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An efficient semi-implicit solver for direct numerical simulation
of compressible flows at all speeds
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Abstract

We develop a semi-implicit algorithm for time-accurate simulation of the compressible Navier-Stokes equations,
with special reference to wall-bounded flows. The method is based on linearization of the partial convective fluxes
associated with acoustic waves, in such a way to suppress, orat least mitigate the acoustic time step limitation.
Together with replacement of the total energy equation withthe entropy transport equation, this approach avoids the
inversion of block-banded matrices involved in classical methods, which is replaced by less demanding inversion of
standard banded matrices. The method is extended to deal with implicit integration of viscous terms and to multiple
space dimensions through approximate factorization, and used as a building block of third-order Runge-Kutta time
stepping scheme. Numerical experiments are carried out forisotropic turbulence, plane channel flow, and flow in a
square duct. All available data support higher computational efficiency than existing methods, and saving of resources
ranging from 85% under low-subsonic flow conditions, to about 50% in supersonic flow.
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1. Introduction

Compressible wall-bounded flows play an important role in many aerospace applications of industrial and aca-
demic interest. The direct numerical solution (DNS) of the compressible Navier-Stokes equations for wall-bounded
turbulent flows has recently become affordable owing to the large increase in available computer power, and canonical
incompressible flows have been simulated up to high Reynoldsnumber [1]. However, it is know that the numerical
solution of the compressible Navier-Stokes equations is significantly more time consuming than their incompressible
counterpart, partly owing to the inherently higher number of floating point operations (flops) per grid point, but mainly
because of the much smaller time step imposed by the acousticstability restriction. In free-shear flows, conventional
explicit algorithms can still be used efficiently as long as the typical Mach number is of the order of unity. However,
wall-bounded flows inevitably include regions with near stagnant flow and tiny grid spacing adjacent to solid surfaces,
which makes the acoustic time step limitation in the wall-normal direction dominant, even at high bulk Mach num-
bers. Besides being dictated by stability considerations,time step limitations in turbulent flows also have a physical
interpretation, as in order to capture the relevant physicsof transport phenomena with given speed (sayU) on a mesh
with given size (say∆), time steps no larger than∆/U should be used. Hence, CFL numbers (defined as the ratio of
the time advancement step to the maximum allowed time step for explicit time integration) should always be of the
order of unity for genuine DNS. In compressible flows, information simultaneously propagate at the hydrodynamic
and at the acoustic speed. However, acoustic waves typically make a negligible contribution to the overall energetics
of turbulent flows [2]. Hence, with the obvious exception of cases where acoustic instabilities play an important role,
such as in certain combustion applications [3] or in direct simulation of aerodynamic noise [4], using a time step which
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Figure 1: Inviscid time step limitation in the coordinate directions as from Eqn. (1) as a function of the reference
Mach numberM0. In panel (a) we show∆tx (solid),∆ty (dashed),∆tz (dot-dashed). In panel (b) we show the ratios
∆tx/∆ty (solid),∆tz/∆ty (dot-dashed). For reference, in panel (a) we report with a grey line the ‘incompressible’ time
limitation given in Eqn. (2). The symbols denote the time step limits for the ATI algorithm as dictated by accuracy
(circles) and stability (squares), as discussed in Section3.2.

allows to resolve the hydrodynamic (vortical) mode while giving up accurate representation of acoustic phenomena
may be a legitimate choice, which actually subtends much of the research carried out for low-speed solvers.

It is the goal of this paper to develop a numerical algorithm for direct numerical simulation of compressible flow
which is capable of seamless efficient operation throughout the Mach number range, down to nearly incompressible
conditions. The algorithm is at the same time meant to removeor at least alleviate the acoustic time step limitation in
the presence of solid boundaries. To gain a clearer perception for the problem, we refer to a canonical compressible
boundary layer flow over a flat surface, or flow in a planar channel. Let∆x, ∆zbe the mesh spacings in the streamwise
and spanwise directions, respectively, and let∆y be the minimum mesh spacing in the wall-normal direction, assuming
unit CFL number, the time step limitations associated with the discretization of the convective terms in the coordinate
directions are

