A. 349(3), 375–420 (2005)

    Article  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press Inc., San Diego (1999)

    MATH  Google Scholar 

  21. Popov, G.Y.: Concentration of elastic stresses near punches, cuts, thin inclusions and supports. Nauka Mosc. 1, 982 (1982)

    Google Scholar 

  22. Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Maričev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publ., Philadelphia (1993)

    Google Scholar 

  24. Scalas, E.: Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, pp. 3–16. Springer, Berlin (2006)

  25. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Series in Computational Mathematics, vol. 41. Springer, Berlin (2011)

    MATH  Google Scholar 

  26. Stein, E.M., Weiss, G.L.: Introduction to Fourier Analysis on Euclidean Spaces, vol. 1. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  27. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS Coll. Publ., (1975)

  28. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm–Liouville Eigen-problems. SIAM J. Sci. Comput. 37(4), A1777–A1800 (2015)

    Article  MATH  Google Scholar 

  29. Zhang, C., Guo, B.Y.: Domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations on unbounded domains. J. Sci. Comput. 53(2), 451–480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Meerschaert, M.M.: Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 47, W08601 (2011). doi:10.1029/2010WR010102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

This work is supported in part by NSFC grants 11371298, 11421110001, 91630204 and 51661135011. J.S. is partially supported by NSF grant DMS-1620262 and AFOSR grant FA9550-16-1-0102. L.W. is partially supported by Singapore MOE AcRF Tier 1 Grant (RG 15/12), and Singapore MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).

Appendices

Appendix A: Proof of Lemma 2.2

We first prove (2.42)–(2.43). Recall the fractional integral formula of hypergeometric functions see [2, P. 287]: for real \(b,\mu \ge 0,\)

$$\begin{aligned} x^{b+\mu -1}\,{}_1F_1(a;b+\mu ; x)=\frac{\Gamma (b+\mu )}{\Gamma (b)\Gamma (\mu )}\int _0^x (x-t)^{\mu -1}t^{b-1} {}_1F_1(a;b; t)\, \mathrm{d}t,\quad x\in {\mathbb {R}}^+. \end{aligned}$$
(A.1)

Taking \(a=-n,~b=\alpha +1\) and using the hypergeometric representation (2.34) of the Laguerre polynomials, we obtain

$$\begin{aligned} x^{\alpha +\mu } L_n^{(\alpha +\mu )}(x) =\frac{\Gamma (n+\alpha +\mu +1)}{\Gamma (n+\alpha +1)\Gamma (\mu )}\int _{0}^x {(x-t)^{\mu -1}} t^\alpha L_n^{(\alpha )}(t)\, \mathrm{d}t, \end{aligned}$$

which yields (2.42), i.e.,

$$\begin{aligned} {}_{0}\mathrm{I}_{x}^{\mu } \{x^\alpha L_n^{(\alpha )}(x)\}=h_n^{\alpha ,-\mu }\,x^{\alpha +\mu }\, L_n^{(\alpha +\mu )}(x). \end{aligned}$$

Then, performing \({{}_{0}}\mathrm{D}_{x}^{\mu }\) on both sides and taking \(\alpha +\mu \rightarrow \alpha ,\) we derive from the relation (2.7) that for \(\alpha -\mu >-1,\)

$$\begin{aligned} {{}_{0}}\mathrm{D}_{x}^{\mu } \{x^{\alpha } L_n^{(\alpha )}(x)\}= \frac{1}{h_n^{\alpha -\mu ,-\mu }} x^{\alpha -\mu } L_n^{(\alpha -\mu )}(x)=\frac{\Gamma (n+\alpha +1)}{\Gamma (n+\alpha -\mu +1)} x^{\alpha -\mu } L_n^{(\alpha -\mu )}(x). \end{aligned}$$

This leads to (2.43).

