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An efficient spectral-Galerkin approximation and error

analysis for Maxwell transmission eigenvalue problems in

spherical geometries ∗

Jing An† Zhimin Zhang‡

Abstract

We propose and analyze an efficient spectral-Galerkin approximation for the Maxwell
transmission eigenvalue problem in spherical geometry. Using a vector spherical har-
monic expansion, we reduce the problem to a sequence of equivalent one-dimensional
TE and TM modes that can be solved individually in parallel. For the TE mode, we
derive associated generalized eigenvalue problems and corresponding pole conditions.
Then we introduce weighted Sobolev spaces based on the pole condition and prove
error estimates for the generalized eigenvalue problem. The TM mode is a coupled
system with four unknown functions, which is challenging for numerical calculation. To
handle it, we design an effective algorithm using Legendre-type vector basis functions.
Finally, we provide some numerical experiments to validate our theoretical results and
demonstrate the efficiency of the algorithms.

Keywords: Maxwell transmission eigenvalue problems, spherical geometry, TE and
TM modes, spectral-Galerkin approximation, error analysis

1 Introduction

The Maxwell transmission eigenvalue problem is a boundary value problem in a bounded
domain which arises in inverse scattering theory for inhomogeneous media. It is well known
that the transmission eigenvalues play a critical role in the reconstruction of inhomogeneous
non-absorbing media [1, 2, 3]. In addition, the transmission eigenvalues are also used
to estimate the index of refraction of a non-absorbing inhomogeneous medium in recent
years[4, 5, 6]. The method consists of several steps. First of all, the support of the scattering
obstacle can be recovered by using the measured scattering data and the linear sampling
method [7] and the transmission eigenvalues can be identified from either the far field or
near field data [8, 4]. Then, the bounds for smallest and largest eigenvalues of the (matrix)
index of refraction can be obtained in terms of the support of the scattering obstacle and
the first transmission eigenvalue of the anisotropic media [9]. Finally, reconstructions of
the electric permittivity (if it is a scalar constant) or an estimate of the eigenvalues of the
matrix in the case of anisotropic permittivity can be obtained [7].
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However, the effectiveness of the above method rests on having an efficient and robust
algorithm for computing Maxwell transmission eigenvalues. Although the Maxwell trans-
mission eigenvalue problem is stated in a simple form, its solution is complex since it is
nonstandard so that the classical theory can not be applied directly. There are only a few
papers dealing with the numerical computation of Maxwell transmission eigenvalues due to
this notorious difficulty. In [10], Monk et al. propose two finite element methods in com-
puting a few lowest Maxwell’s transmission eigenvalues, curl-conforming finite element and
mixed finite element methods. In [3], Sun et al. presented an iterative method to compute
the Maxwell’s transmission eigenvalue, where the transmission eigenvalue problem is writ-
ten as a quad-curl eigenvalue problem. Then the real transmission eigenvalues are shown
to be the roots of a nonlinear function whose value is the generalized eigenvalue of a related
self-adjoint quad-curl eigenvalue problem which is computed by using a mixed finite element
method. In [11], Huang et al. also proposed a numerical algorithm for computing Maxwell
transmission eigenvalue problems. However, all these methods are based on low-order finite
element methods, so they become very expensive if high accuracy is needed. To the best of
our knowledge, no error analysis is given yet for any existing numerical method, even for
three-dimensional spherical domains.

In practical applications, we often need to solve Maxwell transmission eigenvalue prob-
lems on the special domain of spherical geometries. We know of only a few reports on
spectral-Galerkin approximation for the Maxwell transmission eigenvalue problems on the
special domain of spherical geometries. Thus, we will present in this paper an efficient
spectral-Galerkin approximation for the Maxwell transmission eigenvalue problem in spher-
ical geometry. Using a vector spherical harmonic expansion, we reduce the problem to a
sequence of equivalent one-dimensional TE and TM modes that can be solved individually
in parallel. For the TE mode, we derive associated generalized eigenvalue problems and
corresponding pole conditions. Then we introduce weighted Sobolev spaces corresponding
to the pole condition and prove error estimates for the generalized eigenvalue problem. The
TM mode is a coupled system with four unknown functions, which is challenging for numer-
ical calculation. To handle it, we design an effective algorithm using Legendre-type vector
basis functions. Finally, we provide some numerical experiments to validate our theoretical
results and demonstrate the efficiency of the algorithms.

The rest of this paper is organized as follows. In the next section, we introduce the
Maxwell transmission eigenvalue problem. In §3, we derive a dimension reduction scheme
under spherical geometries. In §4, we derive the weak formulation and error estimate for
the TE mode. In §5, we describe in detail an efficient implementation of the algorithm. We
present several numerical experiments in §6 to demonstrate the accuracy and efficiency of
our method. Finally, in §7 we give some concluding remarks.

2 Maxwell transmission eigenvalue problem

Let D ⊂ R
3 be a bounded simply connected region with piecewise smooth boundary ∂D

and denote by ννν the outward normal vector to ∂D. Let (., .)D denote the scalar product in
L2(D)3 and define the Hilbert spaces

H(curl,D) := {u ∈ L2(D)
3
: curl u ∈ L2(D)3},

H0(curl,D) := {u ∈ H(curl,D) : u× ννν = 000 on ∂D}
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equipped with the scalar product (u,v)curl = (u,v)D + (curl u, curl v)D and the corre-
sponding norm ‖ · ‖curl. Following [12], we also define

U(D) := {u ∈ H(curl,D) : curl u ∈ H(curl,D)},
U0(D) := {u ∈ H0(curl,D) : curl u ∈ H0(curl,D)}

equipped with the scalar product (u,v)U = (u,v)curl + (curl u, curl v)curl and the corre-
sponding norm ‖ · ‖U .

Let NNN be a 3 × 3 matrix valued function defined on D such that NNN ∈ L∞(D,R3×3).
Definition 2.1 A real matrix field NNN is said to be bounded positive definite on D if
NNN ∈ L∞(D,R3×3) and there exists a constant γ > 0 such that

ξ̄ ·NNNξ ≥ γ|ξ|2,∀ξ ∈ C
3 a.e in D.

We further assume that NNN,NNN−1 and (NNN − III)−1 or (III −NNN)−1 are bounded positive definite
real matrix fields on D. The interior transmission eigenvalue problem for the anisotropic
Maxwell’s equations in terms of electric fields is formulated as the problem of finding two
vector valued functions E ∈ L2(D)

3
and E0 ∈ L2(D)

3
such that E − E0 ∈ U0(D) satisfies

[3, 10]:

curlcurlE− k2NNNE = 0 in D, (2.1)

curlcurlE0 − k2E0 = 0 in D, (2.2)

E× ννν = E0 × ννν on ∂D, (2.3)

curlE× ννν = curlE0 × ννν on ∂D. (2.4)

3 Dimension reduction scheme under spherical geometries

We shall restrict our attention to the case where D is a ball of radius R and NNN = nIII with n
being a function along the radial direction. In this case, by using vector spherical harmonic
expansion we can reduce the problem to a sequence of equivalent one-dimensional TE and
TM modes that can be solved individually in parallel.