∆t+x = ∆x+

max(u+0+c+0 ,c
+
w) = ∆x+M0

√
C f /2 min

(
1, 1

1+M0

√
Tw/T0

)
,

∆t+y =
∆y+

c+w
= ∆y+M0

√
C f /2

∆t+z = ∆z+

max(c+0 ,c
+
w) = ∆z+M0

√
C f /2 min

(
1,
√

Tw/T0

)
,

(1)

where the ‘+’ superscript is used to denote quantities made nondimensional with respect to local wall units, namely
the friction velocityuτ = (τw/ρw)1/2, and the viscous length scaleδv = νw/uτ, the subscript 0 is used to denote flow
properties at the centerline (for channels) and at the free-stream (for boundary layers), andw to denote wall properties,
with C f = 2τw/(ρ0u2

0). It should be noted that if acoustic waves are suppressed, as is the case of strictly incompressible
flow, the time step is controlled by the streamwise direction, and

∆t+I = ∆x+
√

C f /2. (2)

The viscous time step limitation is mainly effective in the wall-normal direction, and in wall units one has

∆t+yv = ∆y+2
. (3)

For the sake of graphical representation of the above formulas, we assume: i) the distance of the first point from
the wall is∆y+w ≈ 0.7, which is the maximum value for which accurate turbulence statistics are obtained [5]; ii) the
minimum mesh spacing in the wall-normal direction is∆y = 2∆yw, which can be achieved by staggering the mesh in
the vertical direction, thus alleviating the stability restrictions [5]; iii) the wall-parallel mesh spacings are∆x+ = 8,
∆z+ = 4, which is typical for DNS; iv) the wall is isothermal, withTw = T0. Figure 1 shows the inviscid time step
restrictions according to Eqn. (1) as a function of the reference Mach numberM0, scaled by

√
C f /2 (panel a), and

as a fraction of the wall-normal allowed time step (panel b).Inefficiency of explicit compressible solvers is apparent
in the low-Mach-number regime, where vanishingly small time steps are required. Time steps comparable to those
achievable in incompressible flow are only possible starting at M0 ≈ 3. With the exception of hypersonic flow, the
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most restrictive time limitation is that associated with the vertical direction, and an increase by at least a factor of
two can be gained by removing it (see panel b). It is also interesting to note that the acoustic time limitation in the
spanwise size is more restrictive than the streamwise limitation up toM0 ≈ 1, whereas at supersonic Mach numbers
the convective limitation inx is controlling. Removing the wall-normal acoustic time limitation in supersonic flow
is sufficient to achieve a similar time step as in incompressible flow, whereas in subsonic flow it is also necessary
to remove the acoustic time restriction in the wall-parallel directions. We further note that the normalized viscous
time limitation∆t+yv/

√
C f /2, with ∆t+yv given in Eqn. (3) is always much weaker than the convective ones, provided

∆y+ ∼ 1, and considering that the range of friction coefficients typically accessed by DNS is 2×10−3 ≤ C f ≤ 6×10−3.
While the above estimates are reported for typical DNS mesh spacings, the case of wall-resolved RANS, LES and
DES is even more severe, as the aspect ratio of near-wall cells is substantially higher, hence making suppression of
the wall-normal time step restriction mandatory for any practical calculation.

All the above-mentioned difficulties are well know to the CFD community, and a variety of techniques have been
developed to cope with the numerical stiffness of the compressible Navier-Stokes equations. The chief choice in this
respect has traditionally been the use of (semi-)implicit time integration schemes. A landmark contribution in this
sense was given by Beam and Warming [6, 7], who proposed a time-implicit algorithm for the solution of the Navier-
Stokes equations in conservative form based on linearization of the convective and viscous flux vectors, coupled
with approximate factorization [8] to handle multiple space dimensions. However, the method is computationally
expensive as it requires the inversion of 5× 5 block-banded systems of equations, which is more expensive than,
e.g. standard banded systems. In this respect we note that, whereas the classical Thomas algorithm for tridiagonal
matrices requires a number of floating point operations (flops) of O(6N) (whereN is the number of grid points in
a given coordinate direction), its block-tridiagonal version requiresO(3N(M3 + M2)) flops, whereM (= 5 in the
Beam-Warming algorithm) is the size of each block [9]. The computational cost is about twice as much in the case of
periodic boundary conditions [10]. Pulliam and Chaussee [11] developed a variant of the Beam-Warming algorithm
which involves the inversion of standard tridiagonal systems rather than block matrices, with large saving of computer
time, but with loss of accuracy and stability in the case of unsteady simulations [12]. Algorithms of the Beam-
Warming family are at the heart of highly successful aerospace CFD software [13, 14]. Algorithms which avoid
inversion of banded systems of equations have also been designed [15], which may be useful for efficient parallel
implementation. However, those algorithms require point-wise iterative procedures whereby the right-hand-side of
the equations must be evaluated several times per time step,with unclear outcome in terms of overall efficiency.