We now turn to (2.44)–(2.45). According to [20, (6.146), P. 191 ] (or [21, (B-7.2), P. 307]), we have

$$\begin{aligned} {}_{x}\mathrm{I}_{\infty }^{\mu } \{e^{-x} L_n^{(\alpha +\mu )}(x)\}= e^{-x} L_n^{(\alpha )}(x),\quad \alpha>-1,~\mu >0. \end{aligned}$$

Similarly, from the property: \({{}_{x}}\mathrm{D}_{\infty }^{\mu } {}_{x}\mathrm{I}_{\infty }^{\mu }\, u(x)=u(x),\) we derive

$$\begin{aligned} {{}_{x}}\mathrm{D}_{\infty }^{\mu } \{ e^{-x} L_n^{(\alpha )}(x)\}=e^{-x} L_n^{(\alpha +\mu )}(x). \end{aligned}$$

Finally, we prove (2.46). Noting that

$$\begin{aligned} _1F_1(a;c; x)=e^x~ _1F_1(c-a;c; -x), \end{aligned}$$
(A.2)

(cf. [2, P. 191]), we derive from (2.34) and (A.2) that

$$\begin{aligned}&x^\alpha L_{n}^{(\alpha )}(x)e^{-x}= x^\alpha \frac{(\alpha +1)_n}{n!}~{}_1F_1\big (-n;\alpha +1;x\big )e^{-x}\nonumber \\&\quad =\frac{(\alpha +1)_n}{n!}x^\alpha ~{}_1F_1\big (n+\alpha +1;\alpha +1;-x\big ) =\frac{(\alpha +1)_n}{n!}x^\alpha ~{}_1F_1\big (n+\alpha +1;\alpha +1;-x\big )\nonumber \\&\quad =\frac{(\alpha +1)_n}{n!}\sum _{j=0}^\infty \frac{(n+\alpha +1)_j(-1)^j}{(\alpha +1)_j}\frac{x^{j+\alpha }}{j!}. \end{aligned}$$
(A.3)

Then acting the derivative \({{}_{}}\mathrm{D}_{}^{k}\) on (A.3) and using the identities (2.34), (A.2) again, we obtain

$$\begin{aligned}\begin{aligned} {{}_{}}\mathrm{D}_{}^{k} \big \{x^\alpha L_{n}^{(\alpha )} (x)e^{-x}\big \}&=\frac{(\alpha +1)_n}{n!}\sum _{j=0}^\infty \frac{(n+\alpha +1)_j(-1)^j}{(\alpha +1)_j}\frac{{{}_{}}\mathrm{D}_{}^{k} x^{j+\alpha }}{j!}\\&=\frac{(\alpha +1)_n}{n!}\sum _{j=0}^\infty \frac{(n+\alpha +1)_j(-1)^j}{(\alpha +1)_j}\frac{\Gamma (j+\alpha +1)}{\Gamma (j+\alpha -k+1)}\frac{ x^{j+\alpha -k}}{j!}\\&=x^{\alpha -k}\frac{(\alpha +1)_n}{n!}\frac{\Gamma (\alpha +1)}{\Gamma (\alpha -k+1)}\sum _{j=0}^\infty \frac{(n+\alpha +1)_j}{(\alpha -k+1)_j}\frac{ (-x)^{j}}{j!}\\&=x^{\alpha -k}\frac{(\alpha -k+1)_{n+k}}{n!}{}_1F_1\big (n+\alpha +1; \alpha -k+1;-x\big )\\&=\frac{(n+k)!}{n!}x^{\alpha -k}\frac{(\alpha -k+1)_{n+k}}{(n+k)!} {}_1F_1\big (-n-k;\alpha -k+1;x\big )e^{-x}\\&=\frac{\Gamma (n+k+1)}{\Gamma (n+1)}x^{\alpha -k}L^{(\alpha -k)}_{n+k}(x) e^{-x}.\\ \end{aligned}\end{aligned}$$

This ends the proof.

Appendix B: Derivation of (5.28) and the Entries of \({\mathbf {A}}\)

Derivation of (5.28)