3.1 Vector spherical harmonics

There are several versions with different notation and properties for vector spherical har-
monics (see e.g.,[13, 14, 15, 16]). We adopt in this paper the family of vector spherical
harmonics in [13, 14].

The spherical coordinates (r, θ, φ) are related to the Cartesian coordinates x = (x1, x2, x3)
by

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ. (3.1)

Let

er =
x

r
, eθ = (sin θ cosφ, sin θ sinφ,− sin θ), eφ = (− sinφ, cos φ, 0). (3.2)
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Then {er, eθ, eφ} forms a moving orthonormal coordinate basis in R
3.

Let S be the unit spherical surface, and denote by ∆S and ∇S the Laplace-Beltrami
and tangential gradient operators on S, namely,

△Su =
1

sin θ

∂

∂θ
(sin θ

∂u

∂θ
) +

1

sin2 θ

∂2u

∂φ2
, (3.3)

∇Su =
∂u

∂θ
eθ +

1

sin θ

∂u

∂φ
eφ. (3.4)

The spherical harmonics {Y m
l } (as normalized in [13]) are eigenfunctions of ∆S, i.e.,

∆SY
m
l = −l(l + 1)Y m

l , l ≥ 0, |m| ≤ l; (3.5)

and form an orthonormal basis for L2(S):

∫

S

Y m
l Y m′

l′ dS = δll′δmm′ . (3.6)

The family of vector spherical harmonics is defined by [13]:

Tm
l = ∇SY

m
l × er =

1

sin θ

∂Y m
l

∂φ
eθ −

∂Y m
l

∂θ
eφ, for l ≥ 1, 0 ≤ |m| ≤ l, (3.7)

Vm
l = (l + 1)Y m

l er −∇SY
m
l , for l ≥ 0, 0 ≤ |m| ≤ l, (3.8)

Wm
l = lY m

l er +∇SY
m
l , for l ≥ 1, 0 ≤ |m| ≤ l, (3.9)

where V0
0 = 1√

4π
er. With the understanding of T0

0 = W0
0 = 0, the indexes {l,m} run over

{(l,m) : l ≥ 0, 0 ≤ |m| ≤ l}.
The following lemma was proved in [13] ((A.1) and (A.2))

Lemma 3.1
∫

S

Tm
l ·Vm′

l′ dS =

∫

S

Tm
l ·Wm′

l′ dS =

∫

S

Vm
l ·Wm′

l′ dS = 0, (3.10)

∫

S

Vm
l ·Vm′

l′ dS = (l + 1)(2l + 1)δll′δmm′ ,

∫

S

Tm
l ·Tm′

l′ dS = l(l + 1)δll′δmm′ , (3.11)

∫

S

Wm
l ·Wm′

l′ dS = l(2l + 1)δll′δmm′ ,

∫

S

Tm
l · ∇SY

m
l dS = 0, (3.12)

∫

S

∇SY
m
l · ∇SY

m′

l′ dS = l(l + 1)δll′δmm′ . (3.13)

Let f is a function along the radial direction and define the differentiation operators:

d+l =
d

dr
+
l

r
, d−l =

d

dr
− l

r
. (3.14)

The following lemma is again proved in [13] ((A.9)):
Lemma 3.2

curl(fVm
l ) = (d+l+2f)T

m
l , curl(fWm

l ) = −(d−l−1f)T
m
l , (3.15)

(2l + 1)curl(fTm
l ) = (l + 1)(d+l+1f)W

m
l − l(d−l f)V

m
l . (3.16)
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3.2 Dimension reduction scheme

Let us write

E =

∞
∑

l=0

l
∑

|m|=0

(vml (r)Vm
l (θ, φ) + tml (r)Tm

l (θ, φ) + wm
l (r)Wm

l (θ, φ)), (3.17)

E0 =
∞
∑

l=0

l
∑

|m|=0

(v̄ml (r)Vm
l (θ, φ) + t̄ml (r)Tm

l (θ, φ) + w̄m
l (r)Wm

l (θ, φ)). (3.18)

From Lemma 3.2 we can derive that

curlcurl(vml (r)Vm
l (θ, φ)) = curl((d+l+2v

m
l (r))Tm

l (θ, φ))

=
l + 1

2l + 1
(d+l+1d

+
l+2v

m
l (r))Wm

l (θ, φ)− l

2l + 1
(d−l d

+
l+2v

m
l (r))Vm

l (θ, φ), (3.19)

curlcurl(tml (r)Tm
l (θ, φ)) = −(

l

2l + 1
d+l+2d

−
l +

l + 1

2l + 1
d−l−1d

+
l+1)t

m
l (r)Tm

l (θ, φ), (3.20)

curlcurl(wm
l (r)Wm

l (θ, φ)) =
l

2l + 1
(d−l d

−
l−1w

m
l (r))Vm

l (θ, φ)

− l + 1

2l + 1
(d+l+1d

−
l−1w

m
l (r))Wm

l (θ, φ). (3.21)

From (3.19)-(3.21) and the nonzero of eigenfunction, together with Lemma 3.1, (2.1) can
be reduced to

l

2l + 1
(d−l d

−
l−1w

m
l (r)− d−l d

+
l+2v

m
l (r))− k2l nv

m
l (r) = 0, (3.22)

l + 1

2l + 1
(d+l+1d

+
l+2v

m
l (r)− d+l+1d

−
l−1w

m
l (r))− k2l nw

m
l (r) = 0, (3.23)

−1

2l + 1
(ld+l+2d

−
l + (l + 1)d−l−1d

+
l+1)t

m
l (r)− k2l nt

m
l (r) = 0, (3.24)

where l ≥ 1, 0 ≤ |m| ≤ l. Similarly, (2.2) can be reduced to

l

2l + 1
(d−l d

−
l−1w̄

m
l (r)− d−l d

+
l+2v̄

m
l (r))− k2l v̄

m
l (r) = 0, (3.25)

l + 1

2l + 1
(d+l+1d

+
l+2v̄

m
l (r)− d+l+1d

−
l−1w̄

m
l (r))− k2l w̄

m
l (r) = 0, (3.26)

−1

2l + 1
(ld+l+2d

−
l + (l + 1)d−l−1d

+
l+1)t̄

m
l (r)− k2l t̄

m
l (r) = 0, (3.27)

where l ≥ 1, 0 ≤ |m| ≤ l. From (3.7)-(3.9) and (3.17), we can derive that

E× ννν = E× er =

∞
∑

l=0

l
∑

|m|=0

((wm
l (r)− vml (r))Tm

l − tml (r)∇SY
m
l ). (3.28)

Similarly, we can derive that

E0 × ννν = E0 × er =

∞
∑

l=0

l
∑

|m|=0

((w̄m
l (r)− v̄ml (r))Tm

l − t̄ml (r)∇SY
m
l ). (3.29)
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From Lemma 3.1, the boundary condition (2.3) can be reduced to

wm
l (R)− vml (R) = w̄m

l (R)− v̄ml (R), tml (R) = t̄ml (R). (3.30)

From Lemma 3.2 and (3.7)-(3.9) we can derive that

curl E× ννν = curl E× er (3.31)

=

∞
∑

l=0

1
∑

|m|=0

((d−l−1w
m
l (r)− d+l+2v

m
l (r))∇SY

m
l + (

l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t

m
l (r)Tm

l ).