Alternative approaches to circumvent the stiffness of compressible Navier-Stokes equations rely on the use of
pre-conditioning techniques, based on the attempt to change the eigenvalues of the system of equations in order to
remove the large disparity of wave speeds. This is accomplished by pre-multiplying the time derivatives by a matrix
that slows the speed of the acoustic waves down toward the fluid speed [16, 17]. Preconditioning is the choice of
election for steady-state application, however its extension to unsteady flow problem is not straightforward, requiring
the use of dual time stepping techniques, namely inner iterations in terms of a pseudo-time [18, 19, 20]. However, the
number of iterations per physical time step can be very large, with subsequent loss of computational efficiency.

Specialized algorithms for the Navier-Stokes equations have been also developed for the low-Mach number
regime, which allow to account for temperature-dependent density variations, as is typically the case in combustion.
All these variable-density algorithms are based on the ideathe only the terms which bring an acoustic contribution
should be advanced implicitly in time, in such a way that the acoustic time limitation is removed. Numerical schemes
of this kind were pioneered by Casulli and Greenspan [21], who proposed to treat implicitly only the pressure term
in the momentum equation and the dilatation term in the internal energy equation, which results in having to solve
an elliptic equation for pressure, with large incurred overhead. Pierce [22], Wall et al. [23] extended the classical
pressure-correction method [24] to variable-density flowsby solving a Helmholtz equation for the pressure correc-
tion, and the use of sub-iterations. LES results were carried out in which a time step forty times larger than the explicit
case was achieved, with modest computational cost overhead. Moureau et al. [25] developed an implicit scheme for
the removal of the acoustic limitation which also relies on the solution of a Helmholtz equation, however without
reverting to sub-iterations, with an overhead CPU time of about 25% with respect to standard incompressible solvers.
Hence it appears that, in one way or another, algorithms tailored for the near-incompressible regime involve either
iterative procedures and/or the inversion of elliptic systems of equations. The latter can only be carried out efficiently
in the case that periodic directions are present, which allows for the use of direct solvers [26].
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In this paper we develop a novel semi-implicit algorithm forthe compressible Navier-Stokes equations based on
a modification of the basic Beam-Warming linearization, thus avoiding any iterative procedure. The algorithm is
presented in Section 2, which also includes a discussion of the treatment of viscous terms, accurate time integration,
and extension to multiple space dimensions. Numerical examples are given in Section 3, which include DNS of
turbulent flows from the low subsonic to the supersonic regime. Final remarks and suggestions for future work are
given in Section 4.

2. Formulation of the algorithm

The Navier-Stokes equations for a compressible perfect gasare considered in which the total energy equation is
replaced with the entropy equation

∂w
∂t
= −

3∑

i=1

∂fi

∂xi
+

3∑

i=1

∂fv
i

∂xi
+ S = R, (4)

wherew is the vector of the conserved variables,fi andfv
i are the convective and viscous fluxes in thei-th direction,

with x, y, z the streamwise, wall normal and spanwise directions andS the source terms in the entropy equation,

w =


ρ

ρu j

ρs

 , fi =


ρui

ρuiu j + pδi j
ρui s

 , fv
i =


0
σi j

−qi/T

 , S =



0
0
0
0

σℓm
T
∂uℓ
∂xm
− qℓ

T2
∂T
∂xℓ


, (5)

whereρ is the density, p is the pressure, T is the temperature andui , i = 1, 2, 3 the velocity components in thei-th
direction (also denoted asu, v,w in the following), s = cv ln (pρ−γ) is the entropy per unit mass,qi andσi j are the
components of the viscous stress tensor and heat flux,

σi j = µ

(
∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j

)
, qi = −k

∂T
∂xi
, (6)

whereµ is the dynamic viscosity,k = µcp/Pr the thermal conductivity andPr = 0.72 the molecular Prandtl number.
As shown in the following, the use of the entropy equation is instrumental to achieving efficient implicit treatment

of the acoustic terms, and also yield benefits in terms of increased robustness as compared to algorithms solving for
the energy equation [27, 28]. On the other hand, this settingprevents correct capturing of shock waves [29], hence
in the following we restrict ourselves to discussing the case of smooth compressible flows. Possible extensions to
shocked flows will be discussed in the Conclusions.

