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1 Introduction

In this paper, we consider the Cauchy problem for nonconvex hyperbolic conservation

laws: {
qt +∇ · F (q) = 0,
q(x, 0) = q0(x),

(1.1)

whose entropy solutions may admit composite waves which involve a sequence of shocks

and rarefaction waves and are difficult to be resolved numerically. Such examples include

scalar conservation laws with nonconvex flux functions and hyperbolic systems such as the

Euler system and magnetohydrodynamics system with a nonconvex equation of state (EOS)

[6, 17, 7, 12].

It is well known that first order monotone schemes converge to entropy solutions of both

convex and nonconvex conservation laws [3], but with a relatively slow convergence rate. It

has also been known [5, 11] that there are some nonconvex conservation laws, for which high

order schemes such as the ones with weighted essentially non-oscillatory (WENO) recon-

structions [14] and discontinuous Galerkin methods [2] would fail to converge to the entropy

solution. There have been great research effort in ensuring entropic convergence for general

nonlinear conservation laws, for example by adding entropy viscosity [4] and by modifying

reconstruction operators. Examples for the latter approach include the computationally in-

expensive strategy proposed in [5] on an adaptive choice between a low order dissipative

reconstruction and a high order central WENO scheme, as well as low order modifications

around nonconvex regions to ensure entropic convergence proposed in [11]. Compare with

the work in [5], with more computational effort, the second order entropic convergence of

the schemes can be rigorously proved [1].

This paper is a natural extension of our earlier work in [11]. We investigate the perfor-

mance of the finite volume Hermite WENO (HWENO) scheme for nonconvex conservation

laws and apply the corresponding modifications as being done in [11]. In addition to the

scalar examples discussed in [11], we investigate the performance of modified WENO and
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HWENO scheme for 2D problems, as suggested in [5]. The FV HWENO scheme was origi-

nally proposed in [8, 9]. The key idea of the scheme is to evolve more pieces of information,

i.e. functions and their spatial gradients, per computational cell. With such mechanism, the

HWENO scheme has relatively compact stencils, hence it is easier to handle boundary con-

ditions compared with the traditional WENO scheme [14]. Moreover, with the same formal

accuracy, compact stencils are known to exhibit better resolution of small scale structures

by improving dispersive and dissipative properties.

An outline of this paper is as follows. Section 2 describes the high order FV HWENO

scheme. In Section 3, FV HWENO schemes with a first order monotone modification and

a second order modification using an entropic projection around nonconvex regions are pro-

posed for nonconvex conservation laws. In Section 4, numerical examples are shown to

demonstrate the effectively of proposed schemes. Concluding remarks are given in Section

5.

2 Description of FV HWENO schemes

We briefly review the FV HWENO scheme for solving conservation laws [8, 9, 20]. The

idea of HWENO method is to numerically evolve both the function and its spatial gradients,

and use these information in the reconstruction process. Thus it leads to a more compact

reconstruction stencil compared with the traditional WENO scheme [13, 14].

General scheme formulation of HWENO. Taking the gradient with respect to spatial

variables in (1.1), we obtain the evolution equation for function’s gradients,

(∇q)Tt +∇ · (∇⊗ F (q)) = 0, (2.1)

where ⊗ is a tensor product. The FV HWENO scheme is defined for the equations:

Ut +∇ · F(U) = 0, (2.2)

where U = (q,∇q)T and F(U) =

(
F (q)

∇⊗ F (q)

)
. We integrate the system (2.2) on a control

volume Ωk, which is an interval Ij = [xj− 1
2
, xj+ 1

2
] for 1D cases or a rectangle [xi− 1

2
, xi+ 1

2
] ×
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[yj− 1
2
, yj+ 1

2
] for 2D cases. The integral form of (2.2) reads,

d

dt
UΩk = − 1

|Ωk|

∫
∂Ωk

F(U) · nds (2.3)

where |Ωk| is the volume of Ωk and n represents the outward unit normal vector to ∂Ωk.

The line integral in (2.3) can be approximated by a L-point Gaussian quadrature on each

side of ∂Ωk =
⋃S
s=1 ∂Ωks:∫

∂Ωk

F(U) · nds ≈
S∑
s=1

|∂Ωks|
L∑
l=1

ωlF(U(Gsl, t)) · n, (2.4)

whereGsl and ωl are Gaussian quadrature points on ∂Ωks and weights respectively. F(U(Gsl, t))·

n is evaluated by a numerical flux (approximate or exact Riemann solvers). We adopt the

Lax-Friedrichs flux in this paper, which is given by

F(U(Gsl, t)) · n ≈
1

2
[F(U−(Gsl, t)) + F(U+(Gsl, t))] · n− α(U+(Gsl, t)−U−(Gsl, t)),

where α is taken as an upper bound for eigenvalues of the Jacobian along the direction n,

and U− and U+ are the reconstructed values of U at Gaussian point Gsl inside and outside

Ωk. Finally, the semi-discretization HWENO scheme (2.3) can be written in the following

ODE form:

d

dt
U = L(U). (2.5)

The ODE system (2.5) is then discretized in time by a strong stability preserving Runge-

Kutta (RK) method in [15]. The following third-order version is used in this paper,

U
(1)

= U
n

+ ∆tL(U
n
),

U
(2)

= 3
4
U
n

+ 1
4
(U

(1)
+ ∆tL(U

(1)
)),

U
n+1

= 1
3
U
n

+ 2
3
(U

(2)
+ ∆tL(U

(2)
)).