Similarly, we can derive that

curl E0 × ννν = curl E0 × er (3.32)

=
∞
∑

l=0

l
∑

|m|=0

((d−l−1w̄
m
l (r)− d+l+2v̄

m
l (r))∇SY

m
l + (

l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t̄

m
l (r)Tm

l ).

From Lemma 3.1, the boundary condition (2.4) can be reduced to

d−l−1w
m
l (R)− d+l+2v

m
l (R) = d−l−1w̄

m
l (R)− d+l+2v̄

m
l (R), (3.33)

(
l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t

m
l (R) = (

l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t̄

m
l (R). (3.34)

Note that the modes tml (coefficients of Tm
l ) are decoupled from the modes vml and wm

l .

In summary, we only have to solve the following sequence (l ≥ 1 and |m| ≤ l) of
one-dimensional eigenvalue problems, i.e., the so-called TE mode:

−1

2l + 1
(ld+l+2d

−
l + (l + 1)d−l−1d

+
l+1)t

m
l (r)− k2l nt

m
l (r) = 0, r ∈ (0, R), (3.35)

−1

2l + 1
(ld+l+2d

−
l + (l + 1)d−l−1d

+
l+1)t̄

m
l (r)− k2l t̄

m
l (r) = 0, r ∈ (0, R), (3.36)

tml (R) = t̄ml (R), (3.37)

(
l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t

m
l (R) = (

l

2l + 1
d−l +

l + 1

2l + 1
d+l+1)t̄

m
l (R), (3.38)

and TM mode:

l

2l + 1
(d−l d

−
l−1w

m
l (r)− d−l d

+
l+2v

m
l (r))− k2l nv

m
l (r) = 0, r ∈ (0, R), (3.39)

l + 1

2l + 1
(d+l+1d

+
l+2v

m
l (r)− d+l+1d

−
l−1w

m
l (r))− k2l nw

m
l (r) = 0, r ∈ (0, R), (3.40)

l

2l + 1
(d−l d

−
l−1w̄

m
l (r)− d−l d

+
l+2v̄

m
l (r))− k2l v̄

m
l (r) = 0, r ∈ (0, R), (3.41)

l + 1

2l + 1
(d+l+1d

+
l+2v̄

m
l (r)− d+l+1d

−
l−1w̄

m
l (r))− k2l w̄

m
l (r) = 0, r ∈ (0, R), (3.42)

wm
l (R)− vml (R) = w̄m

l (R)− v̄ml (R), (3.43)

d−l−1w
m
l (R)− d+l+2v

m
l (R) = d−l−1w̄

m
l (R)− d+l+2v̄

m
l (R). (3.44)
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4 Weak formulation and error estimation of the TE mode

For brief, we shall only give the error analysis in detail for the TE mode. For the TM
mode, it is a coupled system with four unknown functions which is a challenging problem
for numerical calculation. We propose an efficient numerical algorithm by using Legendre
approximation based on vector basis functions.

4.1 Weak formulation and discrete formulation

By simplification, the TE mode can be rewritten as follows:

− 1

r2
∂r(r

2∂rt
m
l (r)) +

l(l + 1)

r2
tml (r)− k2l nt

m
l (r) = 0, r ∈ (0, R), (4.1)

− 1

r2
∂r(r

2∂r t̄
m
l (r)) +

l(l + 1)

r2
t̄ml (r)− k2l t̄

m
l (r) = 0, r ∈ (0, R), (4.2)

tml (R) = t̄ml (R), (4.3)

∂rt
m
l (R) = ∂r t̄

m
l (R). (4.4)

Next, we formulate (4.1) - (4.4) as a equivalent fourth-order eigenvalue problem. Let

ũl = tml (r)− t̄ml (r), L̃lũl =
1
r2
∂r(r

2∂rũl)− l(l+1)
r2

ũl. Subtracting (4.2) from (4.1), we obtain

− (L̃lũl + k2l ũl) = k2l (n− 1)tml (4.5)

Divding n− 1 and applying L̃l + k2l n to both sides of above equation, we obtain

(L̃l + k2l n)
1

n− 1
(L̃l + k2l )ũl = 0. (4.6)

Then the (4.1)-(4.4) is equivalent to the following fourth order eigenvalue problem:

(L̃l + k2l n)
1

n− 1
(L̃l + k2l )ũl = 0. (4.7)

ũl(R) = ũ′l(R) = 0. (4.8)

Let r = t+1
2 R, ñ(t) = n( t+1

2 R), ul = ũl(
t+1
2 R), Llul =

1
(t+1)2

∂t((t + 1)2∂tul) − l(l+1)
(t+1)2

ul.

Then (4.7)-(4.8) can be restated as follows:

(
4

R2
Ll + k2l ñ)

1

ñ− 1
(
4

R2
Ll + k2l )ul = 0, in (−1, 1), (4.9)

ul(1) = u′l(1) = 0. (4.10)

We now define the usual weighted Sobolev space:

L2
ω(I) := {u :

∫

I

ωu2dt <∞} (4.11)

equipped with the inner product and norm

(u, v)ω =

∫

I

ωuvdt, ‖u‖w = (

∫

I

ωu2dt)
1

2 , (4.12)

7



where I = (−1, 1) and ω = 1 + t is a weight function. Next, we introduce the following
non-uniformly weighted Sobolev space:

H1
0,ω,l(I) := {u : ∂kt u ∈ L2

ω2k(I), k = 0, 1, u(1) = 0}; (4.13)

H2
0,ω,l(I) := {u : ∂kt u ∈ L2

ω2k−2(I), k = 0, 1, 2, u(±1) = u′(1) = 0} (4.14)

equipped with the corresponding inner product and norm

(u, v)1,ω,l =

1
∑

k=0

(∂kt u, ∂
k
t v)ω2k , ‖u‖1,ω,l = (u, u)

1

2

1,ω,l; (4.15)

(u, v)2,ω,l =

2
∑

k=0

(∂kt u, ∂
k
t v)ω2k−2 , ‖u‖2,ω,l = (u, u)

1

2

2,ω,l. (4.16)

Then the weak form of (4.9) -(4.10) is: Find (k2l , ul) ∈ C×H2
0,ω,l(I), such that

∫ 1

−1

1

ñ− 1
(t+ 1)2(Ll +

R2

4
k2l )ul(Ll +

R2

4
k2l ñ)v̄dt = 0,∀v ∈ H2

0,ω,l(I). (4.17)

Note the condition ul(−1) = 0 in H2
0,ω,l(I) is a essential polar condition which should be

imposed for the well-posedness of the weak form (4.17) (and the same type of pole condition
for v).