2.1. Implicit treatment of acoustic waves
In order to remove the time acoustic time step limitation in the generic coordinate direction (say,y), we proceed

by splitting the convective flux vector into a purely advective part, and a part which supports acoustic fluctuations,
namely

fy = fc
y + fa

y , fc
y =



0
ρuv
ρv2

ρvw
ρvs


, fa

y =



ρv
0
p
0
0


. (7)

In a linearized setting, this splitting yields full decoupling of the acoustic, vortical and entropy modes [30]. The main
advantage for numerical purposes is that the acoustic partial flux Jacobian has a simple structure,

Aa
y =
∂fa

y

∂w
=



0 0 1 0 0
0 0 0 0 0

p
ρ

(
γ − s

Cv

)
0 0 0 p

ρCv

0 0 0 0 0
0 0 0 0 0



. (8)

4



Splitting of the flux vectors into pressure and velocity contributions was previously considered by Steger [31], Barth
and Steger [32], based on the attempt to reduce the block sizein the implicit operator as compared to the Beam-
Warming algorithm. In essence, these decompositions amounted [13] to isolating the pressure gradient in the mo-
mentum equation and the pressure flux in the total energy equation. However, besides being consistent with wave
decomposition in a linear setting, we find the splitting (8) to be vastly more robust in practice.

We proceed to discretize Eqn. (4) between two consecutive time levelsn andn + 1, by evaluating explicitly the
advective partial flux, and evaluating the acoustic partialflux implicitly, upon linearization about time leveln, namely

fa
y

n+1
= fa

y
n
+ Aa

y
n
(
wn+1 − wn

)
+O(∆t2), (9)

thus obtaining (
I + ∆t

∂

∂y
Aa

y
n

)
∆wn = −∆t

∂fn
y

∂y
+ ∆tFn

xz = ∆t Rn, (10)

where∆wn = wn+1−wn, and where terms containing transverse flux derivatives andviscous terms are lumped together
into Fxz. It is important to note that, because of the special structure of the acoustic flux Jacobian, the inversion of
Eqn. (10) is much simpler than for the standard Beam-Warmingalgorithm, which relies on linearization of the full
convective flux. Component-wise, Eqn. (10) reads



∆wn
1 + ∆t

∂

∂y
∆wn

3 = ∆tRn
1 (11a)

∆wn
2 = ∆tRn

2 (11b)

∆wn
3 + ∆t

∂

∂y
(Aa

y
n
31
∆wn

1) + ∆t
∂

∂y
(Aa

y
n
35
∆wn

5) = ∆tRn
3 (11c)

∆wn
4 = ∆tRn

4 (11d)

∆wn
5 = ∆tRn

5. (11e)

Hence, the time increments of entropy and of the transverse velocity components can be evaluated explicitly, thus
effectively reducing the system of equations to be solved to



∆wn
1 + ∆t

∂

∂y
∆wn

3 = ∆tRn
1 (12a)

∆wn
3 + ∆t

∂

∂y
(Aa

y
n
31
∆wn

1) = ∆tRn
3 − ∆t

∂

∂y
(Aa

y
n
35
∆wn

5) =: ∆tR̂n
3, (12b)

which, upon discretization of the space derivative operators, yields a 2× 2 block-banded system of equations, whose
solution returns the time increments ofρ andρv. Equation (12) can be further rearranged by formally solving for∆wn

1
in (12a), to obtain (

1− ∆t2Aa
y

n
31

∂2

∂y2
− ∆t2

∂Aa
y
n
31

∂y
∂

∂y

)
∆wn

3 = ∆tR̂n
3 − ∆t2

∂

∂y

(
Aa

y
n
31

Rn
1,

)
, (13)

whose solution requires the inversion of a single ordinary banded system of equations, with bandwidth depending on
the accuracy in the approximation of the first and second space derivative operators. Back substitution into (12a) then
returns the time increment of density. Although apparentlycumbersome, we find the latter formulation to be more
computationally efficient than the solution of the 2× 2 block system given by Eqn. (12), while the accuracy is nearly
identical. Hence, Eqn. (13) is used in all the forthcoming numerical applications.