(2.6)

A scalar 1D example. As an example, we consider a scalar 1D equation,

qt + f(q)x = 0. (2.7)

Taking the derivative of (2.7), we obtain the equation for the derivative,

ξt +H(q, ξ)x = 0, (2.8)
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where ξ = qx and H(q, ξ) = f ′(q)ξ. Let qj and ξj denote approximation to cell averages

of q and ξ over cell Ij respectively, the semi-discrete FV HWENO scheme is designed by

approximating spatial derivatives in equation (2.7) and (2.8) with the following flux difference

form, 
dqj
dt

= −
f̂

(
q−
j+ 1

2

,q+

j+ 1
2

)
−f̂
(
q−
j− 1

2

,q+

j− 1
2

)
∆x

,

dξj
dt

= −
Ĥ
(
q−
j+ 1

2

,q+

j+ 1
2

;ξ−
j+ 1

2

,ξ+

j+ 1
2

)
−Ĥ

(
q−
j− 1

2

,q+

j− 1
2

;ξ−
j− 1

2

,ξ+

j− 1
2

)
∆x

,

(2.9)

where q±
j+ 1

2

and ξ±
j+ 1

2

are reconstructed with high order from neighboring cell averages q and

ξ. The details of such reconstruction procedures can be found in [8]. f̂(a, b) is a monotone

numerical flux (non-decreasing in the first argument and non-increasing in the second argu-

ment), and Ĥ(a, b; c, d) is non-decreasing in the third argument and non-increasing in the

fourth argument. In this paper, we use the Lax-Friedrichs flux in [8],

f̂(a, b) =
1

2
[f(a) + f(b)− α(b− a)],

Ĥ(a, b; c, d) =
1

2
[H(a, c) +H(b, d)− α(d− c)],

(2.10)

where α = maxq |f ′(q)|. For the first order “building block” of the HWENO scheme with

the Lax-Friedrichs flux, the total variation stability is proved in [8].

A scalar 2D example. We consider a 2D problem on a rectangular domain [a, b]× [c, d]:

qt + f(q)x + g(q)y = 0. (2.11)

We consider a set of uniform mesh with Iij = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
],

a = x 1
2
< x 3

2
< · · · < xNx− 1

2
< xNx+ 1

2
= b, ∆x =

b− a
Nx

,

c = y 1
2
< y 3

2
< · · · < yNy− 1

2
< yNy+ 1

2
= d, ∆y =

d− c
Ny

.

Let ξ = ∂q
∂x

, η = ∂q
∂y

and qij = 1
∆x∆y

∫
Iij
qdxdy, ξij = 1

∆y

∫
Iij

∂q
∂x
dxdy, ηij = 1

∆x

∫
Iij

∂q
∂y
dxdy be

cell averages. Taking spatial derivatives of (2.11), we obtain

ξt +H(q, ξ)x +R(q, ξ)y = 0, (2.12)

ηt +K(q, η)x + S(q, η)y = 0, (2.13)
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where H(q, ξ) = f ′(q)ξ,R(q, ξ) = g′(q)ξ,K(q, η) = f ′(q)η,S(q, η) = g′(q)η. A semi-discrete

FV HWENO discretization is given by
d
dt
qij = − 1

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j)− 1

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
),

d
dt
ξij = − 1

∆x
(Ĥi+ 1

2
,j − Ĥi− 1

2
,j)− 1

∆y
(R̂i,j+ 1

2
− R̂i,j− 1

2
),

d
dt
ηij = − 1

∆x
(K̂i+ 1

2
,j − K̂i− 1

2
,j)− 1

∆y
(Ŝi,j+ 1

2
− Ŝi,j− 1

2
).