We now introduce an associated generalized eigenvalue problems. First we define

Aτl(ul, v) := (
1

ñ− 1
(Ll +

R2

4
τl)ul, (Ll +

R2

4
τl)v)ω2 + τ2l (

R2

4
)2(ul, v)ω2 (4.18)

for ñ > 1, and

Ãτl(ul, v) : = (
1

1− ñ
(Ll +

R2

4
τlñ)ul, (Ll +

R2

4
τlñ)v)ω2 + τ2l (

R2

4
)2(ñul, v)ω2

= (
ñ

1− ñ
(Ll +

R2

4
τl)ul, (Ll +

R2

4
τl)v)ω2 + (Llul, Llv)ω2 (4.19)

for ñ < 1,

B(ul, v) :=
R2

4
((∂tul, ∂tv)ω2 + l(l + 1)(ul, v)), (4.20)

where τl = k2l . Then (4.17) can be written as either

Aτl(ul, v)− τlB(ul, v) = 0,∀v ∈ H2
0,ω,l(I), (4.21)

or

Ãτl(ul, v)− τlB(ul, v) = 0,∀v ∈ H2
0,ω,l(I). (4.22)

The associated generalized eigenvalue problem is: Find (λ(τl), ul) ∈ C×H2
0,ω,l(I), such that

Aτl(ul, v)− λ(τl)B(ul, v),∀v ∈ H2
0,ω,l(I), (4.23)
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or

Ãτl(ul, v)− λ(τl)B(ul, v) = 0,∀v ∈ H2
0,ω,l(I), (4.24)

where λ(τl) is a continuous function of τl. From (4.21)-(4.22), we know that a transmission
eigenvalue is the root of f(τl) = λ(τl)− τl.

Let PN be the space of polynomials of degree less than or equal to N , and setting
XN = PN ∩H2

0,ω,l. Then the discrete formulation of (4.23) is: Find (λN (τl), ulN ) ∈ C×XN ,
such that

Aτl(ulN , vN )− λN (τl)B(ulN , vN ),∀vN ∈ XN . (4.25)

The discrete formulation of (4.24) is: Find (λN (τl), ulN ) ∈ C×XN , such that

Ãτl(ulN , vN )− λN (τl)B(ulN , vN ),∀vN ∈ XN . (4.26)

4.2 Error estimation of approximate eigenvalues

Hereafter, we shall use the expression a . b to mean that there exists a positive constant
C such that a ≤ Cb.

Lemma 4.1 It holds:

‖u‖22,ω,l . ‖Llu‖2ω2 . ‖u‖22,ω,l.

Proof. Since

‖Llu‖2ω2 =

∫ 1

−1
(Llu)

2(t+ 1)2dt

=

∫ 1

−1

1

(t+ 1)2
(∂t((1 + t)2∂tu)− l(l + 1)u)2dt

=

∫ 1

−1
((t+ 1)∂2t u+ 2∂tu− l(l + 1)

1 + t
u)2dt

=

∫ 1

−1
((t+ 1)2(∂2t u)

2 + 2(l2 + l + 1)(∂tu)
2 + l(l2 − 1)(l + 2)

1

(1 + t)2
u2)dt,

then

‖Llu‖2ω2 .

∫ 1

−1
((t+ 1)2(∂2t u)

2 + (∂tu)
2 +

1

(1 + t)2
u2)dt = ‖u‖22,ω,l.

From Hardy inequality (cf. B 8.6 in [17]) we have
∫ 1

−1

1

(t+ 1)2
u2dt .

∫ 1

−1
(∂tu)

2dt.

Thus, we can obtain

‖Llu‖2ω2 ≥
∫ 1

−1
((t+ 1)2(∂2t u)

2 + 2(l2 + l + 1)(∂tu)
2dt

&

∫ 1

−1
((t+ 1)2(∂2t u)

2 + 2(l2 + l)(∂tu)
2 +

1

(1 + t)2
u2)dt

& ‖u‖22,ω,l.
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Theorem 1 Let ñ ∈ L∞(I) satisfy

1 + α ≤ ñ∗ ≤ ñ ≤ ñ∗ <∞ or 0 < ñ∗ ≤ ñ ≤ ñ∗ < 1− β

for some α > 0 and β > 0 positive constants. Then Aτl or Ãτl is a continuous and coercive
sesquilinear form on H2

0,ω,l(I)×H2
0,ω,l(I), i.e.,

Aτl(u, u) or Ãτl(u, u) & ‖u‖22,ω,l, (4.27)

|Aτl(u, v)| or |Ãτl(u, v)| . ‖u‖2,ω,l‖v‖2,ω,l, (4.28)

where ñ∗ = infI(ñ) and ñ
∗ = supI(ñ).

Proof. We shall only give the proof in the case of 1 + α ≤ ñ∗ ≤ ñ ≤ ñ∗ < ∞. It can be
similarly derived for the case of 0 < ñ∗ ≤ ñ ≤ ñ∗ < 1− β.

Since

Aτl(u, u) = (
1

ñ− 1
(Ll +

R2

4
τl)u, (Ll +

R2

4
τl)u)ω2 + (

R2

4
τl)

2(u, u)ω2

≥ 1

ñ∗ − 1
((Ll +

R2

4
τl)u, (Ll +

R2

4
τl)u)ω2 + (

R2

4
τl)

2(u, u)ω2

≥ 1

ñ∗ − 1
(‖Llu‖2ω2 −

R2

2
τl‖Llu‖ω2‖u‖ω2 + (

R2

4
τl)

2‖u‖2ω2) + (
R2

4
τl)

2‖u‖2ω2

= ε(
R2

4
τl‖u‖ω2 − 1

ε(ñ∗ − 1)
‖Llu‖ω2)2 + (

1

ñ∗ − 1
− 1

ε(ñ∗ − 1)2
)‖Llu‖2ω2

+ (1 +
1

ñ∗ − 1
− ε)(

R2

4
τl)

2‖u‖2ω2 ≥ (
1

ñ∗ − 1
− 1

ε(ñ∗ − 1)2
)‖Llu‖2ω2

for 1
ñ∗−1 < ε < 1

ñ∗−1 + 1, then from Lemma 4.1 we can obtain (4.27). Due to

|Aτl(u, v)| = |( 1

ñ − 1
(Ll +

R2

4
τl)u, (Ll +

R2

4
τl)v)ω2 + (

R2

4
τl)

2(u, v)ω2 |

= |( 1

ñ − 1
Llu,Llv)ω2 +

R2

4
τl(

1

ñ− 1
Llu, v)ω2 +

R2

4
τl(

1

ñ− 1
u,Llv)ω2

+ (
R2

4
τl)

2(
1

ñ− 1
u, v)ω2 + (

R2

4
τl)

2(u, v)ω2 |

≤ 1

α
‖Llu‖ω2‖Llv‖ω2 +

R2

4α
τl‖Llu‖ω2‖v‖ω2 +

R2

4α
τl‖u‖ω2‖Llv‖ω2

+
1

α
(
R2

4
τl)

2‖u‖ω2‖v‖ω2 + (
R2

4
τl)

2‖u‖ω2‖v‖ω2

≤ (
1

α
+
R2

2α
τl + (

R2

4
τl)