2.2. Implicit treatment of viscous terms

If needed, viscous terms can also be handled implicitly, using approximate factorization. For that purpose, we
split the viscous flux derivatives in Eqn. (4) into a Laplacian term and a difference thereof

∂fv
y

∂y
= µ
∂2v
∂y2
+ ϕv

y, (14)
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wherev is the vector of primitive variables,v =
[
ρ, u, v,w,T

]
, andµ is the viscosity matrix,

µ =



0 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 µ 0
0 0 0 0 µCp

PrT


. (15)

Freezing for simplicity the viscosity matrix at time stepn, the following linearization is considered,
(
µ
∂2v
∂y2

)n+1

≈
(
µ
∂2v
∂y2

)n

+ µn∂
2P∆wn

∂y2
, (16)

whereP is the Jacobian of the conservative-to-primitive variables transformation

P =
∂v
∂w
=



1 0 0 0 0
− u
ρ

1
ρ

0 0 0
− v
ρ

0 1
ρ

0 0
−w
ρ

0 0 1
ρ

0
−T s
ρcv

0 0 0 T
ρcv



. (17)

Following similar steps as done to arrive at Eqn. (10), the previous linearization yields
(
I + ∆t

∂

∂y
Aa

y
n − ∆t µn ∂

2

∂y2
Pn

)
∆wn = ∆t Rn, (18)

which can be approximately factorized as follows
(
I + ∆t

∂

∂y
Aa

y
n
) (

I − ∆t µn ∂
2

∂y2
Pn

)
∆wn = ∆t Rn. (19)

Inversion of Eqn. (19) can be then carried out into two sequential sub-steps,
(
I + ∆t

∂

∂y
Aa

y
n

)
∆̃w

n
= ∆tRn, (20)

(
I − ∆t µn ∂

2

∂y2
Pn

)
∆wn = ∆̃w

n
, (21)

whereby the provisional time increment̃∆w
n

is first evaluated through the inversion procedure for the convective
fluxes described in section 2.1. The actual time increment∆wn is then evaluated by inverting the viscous implicit
operator at the left-hand-side of Eqn. (21) which, in light of the special structure of the Jacobian matrix given in
Eqn. (17), can be carried out sequentially, as follows



∆wn
1 = ∆̃w1

n
(22a)

(
1− µn

22∆t
∂2

∂y2
Pn

22

)
∆wn

2 = ∆̃w2
n
+ µn

22∆t
∂2

∂y2

(
Pn

21∆wn
1

)
(22b)

(
1− µn

33∆t
∂2

∂y2
Pn

33

)
∆wn

3 = ∆̃w3
n
+ µn

33∆t
∂2

∂y2

(
Pn

31∆wn
1

)
(22c)

(
1− µn

44∆t
∂2

∂y2
Pn

44

)
∆wn

4 = ∆̃w4
n
+ µn

44∆t
∂2

∂y2

(
Pn

41∆wn
1

)
(22d)

(
1− µn

55∆t
∂2

∂y2
Pn

55

)
∆wn

5 = ∆̃w5
n
+ µn

55∆t
∂2

∂y2

(
Pn

51∆wn
1

)
(22e)

The inversion of four standard narrow-banded systems of equations is thus required for the purpose. We point out
that the present procedure is again different than the original Beam-Warming procedure, which relies on linearization
of the full viscous flux vectors, hence requiring the inversion of block-banded systems. However, we have found that
numerical robustness is very weakly affected by the approximations herein made.
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2.3. Multiple space dimensions
As done for the case of a single space dimension, the acousticand viscous time limitations can be removed in

more than one direction through direction-wise factorization of the implicit operators. For instance, assuming that all
space directions are handled in semi-implicit fashion, Eqn. (19) is replaced by

Ln∆wn = Rn, (23)

where

Ln =

(
I + ∆t

∂

∂x
Aa

x
n

) (
I + ∆t

∂

∂y
Aa

y
n

) (
I + ∆t

∂

∂z
Aa

z
n

)
·

(
I − ∆tµn ∂

2

∂x2
Pn

) (
I − ∆tµn ∂

2

∂y2
Pn

) (
I − ∆tµn ∂

2

∂z2
Pn

)
. (24)

Hence, repeated application of the procedures developed inthe previous two sections is sufficient. Practical application
of Eqn. (24) requires some caution, as the order in which the various inversions are carried out is not immaterial. We
have found that, in order to remove possible spurious anisotropies, it is a good practice to shuffle the order of the
implicit left-hand-side operators.