(2.14)

We define

f̂i+ 1
2
,j =

1

∆y

∫ y
j+ 1

2

y
j− 1

2

f(q(xi+ 1
2
, y))dy ≈

L∑
ig

ωig f̂(q−
i+ 1

2
,ig
, q+
i+ 1

2
,ig

), (2.15)

Ĥi+ 1
2
,j =

1

∆y

∫ y
j+ 1

2

y
j− 1

2

f ′(q(xi+ 1
2
, y))ξdy ≈

L∑
ig

ωigĤ(q−
i+ 1

2
,ig
, q+
i+ 1

2
,ig
, ξ−
i+ 1

2
,ig
, ξ+
i+ 1

2
,ig

), (2.16)

K̂i+ 1
2
,j =

1

∆y

∫ y
j+ 1

2

y
j− 1

2

f ′(q(xi+ 1
2
, y))ηdy ≈

L∑
ig

ωigK̂(q−
i+ 1

2
,ig
, q+
i+ 1

2
,ig
, η−
i+ 1

2
,ig
, η+
i+ 1

2
,ig

), (2.17)

as the average of fluxes over the right boundary of cell Iij, where the integrations are evalu-

ated by applying the L-point Gauss quadrature. The flux functions f̂ , Ĥ and K̂ are taken

as the Lax-Friedrich flux as in the 1D, see eq. (2.10), and q±
i+ 1

2
,ig

are reconstructed with high

order by neighboring cell averages of q, ξ and η. In the next paragraph, we briefly describe

such reconstruction procedure. ĝi,j+ 1
2
, R̂i,j+ 1

2
and Ŝi,j+ 1

2
in eq. (2.14) are evaluated in a

similar fashion as the average of fluxes over the top boundary of a cell.

We only review the fourth order reconstruction in 2D and refer to [20] for more details.

We relabel the cell Iij and its neighboring cells as I1, · · · , I9 as shown in Figure 2.1, where

Iij is relabeled as I5. We construct the quadratic polynomials pn(x, y) (n = 1, · · · , 8) in

the following stencils, S1 = {I1, I2, I4, I5}, S2 = {I2, I3, I5, I6}, S3 = {I4, I5, I7, I8}, S4 =

{I5, I6, I8, I9}, S5 = {I1, I2, I3, I4, I5, I7}, S6 = {I1, I2, I3, I5, I6, I9}, S7 = {I1, I4, I5, I7, I8, I9},

S8 = {I3, I5, I6, I7, I8, I9} to approximate q(x, y). For instance, a quadratic polynomial can

be reconstructed based on the information {q1, q2, q4, q5, ξ4, η2} in the stencil S1. Such re-

construction will reconstruct a quadratic polynomial on Iij. Similar reconstructions can be

done for stencil S2, S3 and S4. For stencil S5 to S8, only cell averages are used in the

reconstruction process. We remark that other combination of information are possible for
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reconstructing 2D quadratic polynomial. The one we just mentioned seems to be very robust

and is implemented in our numerical experiments. If we choose the linear weights denoted

by γ
(l)
1 , · · · , γ(l)

8 such that

q(Gl) =
8∑

n=1

γ(l)
n pn(Gl) (2.18)

is valid for any polynomial q of degree at most 3, leading to a fourth-order approximation

of q at the point Gl for all sufficiently smooth functions q. Notice that (2.18) holds for any

polynomial q of degree at most 2 if
∑8

n=1 γ
(l)
n = 1. There are four additional constraints on

the linear weights γ
(l)
1 , · · · , γ(l)

8 so that (2.18) holds for q = x3, x2y, xy2 and y3. The rest of

free parameters are determined by a least square procedure to minimize
∑8

n=1(γ
(l)
n )2.

As for the derivatives (e.g. ξ−(Gl, t)), a third-order approximation in each stencil is

enough to obtain the fourth-order approximation to q(x, y). For instance, a cubic polynomial

on I5 can be reconstructed based on the information {q1,q2,q4,q5,ξ1,ξ4, ξ5,η1,η2,η5} in the

stencil S1. Similar reconstructions can be done for stencil S2, S3 and S4. The information

{ξ1, ξ2, ξ3, ξ4, ξ5, ξ7} in the stencil S5 is adopted to approximate ξ−(Gl, t). Finally, γl =

1
8

(l = 1, · · · , 8) can be chosen. The nonlinear weights of 2D HWENO reconstruction can be

designed by following the way of the WENO method.

Figure 2.1: The big stencil.
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3 The modified FV HWENO schemes for nonconvex

conservation laws

Although FV HWENO schemes can be successfully applied in many applications [8, 9,

20, 10, 19], they perform poorly for some nonconvex conservation laws as shown below. To

remedy this, we propose a first order monotone modification and a second order modification

with an entropic projection around nonconvex regions.