2(
1

α
+ 1))‖Llu‖ω2‖Llv‖ω2 ,

then from Lemma 4.1 we can obtain (4.28). ✷

Similar to the proof of Theorem 1, we can derive the following Theorem:

Theorem 2 B(u, v) is a continuous and coercive bilinear form on H1
0,ω,l(I) × H1

0,ω,l(I),
i.e.,

|B(u, v)| . ‖u‖1,ω,l‖v‖1,ω,l,
B(u, u) & ‖u‖21,ω,l.
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To give the error analysis, we will use extensively the minimax principle.
Lemma 4.2 Let λm(τl) denote the m-th eigenvalues of (4.23) and Vm be any m-dimensional
subspace of H2

0,ω,l(I). Then, for λ1(τl) ≤ λ2(τl) ≤ · · · ≤ λm(τl) ≤ · · · , there holds

λm(τl) = min
Vm⊂H2

0,ω,l
(I)

max
v∈Vm

Aτl(v, v)

B(v, v)
. (4.29)

Proof. See Theorem 3.1 in [18]. ✷

Lemma 4.3 Let λm(τl) denote the m-th eigenvalues of (4.23) and be arranged in an as-
cending order, and define

Ei,j = span
{

uil , · · · , ujl
}

,

where uil is the eigenfunction corresponding to the eigenvalue λi(τl). Then we have

λm(τl) = max
v∈Ek,m

Aτl(v, v)

B(v, v)
k ≤ m, (4.30)

λm(τl) = min
v∈Em,n

Aτl(v, v)

B(v, v)
m ≤ n. (4.31)

Proof. See Lemma 3.2 in [18]. ✷

It is true that the minimax principle is also valid for the discrete formulation (4.25) (see
[18]).

Lemma 4.4 Let λmN (τl) denote the m-th eigenvalues of (4.25), and Vm be anym-dimensional
subspace of XN . Then, for λ1N (τl) ≤ λ2N (τl) ≤ · · · ≤ λmN (τl) ≤ · · · , there holds

λmN (τl) = min
Vm⊂XN

max
v∈Vm

Aτl(v, v)

B(v, v)
. (4.32)

Let
∏2,l

N : H2
0,ω,l(I) → XN be an orthogonal projection, defined by

Aτl(ul −Π2,l
N ul, v) = 0,∀v ∈ XN .

Theorem 3 Let λmN (τl) be obtained by solving (4.25) and be an approximation of λm(τl),
an eigenvalue of (4.23). Then, we have

0 < λm(τl) ≤ λmN (τl) ≤ λm(τl) max
v∈E1,m

B(v, v)

B(Π2,l
N v,Π

2,l
N v)

. (4.33)

Proof. According to the coerciveness of Aτl(u, v) and B(u, v) we can get λm(τl) > 0.
From XN ⊂ H2

0,ω,l(I), together with (4.29) and (4.32) we can obtain λm(τl) ≤ λmN (τl). Let

Π2,l
N E1,m denote the space spanned by Π2,l

N u
1
l ,Π

2,l
N u

2
l , · · · ,Π

2,l
N u

m
l . It is obvious that Π2,l

N E1,m

is a m-dimensional subspace of XN . From the minimax principle, we have

λmN (τl) ≤ max
v∈Π2,l

N
E1,m

Aτl(v, v)

B(v, v)
= max

v∈E1,m

Aτl(Π
2,l
N v,Π

2,l
N v)

B(Π2,l
N v,Π

2,l
N v)

.

11



Since Aτl(v, v) = Aτl(Π
2,l
N v,Π

2,l
N v) + 2Aτl(v − Π2,l

N v,Π
2,l
N v) + Aτl(v − Π2,l

N v, v − Π2,l
N v), from

Aτl(v −Π2,l
N v,Π

2,l
N v) = 0 and the non-negativity of Aτl(v −Π2,l

N v, v −Π2,l
N v), we have

Aτl(Π
2,l
N v,Π

2,l
N v) ≤ Aτl(v, v).

Thus, we have

λmN (τl) ≤ max
v∈E1,m

Aτl(v, v)

B(Π2,l
N v,Π

2,l
N v)

= max
v∈E1,m

Aτl(v, v)

B(v, v)

B(v, v)

B(Π2,l
N v,Π

2,l
N v)

≤ λm(τl) max
v∈E1,m

B(v, v)

B(Π2,l
N v,Π

2,l
N v)

.

The proof of Theorem 3 is complete. ✷

We denote the Jacobi weight function of index (α, β) by ωα,β(x) = (1− t)α(1 + t)β and
introduce the following non-uniformly weighted Sobole spaces:

Hs
ωα,β ,∗(I) := {u : ∂kt u ∈ Lωα+k,β+k , 0 ≤ k ≤ s},

equipped with the inner product and norm

(u, v)s,ωα,β ,∗ =
s

∑

k=0

(∂kt u, ∂
k
t v)ωα+k,β+k , ‖u‖s,ωα,β ,∗ = (u, u)

1

2

s,ωα,β ,∗,

and

Hs
ω−2,−2,l(I) := {u ∈ H2

0,ω,l(I) ∩H2(I) : ∂kt u ∈ Lω−2+k,−2+k , 3 ≤ k ≤ s},

equipped with the inner product and norm

(u, v)s,ω−2,−2,l = (u, v)2,ω,l +

s
∑

k=3

(∂kt u, ∂
k
t v)ω−2+k,−2+k ,

‖u‖s,ω−2,−2,l = (u, u)
1

2

s,ω−2,−2,l
.

Define the orthogonal projection πN,ω−2,−2 : L2
ω−2,−2(I) → Q

−2,−2
N by

(u− πN,ω−2,−2u, vN )ω−2,−2 = 0,∀vN ∈ Q−2,−2
N , (4.34)

where Q−2,−2
N = {φ ∈ PN : φ(±1) = φ′(±1) = 0}. From the Theorem 1.8.2 in [19] we have

the following Lemma:
Lemma 4.5. For any u ∈ Hs

ω−2,−2,∗(I), the following inequality holds:

‖∂2t (πN,ω−2,−2u− u)‖ . N2−s‖∂st u‖ω−2+s,−2+s .
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Theorem 4 There exists an operator π2,lN : H2
0,ω,l(I) → P

0,l
N such that π2,lN u(±1) = u(±1) =

0, and ∂tπ
2,l
N u(−1) = ∂tu(−1), ∂tπ

2,l
N u(1) = ∂tu(1) = 0 and for u ∈ Hs

ω−2,−2,l
(I) with s ≥ 2,

there holds

‖∂2t (π2,lN u− u)‖ . N2−s(‖∂st u‖ω−2+s,−2+s + ‖∂2t u‖)(s ≤ 3),

‖∂2t (π2,lN u− u)‖ . N2−s‖∂st u‖ω−2+s,−2+s(s > 3),

where P 0,l
N = {φ ∈ PN : φ(±1) = φ′(1) = 0}.