  • for \(x\in {\mathbb {R}}^-\), \(0<s<1\),

    $$\begin{aligned} \begin{aligned} {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*}(x)&={}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda }{{}_{-\infty }}\mathrm{D}_{x}^{1,\lambda } \phi ^{*}(x)=\frac{e^{-\lambda x}}{\Gamma (1-s)}\int _{-\infty } ^x\frac{e^{\lambda \tau }(2\lambda )e^{\lambda \tau }}{(x-\tau )^s} \mathrm{d}\tau \\&\overset{t=x-\tau }{=}\frac{2\lambda e^{-\lambda x}}{\Gamma (1-s)}\int _0^{\infty }\frac{e^{2\lambda (x-t)}}{t^s} \mathrm{d}t =\frac{(2\lambda )^{s}e^{\lambda x}}{\Gamma (1-s)}\int _0^{\infty } e^{-2\lambda t}(2\lambda t)^{-s} \mathrm{d}(2\lambda t)\\&=(2\lambda )^{s}e^{\lambda x},\\ {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{-}_{n_1}(x)&={}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda } {{}_{-\infty }}\mathrm{D}_{x}^{1,\lambda }\phi ^-_{n_1}(x)\overset{(3.10)}{=}{}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda }\{-({n_1}+1){\mathcal {L}}^{(0,\lambda )}_{{n_1}+1}{(-x)}\}\\&\overset{(2.44)}{=}-({n_1}+1)(2\lambda ) ^{s-1}L^{(s-1)}_{{n_1}+1}{(-2\lambda x)}e^{-\lambda x}\\ {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{+}_{n_2}(x)&=0 \end{aligned} \end{aligned}$$
    (B.1)
  • for \(x\in {\mathbb {R}}^+\), \(0<s<1\),

    $$\begin{aligned} \begin{aligned} {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*}(x)&={}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda } {{}_{-\infty }}\mathrm{D}_{x}^{1,\lambda }\phi ^{*}(x){=}\frac{e^{-\lambda x}}{\Gamma (1-s)}\int _{-\infty }^0\frac{2\lambda e^{2\lambda \tau }}{(x-\tau )^s} \mathrm{d}\tau \overset{\tau =x-t}{=}\frac{2\lambda e^{\lambda x}}{\Gamma (1-s)}\\&\quad \int _x^{\infty }\frac{ e^{-2\lambda t}}{t^s} \mathrm{d}t,\\ {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{-}_{n_1}(x)&={}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda } {{}_{-\infty }}\mathrm{D}_{x}^{1,\lambda }\phi ^{-}_{n_1}(x)\overset{(3.10)}{=} \frac{e^{-\lambda x}}{\Gamma (1-s)}\\&\int _{-\infty }^0\frac{-(n_1+1) L^{(0)}_{{n_1}+1}{(-2\lambda \tau )}e^{2\lambda \tau }}{(x-\tau )^s} \mathrm{d}\tau \\&\overset{\tau =x-t}{=}-e^{\lambda x}\frac{{n_1}+1}{\Gamma (1-s)} \int _x^{\infty }\frac{L^{(0)}_{{n_1}+1}{(2\lambda (t-x))}e^{-2\lambda t}}{t^s} \mathrm{d}t,\\ {{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{+}_{n_2}(x)&={}_{-\infty }\mathrm{I}_{x}^{1-s,\lambda }{{}_{-\infty }}\mathrm{D}_{x}^{1,\lambda }\phi ^{+}_{n_2}(x)\overset{(3.9)}{=}\frac{e^{-\lambda x}}{\Gamma (1-s)}\int _0^{x}\frac{({n_2}+1)L^{(0)}_{{n_2}}{(x)}}{(x-\tau )^s} \mathrm{d}\tau \\&=\frac{\Gamma (n_2+2)}{\Gamma (n_2+2-s)}x^{1-s}{\mathcal {L}}^{(1-s,\lambda )}_{{n_2}}{(x)}. \end{aligned} \end{aligned}$$
    (B.2)

The entries of matrix \({\mathbf {A}}\) with \(1<\mu =1+s<2\).

$$\begin{aligned} \begin{aligned} \big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*},&{{}_{x}}\mathrm{D}_{\infty }^{1,\lambda }\phi ^{*}\big ) =\frac{-(2\lambda )^2}{\Gamma (1-s)}\int _0^\infty \int _x^{\infty } \frac{ e^{-2\lambda t}}{t^s} \mathrm{d}t\mathrm{d}x=\frac{-(2\lambda )^2}{\Gamma (1-s)}\int _0^\infty \frac{ e^{-2\lambda t}}{t^s} \int _0^{t}1 \mathrm{d}x\mathrm{d}t\\&=\frac{-(2\lambda )^2}{\Gamma (1-s)}\int _0^\infty {t^{1-s}}{ e^{-2\lambda t}} \mathrm{d}t\overset{\tau =2\lambda t}{=}\frac{-(2\lambda )^{s}}{\Gamma (1-s)} \int _0^\infty {\tau ^{1-s}}{ e^{-\tau }}\mathrm{d}\tau {=}(s-1)(2\lambda )^{s}. \end{aligned} \end{aligned}$$
(B.3)