3.1 An example of nonconvex conservation laws with poor perfor-
mance for the FV HWENO scheme

We first show a nonconvex conservation law, for which the FV HWENO scheme performs

poorly in converging to the entropy solution. We consider the scalar equation (2.7) with the

nonconvex flux f(q) = sin(q) and the initial condition

q0(x) =

{
π/64, if x < 0,

255π/64, if x ≥ 0.
(3.1)

It is shown in Figure 3.2, that the numerical solution of the high order FV HWENO scheme

does not converge to the entropy solution (solid black lines given by the first order Godunov

scheme with a very refined mesh). One of the rarefaction waves in the compound wave is

missing.

x

q

-4 -2 0 2 4

0

2

4

6

8

10

12

14

Figure 3.2: Solid lines: the reference solution of (2.7) at the time t = 4; Squares: FV HWENO
scheme with Lax-Friedrichs flux and a uniform mesh ∆x = 0.05. CFL=0.5.
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3.2 First order monotone modification

In this subsection, we propose a first order modification to the FV HWENO scheme

for 1D nonconvex conservation laws following a similar idea in [11]. The scheme can be

summarized as follows, after a suitable initialization to obtain q0 and ξ
0
.

1. Perform the HWENO reconstruction [8].

At each cell interface, say xj+ 1
2
, reconstruct the point values q±

j+ 1
2

and derivative values

ξ±
j+ 1

2

using neighboring cell average q and ξ respectively by the fifth order HWENO

reconstruction procedure in Section 2.

2. Identify the troubled cell boundary xj+ 1
2
.

Criterion I: A cell boundary xj+ 1
2

is good, if q±
j+ 1

2

, qj and qj+1 all fall into the same

linear, convex or concave region of the flux function f(q). Otherwise, it is defined to

be a troubled cell boundary.

3. At troubled cell boundaries, modify the numerical flux f̂j+ 1
2

and Ĥj+ 1
2

with a discon-

tinuity indicator in [18]. Specifically, the discontinuity indicator φj is defined as

φj =
βj

βj + γj
(3.2)

where

αj = |qj−1 − qj|2 + ε, τj = |qj+1 − qj−1|2 + ε, βj =
τj
αj−1

+
τj
αj+2

, γj =
(qmax − qmin)2

αj
.

Here ε is a small positive number taken as 10−6 in the code, and qmax and qmin are the

maximum and minimum values of qj over all cells. The discontinuity indicator φj has

the property that

• 0 ≤ φj ≤ 1.

• φj is on the order of O(∆x2) in smooth regions.

• φj is close to O(1) near a strong discontinuity.
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Let f̂j+ 1
2

= f̂
(
qm,−
j+ 1

2

, qm,+
j+ 1

2

)
, and Ĥj+ 1

2
= Ĥ

(
qm,−
j+ 1

2

, qm,+
j+ 1

2

; ξm,−
j+ 1

2

, ξm,+
j+ 1

2

)
where

qm,−
j+ 1

2

= (1− φ2
j)q
−
j+ 1

2

+ φ2
jqj, qm,+

j+ 1
2

= (1− φ2
j)q

+
j+ 1

2

+ φ2
jqj+1, (3.3)

ξm,−
j+ 1

2

= (1− φ2
j)ξ
−
j+ 1

2

+ φ2
jξj, ξm,+

j+ 1
2

= (1− φ2
j)ξ

+
j+ 1

2

+ φ2
jξj+1, (3.4)

with φj defined by (3.2), if xj+ 1
2

is a troubled cell boundary. Otherwise, at good cell

boundaries, qm,±
j+ 1

2

= q±
j+ 1

2

and ξm,±
j+ 1

2

= ξ±
j+ 1

2

.

4. Evolve the cell averages qj and ξj by (2.9).

REMARK 1. When a troubled cell boundary is at a strong discontinuity, φj ∼ 1, hence

qm,−
j+ 1

2

∼ qj, q
m,+

j+ 1
2

∼ qj+1, ξ
m,−
j+ 1

2

∼ ξj and ξm,+
j+ 1

2

∼ ξj+1, indicating a first order monotone scheme

is taking effect around a nonconvex discontinuous region. When a troubled cell boundary is

in a smooth region, the modification is obtained with the magnitude at most of the size

φ2
j max

(∣∣qj − q−j+ 1
2

∣∣, ∣∣qj+1 − q+
j+ 1

2

∣∣) ∼ O(∆x5),

φ2
j max

(∣∣ξj − ξ−j+ 1
2

∣∣, ∣∣ξj+1 − ξ+
j+ 1

2

∣∣) ∼ O(∆x5),

hence it does not affect the fifth order accuracy of the scheme.

It is natural to extend the above first order modification to 2D problems. With the

system, the HWENO reconstructions are performed in local characteristics directions [8],

then a first order monotone modification in the form of (3.3) and (3.4) is applied. For 2D

problems, we identify trouble cell boundaries, that is to check if the convexity fails, via

Gaussian points along cell boundaries, e.g. q±
i+ 1

2
,ig

in equation (2.15). Similarly the first

order modification is performed with respect to these Gaussian points along cell boundaries.

3.3 Second order modification with an entropic projection

A MUSCL type method with an entropic projection is proposed in [1]. It is proved in the

same paper that schemes with such entropic projection enjoy cell entropy inequalities for all

convex entropy functions. In the following, we apply such entropic projection as a modifica-

tion to the HWENO scheme around nonconvex regions to ensure entropic convergence.
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3.3.1 Review of the MUSCL method satisfying all the numerical entropy in-
equalities.