Proof. Let u∗(t) =
1
4(t+1)(1− t)2∂tu(−1) for ∀u ∈ H2

0,ω,l(I). By construction, we have

∂kt (u− u∗)(±1) = 0, (k = 0, 1). If u ∈ Hs
ω−2,−2,l

(I) , then we have u− u∗ ∈ Hs
ω−2,−2,∗(I). In

fact, from Hardy inequality (cf. B 8.8 in [17]) we have
∫

I

ω−2,−2(u− u∗)
2dt .

∫

I

(∂t(u− u∗))
2dt,

∫

I

ω−2,−2(∂t(u− u∗))
2dt .

∫

I

(∂2t (u− u∗))
2dt.

Thus, we can derive that
∫

I

ω−2,−2(u− u∗)
2dt .

∫

I

ω−1,−1(∂t(u− u∗))
2dt .

∫

I

(∂2t (u− u∗))
2dt,

Since
∫

I

(∂2t u∗)
2dt =

∫

I

((
3

2
t− 1

2
)∂tu(−1))2dt

= 2(∂tu(−1))2 = 2(

∫

I

∂2t udt)
2 ≤ 4

∫

I

(∂2t u)
2dt,

then we have
∫

I

(∂2t (u− u∗))
2dt .

∫

I

(∂2t u)
2dt+

∫

I

(∂2t u∗)
2dt .

∫

I

(∂2t u)
2dt. (4.35)

Similarly, we can derive that
∫

I
ω1,1(∂3t u∗)

2dt = 3(∂tu(−1))2 .
∫

I
(∂2t u)

2dt. Thus we have
∫

I

ω1,1(∂3t (u− u∗))
2dt .

∫

I

ω1,1(∂3t u)
2dt+

∫

I

ω1,1(∂3t u∗)
2dt

.

∫

I

ω1,1(∂3t u)
2dt+

∫

I

(∂2t u)
2dt. (4.36)

For k > 3, we have
∫

I

ω−2+k,−2+k(∂kt (u− u∗))
2dt =

∫

I

ω−2+k,−2+k(∂kt u)
2dt. (4.37)

Thus, u− u∗ ∈ Hs
ω−2,−2,∗(I) and we can define

π
2,l
N u = πN,ω−2,−2(u− u∗) + u∗ ∈ P

0,l
N ,∀u ∈ Hs

ω−2,−2,l(I)

Then by Lemma 4.5 we can obtain

‖∂2t (π2,lN u− u)‖ = ‖∂2t πN,ω−2,−2(u− u∗)− (u− u∗)‖ . N2−s‖∂st (u− u∗)‖ω−2+s,−2+s .

Together with (4.35), (4.36) and (4.37) we can get desired results. ✷
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Theorem 5 Let λmN (τl) is the m-th approximate eigenvalue of λm(τl).
If {uil}mi=1 ⊂ Hs

ω−2,−2,l
(I) with s ≥ 2, then we have

|λmN (τl)− λm(τl)| . C(m)N2(2−s) max
i=1,··· ,m

(‖∂st uil‖ω−2+s,−2+s + ‖∂2t uil‖)2(s ≤ 3),

|λmN (τl)− λm(τl)| . C(m)N2(2−s) max
i=1,··· ,m

‖∂st uil‖2ω−2+s,−2+s(s > 3),

where C(m) is a constant independent of N .

Proof. For any v ∈ E1,m it can be represented by v =
∑m

i=1 µiu
i
l, we then have

B(v, v)−B(Π2,l
N v,Π

2,l
N v)

B(v, v)
≤ 2|B(v, v −Π2,l

N v)|
B(v, v)

≤
2
∑m

i,j=1 |µi||µj ||B(uil −Π2,l
N u

i
l, u

j
l )|

∑m
i=1 |µi|2

≤ 2m max
i,j=1,··· ,m

|B(uil −Π2,l
N u

i
l , u

j
l )|.

From Cauchy-Schwarz inequality we have

|B(uil −Π2,l
N u

i
l, u

j
l )| =

1

λj(τl)
|λj(τl)B(ujl , u

i
l −Π2,l

N u
i
l)|

=
1

λj(τl)
|Aτl(u

j
l , u

i
l −Π2,l

N u
i
l)| =

1

λj(τl)
|Aτl(u

j
l −Π2,l

N u
j
l , u

i
l −Π2,l

N u
i
l)|

≤ 1

λj(τl)
(Aτl(u

j
l −Π2,l

N u
j
l , u

j
l −Π2,l

N u
j
l ))

1

2 (Aτl(u
i
l −Π2,l

N u
i
l, u

i
l −Π2,l

N u
i
l))

1

2 .

From Hardy inequality (cf. B 8.6 in [17]) we have
∫

I

1

(t+ 1)2
u2dt .

∫

I

(∂tu)
2dt.

Then from Poincaré inequality we can obtain

‖u‖22,ω,l =
∫

I

(t+ 1)2(∂2t u)
2dt+

∫

I

(∂tu)
2dt+

∫

I

1

(t+ 1)2
u2dt

.

∫

I

(∂2t u)
2dt+

∫

I

(∂tu)
2dt .

∫

I

(∂2t u)
2dt.

From the property of orthogonal project (4.34) and continuity of Aτl(u, v) in Theorem 1 we
can derive that

|B(uil −Π2,l
N u

i
l , u

j
l )| =

1

λj(τl)
|Aτl(u

j
l , u

i
l −Π2,l

N u
i
l)|

≤ 1

λj(τl)
(Aτl(u

j
l −Π2,l

N u
j
l , u

j
l −Π2,l

N u
j
l ))

1

2 (Aτl(u
i
l −Π2,l

N u
i
l, u

i
l −Π2,l

N u
i
l))

1

2

≤ 1

λj(τl)
(Aτl(u

j
l − π

2,l
N u

j
l , u

j
l − π

2,l
N u

j
l ))

1

2 (Aτl(u
i
l − π

2,l
N uil , u

i
l − π

2,l
N uil))

1

2

.
1

λj(τl)
‖ujl − π

2,l
N u

j
l ‖2,ω,l‖uil − π

2,l
N uil‖2,ω,l

.
1

λj(τl)
‖∂2t (ujl − π

2,l
N u

j
l )‖ · ‖∂2t (uil − π

2,l
N uil)‖.
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Since

B(v, v)

B(Π2,l
N v,Π

2,l
N v)

≤ 1

1− 2mmaxi,j=1,··· ,m |B(uil −Π2,l
N u

i
l, u

j
l )|
,

then from Theorem 3 and Theorem 4 we can get desired results. ✷

5 Efficient implementation of the algorithm

We describe in this section how to solve the TE mode (3.35)-(3.38) and TM mode (3.39)-
(3.44) efficiently.

5.1 Efficient implementation of the algorithm for TE mode

We start by constructing a set of basis functions for XN . Let

φi(t) = di(Li(t)−
2(2i + 5)

2i+ 7
Li+2(t) +

2i+ 3

2i+ 7
Li+4(t)), i = 0 · · ·N − 4,

where di =
1√

2(2i+3)2(2i+5)
and Li is the Legendre polynomial of degree i.