Since

$$\begin{aligned} {{}_{}}\mathrm{D}_{}^{}\big \{(2\lambda x)L^{(1)}_{n_2+1}(2\lambda x)\big \}= & {} 2\lambda (n_2+2) L^{(0)}_{n_2+1}(2\lambda x),~ \text {i.e.} ~\int _0^{t} L^{(0)}_{n_2+1}(2\lambda x)\mathrm{d}x\\= & {} \frac{1}{n_2+2} tL^{(1)}_{n_2+1}(2\lambda t), \end{aligned}$$

then,

$$\begin{aligned} \begin{aligned} \big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*},{{}_{x}}\mathrm{D}_{\infty }^{1,\lambda }\phi ^+_{n_2}\big )&=\frac{-2\lambda (n_2+1)}{\Gamma (1-s)}\int _0^\infty \int _x^{\infty } \frac{ e^{-2\lambda t}}{t^s} \mathrm{d}t~ L^{(0)}_{n_2+1}(2\lambda x)\mathrm{d}x\\&{=}\frac{-2\lambda (n_2+1)}{\Gamma (1-s)}\int _0^\infty \frac{ e^{-2\lambda t}}{t^s}\int _0^{t}L^{(0)}_{n_2+1}(2\lambda x) \mathrm{d}x~ \mathrm{d}t\\&{=}\frac{-2\lambda (n_2+1)}{(n_2+2)\Gamma (1-s)}\int _0^\infty t^{1-s}L^{(1)} _{n_2+1}(2\lambda t)e^{-2\lambda t} \mathrm{d}t. \end{aligned} \end{aligned}$$
(B.4)

Similarly, we have

$$\begin{aligned}&\big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{-}_{n_1},{{}_{x}}\mathrm{D}_{\infty }^{1,\lambda }\phi ^{+}_{n_2}\big )\nonumber \\&\quad {=}\frac{({n_1}+1)({n_2}+1)}{\Gamma (1-s)}\int _0^\infty \int _x^{\infty }\frac{L^{(0)}_{{n_1}+1}{(2\lambda (t-x))} e^{-2\lambda t}}{t^s} \mathrm{d}t ~L^{(0)}_{n_2+1}(2\lambda x) \mathrm{d}x\nonumber \\&\quad {=} \frac{({n_1}+1)({n_2}+1)}{\Gamma (1-s)}\int _0^\infty {t^{-s}}e^{-2\lambda t} \int _0^{t}~L^{(0)}_{n_2+1}(2\lambda x)L^{(0)}_{{n_1}+1}{(2\lambda (t-x))} \mathrm{d}x \mathrm{d}t\nonumber \\&\quad \overset{x=t\xi }{=} \frac{({n_1}+1)({n_2}+1)}{\Gamma (1-s)} \int _0^\infty {t^{1-s}}e^{-2\lambda t} \int _0^{1}~ L^{(0)}_{n_2+1} (2\lambda t\xi )L^{(0)}_{{n_1}+1}{(2\lambda t(1-\xi ))} \mathrm{d}\xi \mathrm{d}t.\nonumber \\ \end{aligned}$$
(B.5)

The entries of matrix \({\mathbf {A}}\) with \(0<\mu =s<1\).

$$\begin{aligned} \begin{aligned}&\big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*},\phi ^{*}\big )=(2\lambda )^s\int _{-\infty }^0e^{2\lambda x} \mathrm{d}x+\frac{2\lambda }{\Gamma (1-s)}\int _0^\infty \int _x^{\infty }\frac{ e^{-2\lambda t}}{t^s} \mathrm{d}t\mathrm{d}x \\ {}&=(2\lambda )^{s-1}+\frac{2\lambda }{\Gamma (1-s)}\int _0^\infty \frac{ e^{-2\lambda t}}{t^s} \int _0^{t}1 \mathrm{d}x\mathrm{d}t=(2\lambda )^{s-1}+\frac{2\lambda }{\Gamma (1-s)}\int _0^\infty {t^{1-s}}{ e^{-2\lambda t}}\mathrm{d}t\\&\overset{\tau =2\lambda t}{=}(2\lambda )^{s-1}+\frac{(2\lambda )^{s-1}}{\Gamma (1-s)}\int _0^\infty {\tau ^{1-s}}{ e^{-\tau }}\mathrm{d}\tau =(2-s)(2\lambda )^{s-1}. \end{aligned} \end{aligned}$$
(B.6)