The procedure of the MUSCL scheme satisfying all entropy inequalities can be summa-

rized below. Let the numerical solution at time level n be written as qnj (x) = qnj + snj σj with

σj =
x−xj
∆xj

over the cell Ij. Initially, q0
j (x) = q0

j +s0
jσj, with s0

j = minmod(q0
j−q0

j−1, q
0
j+1−q0

j)

where the minmod function is defined as follows,

minmod(a, b) =


0, if ab < 0,

min(a, b), if a, b ≥ 0,

max(a, b), if a, b ≤ 0.

It consists of two steps to evolve from qn to qn+1.

1. Exact evolution (T∆x): Evolve (2.7) exactly for a time step ∆t, to obtain a solution

q̃n+1, which in general is not a piecewise linear function anymore.

2. An entropic projection (P 1): Find a second order approximation to q̃n+1 by a piecewise

linear function qn+1, satisfying∫
Ij

U(qn+1(x))dx ≤
∫
Ij

U(q̃n+1(x))dx, ∀j (3.5)

for all convex entropy function U(u). Second order reconstruction satisfying (3.5) can

be obtain by setting the cell average as

qn+1
j =

1

∆xj

∫
Ij

q̃n+1(x)dx (3.6)

and the slope as

sn+1
j = Dq̃n+1|Ij = minmodIjζ(y) (3.7)

where

ζ(y) =
2

∆xj

(
1

xj+ 1
2
− y

∫ x
j+ 1

2

y

q̃n+1(x)dx− 1

y − xj− 1
2

∫ y

xj− 1
2

q̃n+1(x)dx

)
(3.8)

The minmod function of g(x) on the interval (a, b) is defined as

minmod
(a,b)

g(x) =


0, if ∃y1, y2 ∈ (a, b), s.t. g(y1)g(y2) ≤ 0,
min(a,b) g(y), if g(y) > 0, ∀y ∈ (a, b),
max(a,b) g(y), if g(y) < 0, ∀y ∈ (a, b).

(3.9)
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In summary, the scheme can be written out in the following abstract form

qn+1 = P 1 ◦ T∆t(q
n)

.
= Q1(∆t)(qn). (3.10)

It enjoys the following convergence theorem as proved in [1].

THEOREM 1. [1]. Let T = n∆t, u(·, T ) be the exact entropy solution to (2.7) with the

initial data q0 ∈ L1 ∩ BV (R), f∞ = maxq∈[min q0,max q0] f
′(q), then there exists a constant C,

such that

‖Q1(∆t)nq0 − q(·, T )‖L1 ≤ C(f∞
√
T∆t+ ∆x

√
T/∆t). (3.11)

The second order MUSCL scheme with the entropic projection (3.10) converges to the unique

entropy solution, when ∆t = O(∆x).

3.3.2 Second order modification to the fifth order FV HWENO schemes

At each time step evolution, {q?j , ξ
?

j , q
?,l
j , q

?,r
j }, ? = n, (1), (2), over the cell Ij is updated

in each RK stage. For instance, at the initial stage, qn,±
j∓ 1

2

is obtain by the HWENO recon-

struction from qn and ξ
n
. qn,lj and qn,rj refer to approximations with entropic projection to

the left and right boundaries of Ij when the cell is detected as a trouble cell. Initially, qn,lj

and qn,rj come from a MUSCL scheme with a minmod reconstruction. To show the idea of

second order modification to the fifth order FV HWENO schemes, we present the procedure

to update {q(1)
j , ξ

(1)

j , q
(1),l
j , q

(1),r
j } from {qnj , ξ

n

j , q
n,l
j , qn,rj }.

Step 1. Compute qn,±
j± 1

2

by performing the HWENO reconstruction from {qnj , ξ
n

j }.

Step 2. Update q
(1)
j and ξ

(1)

j :

1. Identify the troubled cell boundaries, for which we refer to Criterion I in section

3.2 for the details.

2. Only at trouble cell boundaries, modify numerical fluxes f̂j+ 1
2

and Ĥj+ 1
2

as follows.

We let f̂j+ 1
2

= f̂
(
um,−
j+ 1

2

, um,+
j+ 1

2

)
and Ĥj+ 1

2
= Ĥ

(
um,−
j+ 1

2

, um,+
j+ 1

2

; ξm,−
j+ 1

2

, ξm,+
j+ 1

2

)
, where

qm,−
j+ 1

2

= (1− φ2
j)q

n,−
j+ 1

2

+ φ2
jq
n,r
j , qm,+

j+ 1
2

= (1− φ2
j)q

n,+

j+ 1
2

+ φ2
jq
n,l
j+1, (3.12)
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ξm,−
j+ 1

2

= (1− φ2
j)ξ

n,−
j+ 1

2

+ φ2
jξ
n

j , ξm,+
j+ 1

2

= (1− φ2
j)ξ

n,+

j+ 1
2

+ φ2
jξ
n

j+1, (3.13)

with φj defined by (3.2) at the troubled cell boundary.