It is clear that

XN = span{φ0(t), · · · , φN−4(t)} ⊕ span{φN−3(t)},

where φN−3(t) =
1
4 (t+ 1)(t− 1)2. Setting

ai,j = Aτl(φj(t), φi(t)), bi,j = B(φj(t), φi(t)).

We shall look for

ulN =
N−3
∑

i=0

uliφi. (5.1)

Now, plugging the expression of (5.1) in (4.25), and taking vN through all the basis functions
in XN , we will arrive at the following linear eigenvalue system:

AUl = λN (τl)BUl, (5.2)

where

A = (aij), B = (bij), Ul = (ul0, · · · , ulN−3)
T .
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5.2 Efficient implementation of the algorithm for TM mode

Let r = t+1
2 R,W (t) = wm

l ( t+1
2 R),V (t) = vml ( t+1

2 R),ñ(t) = n( t+1
2 R), w(t) = w̄m

l ( t+1
2 R),v(t) =

v̄ml ( t+1
2 R), D±

l = ∂t ± l
l+1 . Then (3.39)-(3.44) can be restated as follows:

D−
l (D

−
l−1W (t)−D+

l+2V (t))− k2l
R2

4
ñ(t)

2l + 1

l
V (t) = 0, t ∈ (−1, 1), (5.3)

D+
l+1(D

+
l+2V (t)−D−

l−1W (t))− k2l
R2

4
ñ(t)

2l + 1

l + 1
W (t) = 0, t ∈ (−1, 1), (5.4)

D−
l (D

−
l−1w(t) −D+

l+2v(t))− k2l
R2

4

2l + 1

l
v(t) = 0, t ∈ (−1, 1), (5.5)

D+
l+1(D

+
l+2v(t)−D−

l−1w(t)) − k2l
R2

4

2l + 1

l + 1
w(t) = 0, t ∈ (−1, 1), (5.6)

W (1)− V (1) = w(1) − v(1), (5.7)

D−
l−1W (1)−D+

l+2V (1) = D−
l−1w(1) −D+

l+2v(1). (5.8)

Let us define

H(I) = {h = (h1(t), h2(t), h3(t), h4(t)) ∈ (H1(I))4 : h1(1) − h2(1) = h3(1)− h4(1)}.

Then the weak form of (5.3)-(5.8) is: Find (k2l , (W (t), V (t), w(t), v(t)) 6= 0) ∈ C × H(I),
such that for all (h1(t), h2(t), h3(t), h4(t)) ∈ H(I),

∫

I

(D+
l+2V (t)−D−

l−1W (t))(D+
l+2h1(t)−D−

l−1h2(t))(t+ 1)2dt

−
∫

I

(D+
l+2v(t)−D−

l−1w(t))(D
+
l+2h3(t)−D−

l−1h4(t))(t+ 1)2dt

= k2l (2l + 1)
R2

4
(
1

l

∫

I

(ñ(t)V (t)h1(t)− v(t)h3(t))(t+ 1)2dt

+
1

l + 1

∫

I

(ñ(t)W (t)h2(t)− w(t)h4(t))(t+ 1)2dt). (5.9)

Let HN = H(I) ∩ P 4
N , then the discrete form of (5.9) is: Find (k2Nl, (WN , VN , wN , vN ) 6=

0) ∈ C×HN , such that for all (h1N (t), h2N (t), h3N (t), h4N (t)) ∈ HN ,

∫

I

(D+
l+2VN (t)−D−

l−1WN (t))(D+
l+2h1N (t)−D−

l−1h2N (t))(t+ 1)2dt

−
∫

I

(D+
l+2vN (t)−D−

l−1wN (t))(D+
l+2h3N (t)−D−

l−1h4N (t))(t+ 1)2dt

= k2Nl(2l + 1)
R2

4
(
1

l

∫

I

(ñ(t)VN (t)h1N (t)− vN (t)h3N (t))(t+ 1)2dt

+
1

l + 1

∫

I

(ñ(t)WN (t)h2N (t)− wN (t)h4N (t))(t+ 1)2dt). (5.10)

We now construct a set of basis functions for HN . Let

ϕi(t) = Li(t)− Li+2(t), (i = 0, 1, · · · , N − 2), ϕN−1 =
1− t

2
, ϕN = 1.
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Setting

ψj(t) = (ϕj(t), 0, 0, 0), ψN+j (t) = (0, ϕj(t), 0, 0), ψ2N+j (t) = (0, 0, ϕj(t), 0),

ψ3N+j(t) = (0, 0, 0, ϕj (t)), ψ4N (t) = (ϕN (t), 0, ϕN (t), 0),

ψ4N+1(t) = (ϕN (t), ϕN (t), 0, 0), ψ4N+2(t) = (0, 0, ϕN (t), ϕN (t)),

where j = 0, 1, · · · , N − 1. It is clear that

HN = span{ψ0(t), ψ1(t), · · · , ψ4N+2(t)}.

We shall look for

(W,V,w, v) =
4N+2
∑

i=0

αiψi(t). (5.11)

Now, plugging the expression of (5.11) in (5.10), and taking (h1N (t), h2N (t), h3N (t), h4N (t))
through all the basis functions in HN , we will arrive at the following linear eigenvalue
system:

AU = k2NlBU , (5.12)

where U = (α0, α1, · · · , α4N+2)
T , A and B are the corresponding stiff matrix and mass

matrix, respectively .
Note that the stiff matrix A (resp. A) and the mass matrix B (resp. B) in (5.2) (resp. (5.12))
are all sparse for the constant n. Thus either direct or iterative eigen solvers can be
efficiently applied in parallel. For the case of variable n, since one is mostly interested
in a few smallest transmission eigenvalues, it is most efficient to solve (5.2) (resp. (5.12))
by using a shifted inverse power method (cf., for instance, [20]) which requires solving,
repeatedly for different righthand side f (resp. f̃),

(A− λa(τl)B)Ul = f (resp. (A− k2alB)U = f̃), (5.13)

where λa(τl) (resp. kal) is some approximate value for the transmission eigenvalue λN (τl)
(resp. kNl). The above system can be efficiently solved by the Schur-complement approach,
we refer to [21] for a detailed description on a related problem. In summary, the approximate
transmission eigenvalue problem (5.2) (resp. (5.12)) can be solved very efficiently.

6 Numerical experiments

We now perform a sequence of numerical tests to study the convergence behavior and show
the effectiveness of our algorithm. We operate our programs in MATLAB 2015b.