Owing to

$$\begin{aligned} {{}_{}}\mathrm{D}_{}^{}\big \{(2\lambda x)^2L^{(2)}_{n_2}(2\lambda x)\big \}=(2\lambda )^2(n_2+2) xL^{(1)}_{n_2}(2\lambda x), \end{aligned}$$

i.e.,

$$\begin{aligned} \int _0^{t} xL^{(1)}_{n_2}(2\lambda x)\mathrm{d}x=\frac{1}{n_2+2} t^2L^{(2)}_{n_2}(2\lambda t), \end{aligned}$$

we obtain that

$$\begin{aligned} \begin{aligned}&\big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{*},\phi ^+_{n_2}\big ) =\int _0^\infty \frac{e^{-\lambda x}}{\Gamma (1-s)}\int _{-\infty }^0\frac{2 \lambda e^{2\lambda \tau }}{(x-\tau )^s} \mathrm{d}\tau ~ xL^{(1)}_{n_2} (2\lambda x)e^{-\lambda x} \mathrm{d}x\\&\overset{\tau =x-t}{=}\frac{2\lambda }{\Gamma (1-s)}\int _0^\infty \int _x^{\infty }\frac{ e^{-2\lambda t}}{t^s} \mathrm{d}t~ xL^ {(1)}_{n_2}(2\lambda x)\mathrm{d}x{=}\frac{2\lambda }{\Gamma (1-s)}\\&\quad \int _0^\infty \frac{ e^{-2\lambda t}}{t^s}\int _0^{t}xL^{(1)}_{n_2} (2\lambda x) \mathrm{d}x~ \mathrm{d}t\\&\quad {=}\frac{2\lambda }{(n_2+2)\Gamma (1-s)}\int _0^\infty t^{2-s}L^{(2)}_{n_2}(2\lambda t)e^{-2\lambda t} \mathrm{d}t. \end{aligned} \end{aligned}$$
(B.7)

Similarly, we have

$$\begin{aligned} \begin{aligned} \big ({{}_{-\infty }}\mathrm{D}_{x}^{s,\lambda }\phi ^{-}_{n_1},\phi ^{+}_{n_2}\big )&{=} -\frac{{n_1}+1}{\Gamma (1-s)}\int _0^\infty \int _x^{\infty }\frac{L^{(0)} _{{n_1}+1}{(2\lambda (t-x))}e^{-2\lambda t}}{t^s} \mathrm{d}t ~xL^{(1)}_ {n_2}(2\lambda x) \mathrm{d}x\\&{=}-\frac{{n_1}+1}{\Gamma (1-s)}\int _0^\infty {t^{-s}}e^{-2\lambda t} \int _0^{t}~xL^{(1)}_{n_2}(2\lambda x)L^{(0)}_{{n_1}+1}{(2\lambda (t-x))} \mathrm{d}x \mathrm{d}t\\&\overset{x=t\xi }{=}-\frac{{n_1}+1}{\Gamma (1-s)}\int _0^\infty {t^{2-s}}e^{-2\lambda t} \int _0^{1}~\xi L^{(1)}_{n_2}(2\lambda t\xi )L^{(0)}_{{n_1}+1}{(2\lambda t(1-\xi ))} \mathrm{d}\xi \mathrm{d}t\\ \end{aligned}\nonumber \\ \end{aligned}$$
(B.8)

The above equations are enough to calculate out the matrix \({\mathbf {A}}\) due to some symmetric properties of the entries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Shen, J. & Wang, LL. Laguerre Functions and Their Applications to Tempered Fractional Differential Equations on Infinite Intervals. J Sci Comput 74, 1286–1313 (2018). https://doi.org/10.1007/s10915-017-0495-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0495-7

Keywords

Mathematics Subject Classification

Navigation