3. Update the solution at the first RK stage as follows,

q
(1)
j = qnj −

∆t

∆x
(f̂j+ 1

2
− f̂j− 1

2
),

ξ
(1)

j = ξ
n

j −
∆t

∆x
(Ĥj+ 1

2
− Ĥj− 1

2
).

Step 3. Update q
(1),l
j and q

(1),r
j for a nonconvex troubled cell Ij: we first identify nonconvex

troubled cells by the following criterion.

Criterion II: A cell Ij is called a good cell, if qm = {qnm, q
n,±
m∓ 1

2

, qn,lm , qn,rm } with m =

j − 1, j, j + 1, fall into the same linear, convex or concave region of the flux function

f(q). Otherwise, it is defined to be a nonconvex troubled cell.

Trouble cells. At a nonconvex troubled cell Ij, we apply a first order scheme on a

refined mesh by evolving a time step ∆t. Specifically, we evolve equation (2.7)

with the initial condition

qnl + snl σl, for x ∈ Il, l = j − 1, j, j + 1 (3.14)

where snl = 2minmod(qn,rl − qnl , q
n
l − qn,ll ) and σl = x−xl

∆xl
. A periodic boundary

condition on Ij−1 ∪ Ij ∪ Ij+1 is used. We consider a refined numerical mesh of cell

Ij

Ij = ∪Nm=1[ym− 1
2
, ym+ 1

2
], δx = ym+ 1

2
− ym− 1

2
= ∆x/N, (3.15)

and apply a first order scheme with entropic convergence to evolve the solution

for ∆t. Let q̃(1)|Ij be the evolved solution, approximated by a piecewise con-

stant function sitting on the refined numerical mesh with the truncation error

∼ O(δx) = O(∆x2). We compute the average and slope of the linear function

approximating q̃(1)|Ij on Ij via the entropic projection as follows: the average is

taken as the average of q̃(1)|Ij and the slope is computed as follows

13



s
(1)
j = minmod(ζ(yN+ 1

2
), · · · , ζ(y2N+ 1

2
)), (3.16)

where

ζ(y) =
2

∆xj

 1

xj+ 1
2
− y

∫ x
j+ 1

2

y

q̃(1)dx− 1

y − xj− 1
2

∫ y

x
j− 1

2

q̃(1)dx

 (3.17)

Finally,

q
(1),l
j = q̃

(1)
j −

1

2
s

(1)
j , q

(1),r
j = q̃

(1)
j +

1

2
s

(1)
j . (3.18)

Good cells. For a good cell Ij, update q
(1),l
j and q

(1),r
j by setting qlj = q

(1),+

j− 1
2

and

qrj = q
(1),−
j+ 1

2

, where q
(1),+

j− 1
2

and q
(1),−
j+ 1

2

are reconstructed by performing a HWENO

reconstruction.

REMARK 2. Note that the modification of ξ±
j+ 1

2

is a first order modification on derivative

values. Because the first order on derivative values is enough to get a second order scheme.

REMARK 3. The implementation of the procedure to find sn+1
j in (3.16) is computationally

expensive. Due to the costly implementation of the high order scheme with the second order

entropic projection, we only adopt the first order modification to modify the FV HWENO for

2D scalar problems.

4 Numerical Experiments

In Section 4.1, we compare the performance of the fifth order FV HWENO scheme

(HWENO5) and the fifth order FV WENO scheme (WENO5) with the first order modifi-

cation (mod1) and the second order entropic projection (mod2) respectively for solving 1D

nonconvex conservational laws. In Section 4.2, we present the performance of the modified

WENO5 and HWENO scheme (HWENO4) for 2D problems. The numerical fluxes used in

this paper are the global Lax-Friedrich flux.
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4.1 1D scalar problems

EXAMPLE 1. We consider the nonconvex conservation law

qt +

(
q3

3

)
x

= 0, q0(x) = sin(πx). (4.1)

We compute the solution up to t = 0.2. Table 4.1 gives the L1 and L∞ errors and the cor-

responding orders of accuracy of the regular and modified HWENO5 and WENO5 schemes.

We can see that errors of HWENO5 are smaller than those of WENO5 with the same mesh.

Very little difference is observed among the regular and two modified HWENO5 and WENO5

schemes.

Table 4.1: qt+
(
q3

3

)
x

= 0 with initial condition q0(x) = sin(πx) and periodic boundary conditions.

The L1 and L∞ errors and the corresponding orders of accuracy for the regular HWENO5 and
WENO5, the corresponding two versions of modified schemes at the time t = 0.2.