6.1 Homogeneous medium n

We take R = 1, n = 16, and l = 1, 2, 3 in our examples. Numerical results for the first
four eigenvalues with different l and N are listed in Tables 6.1-6.3 for the TE mode and in
Tables 6.4-6.6 for the TM mode, respectively.
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Table 6.1 The first four eigenvalues of the TE mode for l = 1 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.460855902327352 2.309268980991891 3.142098536003481 4.004131427018431
15 1.460842273223355 2.309270674683650 3.141592652865679 4.028313168694923
20 1.460855902076009 2.309270674683547 3.141592653589792 4.028312376370235
25 1.460855902076010 2.309270674683545 3.141592653589794 4.028312376370704
30 1.460855902076010 2.309270674683548 3.141592653589792 4.028312376370695

Table 6.2 The first four eigenvalues of the TE mode for l = 2 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.764042417090797 2.631690641913292 3.465152456664587 4.304027448259460
15 1.764042422029338 2.631678257808169 3.465236228216971 4.293583051636833
20 1.764042422029338 2.631678257809425 3.465236224179554 4.293582919867683
25 1.764042422029339 2.631678257809425 3.465236224179551 4.293582919866948
30 1.764042422029338 2.631678257809422 3.465236224179552 4.293582919866945

Table 6.3 The first four eigenvalues of the TE mode for l = 3 and different N in unit ball

N 1st 2nd 3rd 4th

10 2.061050417316723 2.949614759058087 3.789381768848592 4.729312472707909
15 2.061050433015994 2.949488215613814 3.792296568087934 4.619875856328957
20 2.061050433015994 2.949488215659479 3.792296458205384 4.619887058309071
25 2.061050433015994 2.949488215659483 3.792296458205412 4.619887058253892
30 2.061050433015993 2.949488215659481 3.792296458205412 4.619887058253892

Table 6.4 The first four eigenvalues of the TM mode for l = 1 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.165407223825574 2.045867252670490 3.158017632244895 3.442289242670909
15 1.165407223827102 2.045867782103358 3.418097647742193 4.292461561664239
20 1.165407223827106 2.045867782103363 3.418097651533288 4.292488875027842
25 1.165407223827098 2.045867782103357 3.418097651533263 4.292488875029357
30 1.165407223827108 2.045867782103361 3.418097651533326 4.292488875029386

Table 6.5 The first four eigenvalues of the TM mode for l = 2 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.475116524235235 2.340653677153939 3.231276889331592 3.354682219133095
15 1.475116524493845 2.340657592735246 3.233313705482311 4.557043549625480
20 1.475116524493846 2.340657592735365 3.233313708702767 4.557097304644416
25 1.475116524493844 2.340657592735367 3.233313708702756 4.557097304725269
30 1.475116524493843 2.340657592735366 3.233313708702761 4.557097304725263

Table 6.6 The first four eigenvalues of the TM mode for l = 3 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.777410985980160 2.656258796160595 3.455344578108596 3.582237584322505
15 1.777410996101287 2.656264636190942 3.512014047361030 4.421816274456907
20 1.777410996101286 2.656264636197187 3.512014051598614 4.421843661628902
25 1.777410996101286 2.656264636197187 3.512014051598621 4.421843661635361
30 1.777410996101284 2.656264636197187 3.512014051598614 4.421843661635358
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We see from Tables 6.1-6.6 that numerical eigenvalues achieve at least fourteen-digit accu-
racy with N ≥ 25. As a comparison, we list in Table 6.7 the results in [10] computed by
the finite element method with mesh size h ≈ 0.2. We observe that numerical eigenvalues
listed in Table 6.7 have only two- to three-digit accuracy, while our method captured at
least fourteen-digit accuracy with much less computational efforts.

Note that the multiplicity of the eigenvalue can be predicted by |m| ≤ l. For l = 1,
we have m = 0,±1 and hence the first eigenvalue has multiplicity 3; for l = 2, we have
m = 0,±1,±2 and therefore the second eigenvalue has multiplicity 5. In general, the j-th
eigenvalue has multiplicity 2j + 1. The first three numbers (read in horizontal) in Table
6.7 are for the TM mode with l = 1, which compared with the first column in Table 6.4;
the second three numbers are for the TE mode with l = 1, which compared with the first
column in Table 6.1; the next five numbers are for the TM mode with l = 2, which compared
with the first column in Table 6.5; the following five numbers are for the TM mode with
l = 2, which compared with the first column in Table 6.2; the last seven numbers in Table
6.7 are for the TE mode with l = 3, which compared with the first column in Table 6.6.

Table 6.7 Computed Maxwell’s transmission eigenvalues for the unit ball

1.1741 1.1717 1.1721 1.4665 1.4667 1.4671 1.4824 1.4828
1.4828 1.4830 1.4836 1.7690 1.7690 1.7698 1.7700 1.7705
1.7857 1.7859 1.7862 1.7865 1.7867 1.7868 1.7872

In order to further demonstrate accuracy and efficiency of our algorithm, we use numeri-
cal solutions with N = 60 as reference solutions and plot errors of approximated eigenvalues
with different N in Figures 1-6. We observe exponential decay in all cases.
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Figure 1: Errors between numerical and ref-
erence solution of the TE mode for l = 1.

10 15 20 25 30
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

E
rr

or

 

 
1st
2nd
3rd
4th

Figure 2: Errors between numerical and ref-
erence solutions of the TM mode for l = 1.

6.2 Inhomogeneous medium n

We take R = 1, n = 8 + 4r2, and l = 1 in our examples. Numerical results of the first four
eigenvalues with different N are listed in Table 6.8 for the TE mode and in Table 6.9 for
the TM mode, respectively.
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Figure 3: Errors between numerical and ref-
erence solutions of the TE mode for l = 2.
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Figure 4: Errors between numerical and ref-
erence solutions of the TM mode for l = 2.
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Figure 5: Errors between numerical and ref-
erence solutions of the TE mode for l = 3.
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Figure 6: Errors between numerical and ref-
erence solutions of the TM mode for l = 3.

Table 6.8 The first four eigenvalues of the TE mode for l = 1 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.924760241224309 3.066320509754762 4.953581565194202 6.219217568046522
15 1.924760240239596 3.066318451356159 4.944962746965171 6.162042706007884
20 1.924760240239595 3.066318451356097 4.944962719618220 6.162013704025296
25 1.924760240239596 3.066318451356097 4.944962719618172 6.162013703949516
30 1.924760240239597 3.066318451356096 4.944962719618174 6.162013703949522

Table 6.9 The first four eigenvalues of the TM mode for l = 1 and different N in unit ball

N 1st 2nd 3rd 4th

10 1.546722576754737 3.418052693123285 4.366864963075772 4.640915773722154
15 1.546722576768443 3.418109299464758 4.616102608978945 6.423176009030875
20 1.546722576768448 3.418109299467635 4.616102624493460 6.425723290604534
25 1.546722576768440 3.418109299467642 4.616102624493454 6.425723292013815
30 1.546722576768443 3.418109299467622 4.616102624493481 6.425723292013920

We see from Tables 6.8-6.9 that numerical eigenvalues achieve at least thirteen-digit ac-
curacy with N ≥ 25. Here again, we use numerical solutions with N = 60 as reference
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solutions and plot the errors in Figure 7-8.
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Figure 7: Errors between numerical and ref-
erence solutions of the TE mode for l = 1.
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Figure 8: Errors between numerical and ref-
erence solutions of the TM mode for l = 1.

7 Conclusions

In summary, the method developed in this paper is a first but important step towards a
robust and accurate algorithm for more general transmission eigenvalue problems which
will be the subject of our future work.
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