N
HWENO5 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

regular

100 1.68E-05 2.14E-04 4.42E-05 4.61E-04

200 7.68E-07 4.45 1.69E-05 3.66 2.24E-06 4.30 4.59E-05 3.33

300 1.17E-07 4.64 2.62E-06 4.59 3.48E-07 4.59 7.68E-06 4.41

400 2.96E-08 4.78 6.44E-07 4.88 9.00E-08 4.71 1.96E-06 4.76

500 1.01E-08 4.81 2.12E-07 4.97 3.12E-08 4.75 6.58E-07 4.88

mod1

100 1.68E-05 2.14E-04 4.42E-05 4.61E-04

200 7.68E-07 4.45 1.69E-05 3.66 2.24E-06 4.30 4.59E-05 3.33

300 1.17E-07 4.64 2.62E-06 4.59 3.48E-07 4.59 7.68E-06 4.41

400 2.96E-08 4.78 6.44E-07 4.88 9.00E-08 4.71 1.96E-06 4.76

500 1.01E-08 4.81 2.12E-07 4.97 3.12E-08 4.75 6.58E-07 4.88

mod2

100 1.70E-05 2.14E-04 4.42E-05 4.61E-04

200 7.78E-07 4.45 1.69E-05 3.66 2.24E-06 4.30 4.59E-05 3.33

300 1.17E-07 4.67 2.62E-06 4.59 3.48E-07 4.59 7.68E-06 4.41

400 2.96E-08 4.78 6.44E-07 4.88 9.00E-08 4.70 1.96E-06 4.76

500 1.01E-08 4.81 2.12E-07 4.97 3.12E-08 4.75 6.58E-07 4.88

EXAMPLE 2. Consider the Riemann problem of the nonconvex conservation law presented

in Section 3.1. We plot numerical solutions of two modified schemes in Fig. 4.3. They both
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successfully converge to the correct entropy solution, with the development of a compound

wave including a shock, a rarefaction wave, followed by another shock and another rarefaction

wave.

Figure 4.3: Solid lines: the exact solution of (2.7) with f(u) = sin(u) and the initial condition (3.1)
at the time t = 4; HWENO5 (pluses) and WENO5 (deltas) with the first order monotone schemes
(left); HWENO5 (pluses) and WENO5 scheme (deltas) with the second order entropy projection
(right). using N = 200 uniform cells.

EXAMPLE 3. Consider (2.7) with the nonconvex flux f(q) defined by

f(q) =


1, if q < 1.6
cos(5π(q − 1.8)) + 2.0, if 1.6 ≤ q < 2.0
− cos(5π(q − 2.2)), if 2.0 ≤ q < 2.4
1, if q ≥ 2.4

(4.2)

with the initial condition

q0(x) =

{
1, for x < 0
3, for x ≥ 0.

(4.3)

In the left panel of Figure 4.4, the HWENO5 seems to converge to the entropy solution slowly,

which might be related to the fact that the reconstruction of the solution at the rarefaction

waves comes from neighboring cells and is not a good approximation when the rarefaction

wave is surrounded by two shocks at its early stage of development. As shown in Figure 4.4,

the numerical solutions of two modified schemes successfully converge to the correct entropy

solution.
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Figure 4.4: Solid line: The exact solutions of the nonconvex scalar conservation law (2.7)-(4.2)
with the initial condition (4.3) at the time t = 2. Left: HWENO5 (squares), HWENO5-mod1
(pluses) and WENO5-mod1 (deltas); Right: HWENO5-mod2 (pluses) and WENO5-mod2 (deltas).
N = 50 uniform cells are used. CFL = 0.5.

EXAMPLE 4. The nonconvex conservation law (2.7) with the nonconvex flux f(q) given

by (4.2) with the initial condition

q0(x) =

{
3, for − 1 6 x < 0

1, for 0 6 x 6 1
(4.4)

and a periodic boundary condition. This is a very challenging test case: with periodic bound-

ary conditions, the compound waves strongly interact with each other. There is no analytic

formula of the exact solution for this problem. The reference solution is computed by the

Godunov scheme with 400,000 uniform cells. It is observed from Fig. 4.5 that, numerical

solutions of the HWENO5 scheme without modification deviate away from the reference so-

lution with mesh refinement. For this example, due to strong interaction of compound waves,

the monotonicity preserving limiter (MPHWENO5) [16] is applied to control oscillations. As

shown in Fig 4.6, numerical solutions of modified HWENO5 schemes converge to the correct

entropy solution. The comparison of WENO5/MPHWENO5 with different modifications is

shown in Fig 4.7. The numerical solution of HWENO5 with the first order modification is ob-

served to converge to the correct entropy solution slightly faster, compared to that of WENO5

with the first order modification. Comparable performance of HWENO5 and WENO5 with

the second order modification are observed. We observe better performance of HWENO5 or
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WENO5 with the second order modification when compared with schemes with a first order

modification.

Figure 4.5: Solid lines: The reference solution of (4.4) at the time t = 2; HWENO5 without
modification with N = 200 uniform cells (Squares), with N = 400 uniform cells (Deltas) and with
N = 800 uniform cells (Gradients). CFL = 0.01.

Figure 4.6: Solid lines: The reference solution of (4.4) at the time t = 2; MPHWENO5 with the
first order modification with N = 400 uniform cells (Squares) and with N = 800 uniform cells
(Filled squares); WENO5 with the first order modification with N = 400 uniform cells (Deltas)
and with N = 800 uniform cells (Filled deltas). CFL = 0.01.
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Figure 4.7: Solid lines: The reference solution of (4.4) at the time t = 2; Pluses: MPHWENO5
with the first order modification; Deltas: WENO5 with the first order modification; Circles: MPH-
WENO5 with the second order modification; Squares: WENO5 with the second order modification;
The zoom are given in the right; N = 400 uniform cells are used; CFL = 0.01.

4.2 2D scalar problems

EXAMPLE 5. We solve the following nonconvex conservation law in 2D :

qt +

(
q3

3

)
x

+

(
q3

3

)
y

= 0,

with the initial condition q(x, y, 0) = sin(π(x + y)/2) and the periodic boundary condition

in both directions. The computational domain for this problem is [−2, 2] × [−2, 2]. When

t = 0.2 the solution is still smooth.

Table 4.2 gives the L1 errors and the L∞ errors and the corresponding orders of the

accuracy of the regular and modified FV HWENO scheme and FV WENO scheme. ∆t =

CFL
α

∆x
+ β

∆y

where CFL = 0.4, α = max{f ′(q)}, β = max{g′(q)}. Expected orders of convergence

are observed.

EXAMPLE 6. We solve the KPP rotating wave problem,

ut + (sin(u))x + (cos(u))y = 0
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Table 4.2: qt +
(
q3

3

)
x

+
(
q3

3

)
y

= 0 with initial condition q(x, y, 0) = sin(π(x+ y)/2) and periodic

boundary conditions. The L1 and L∞ errors and the corresponding orders of accuracy for the
regular HWENO4 and WENO5, the corresponding modified schemes at the time t = 1.

N
HWENO4 WENO5

L1 error Order L∞ error Order L1 error Order L∞ error Order

regular

40 3.56E-03 2.36 6.83E-03 0.72 5.26E-04 2.63 4.23E-03 1.08

80 4.25E-04 3.07 1.20E-03 2.51 7.73E-05 2.77 7.86E-04 2.43

160 2.72E-05 3.96 1.15E-04 3.39 5.35E-06 3.85 8.29E-05 3.25

320 1.16E-06 4.56 6.65E-06 4.11 2.31E-07 4.54 4.58E-06 4.18

640 5.68E-08 4.35 3.16E-07 4.39 9.68E-09 4.57 1.39E-07 5.05

mod1

40 4.26E-03 2.51 6.84E-03 1.56 5.95E-04 3.04 4.28E-03 1.97

80 4.82E-04 3.15 1.20E-03 2.51 7.97E-05 2.90 7.86E-04 2.44

160 3.11E-05 3.95 1.15E-04 3.39 5.42E-06 3.88 8.29E-05 3.25

320 1.38E-06 4.50 6.65E-06 4.11 2.32E-07 4.54 4.58E-06 4.18

640 6.99E-08 4.30 3.16E-07 4.39 9.73E-09 4.58 1.39E-07 5.05

with the initial condition

u(x, y, 0) =

{
14
4
π, if

√
x2 + y2 ≤ 1,

π
4
, otherwise.

This test was originally proposed in Kurganov et al. [5]. It is challenging to many high-order

numerical schemes because the solution has a two-dimensional composite wave structure.

In Figure 4.8, we show the contours of the solution at t = 1. In the left panel, it is

observed that neither HWENO4 or WENO5 schemes can capture composite wave structures.

The composite wave structures are well captured by the HWENO4 or WENO5 with the first

order modification as shown on the right panel.

5 Concluding remarks

We proposed modifications to FV HWENO schemes for nonconvex conservation laws

based on the idea of [11], emphasizing convergence to the entropy solution. The robustness

of modified FV HWENO schemes is showed by several representative examples including

2D problems. We also compare the performance between the modified FV HWENO and

WENO schemes.
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Figure 4.8: KPP problem at time t = 1. 30 equally spaced solution contours from 0.785 to 11.0.
Fist row: first-order approximation with 400×400 cells; first-order approximation with 1000×1000
cells. Second row: regular HWENO4 with 400×400 cells; modified HWENO4 with 400×400 cells.
Third row: regular WENO with 400× 400 cells; modified WENO with 400× 400 cells.
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