2.4. Time integration
Time accuracy and stability enhancement is typically obtained by Runge-Kutta schemes as wrapper to one-step

implicit procedures outlined in the previous paragraphs. Low-storage algorithms are a popular choice, and here
we consider for example Wray’s three-stage, third-order scheme [33], adapted to semi-implicit integration of the
convective terms,

L(ℓ)∆w(ℓ) = αℓ∆tR(ℓ−1) + βℓ∆tR(ℓ), ℓ = 0, 1, 2, (25)

where∆w(ℓ) = w(ℓ+1) − w(ℓ), w(0) = wn, wn+1 = w(3), the left-hand-side implicit operator is a generalizationof
Eqn. (24), namely

L(ℓ) =

(
I + γℓ∆t

∂

∂x
Aa

x
(ℓ)

) (
I + γℓ∆t

∂

∂y
Aa

y
(ℓ)

) (
I + γℓ∆t

∂

∂z
Aa

z
(ℓ)

)
·

(
I − γℓ∆tµ(ℓ) ∂

2

∂x2
P(ℓ)

) (
I − γℓ∆tµ(ℓ) ∂

2

∂y2
P(ℓ)

) (
I − γℓ∆tµ(ℓ) ∂

2

∂z2
P(ℓ)

)
,

and the integration coefficient areαℓ = (0, 17/60,−5/12),βℓ = (8/15, 5/12, 3/4),γℓ = αℓ + βℓ. We have found this
time stepping scheme to work well in practice, however because of the partial flux linearization, the method is only
formally first-order accurate in time.

A genuinely third-order accurate semi-implicit Runge-Kutta scheme was derived by Nikitin [34], which can be
conveniently cast as follows



Ln∆w(1) =
2
3
∆tRn (26a)

L(1)∆w(2) = −
(
w(1) − wn

)
+

1
3
∆tRn +

1
3
∆tR(1) (26b)

∆w(3) =
1
2

(
w(2) − wn

)
−

3
2
α∆w(2) (26c)

L(3)∆w(4) = −
(
w(3) − wn

)
+

1
4
∆tRn +

3
4
∆tR(1) (26d)

L(4)∆w(5) = −
(
w(4) − wn

)
+

1
4
∆tRn +

3
4
∆tR(2), (26e)

whereγℓ = γ is the same for all sub-steps, andα are free parameters (hereafter, we assumeα = 1, γ = 0.6). With
respect to Wray’s algorithm, Eqn. (26) is not in low-storageform (although it can be implemented using three arrays
only), and it involves an additional inversion, but no additional evaluation of the explicit operator. Despite the slight
computational overhead, all the following analysis and numerical experiments are carried out with algorithm (26)
because of its higher formal accuracy.
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Figure 2: Smallest eigenvalue of amplification matrix at CFL= 1 (a), CFL = 2 (b), CFL = 5 (c), for explicit
Runge-Kutta time integration (dotted lines), semi-implicit time integration (withα = 1, γ = 0.6, solid lines), and
fully implicit Beam-Warming scheme (dashed lines), at MachnumberM0 = 0.3. Curves are only shown for stable
schemes.

2.5. Stability analysis

The stability of the semi-implicit algorithm herein developed is here analyzed within the simplified setting of the
linearized inviscid acoustic equations in the presence of amean flowu0, which can be cast as

∂v
∂t
+ A
∂v
∂x
= 0, v =

[
ρ′

u′

]
, A =

[
u0 ρ0

c2
0/ρ0 u0

]
, (27)

where the subscript 0 refers to the unperturbed state, and primes to fluctuations thereof. A semi-implicit discretization
of (27) can be obtained by considering the linearized counterpart of the partial flux Jacobian (8), namely

Aa =

[
u0 ρ0

c2
0/ρ0 0

]
. (28)

Backward Euler discretization of Eqn. (27) then yields
(
I − ∆tAa ∂

∂x

)
∆vn = −∆tA

∂vn

∂x
. (29)

Transforming Eqn. (29) to Fourier space with the tokenv(x, t) = v̂(t)eikx yields the amplification matrix of the scheme

G = I −
(
I − i∆tk̃Aa

)−1
i∆tk̃A, (30)

wherevn+1 = Gvn, andk̃ is the modified wavenumber corresponding to the discretization of the space first derivative
operator [35]. Von Neumann’s stability condition requiresthat both eigenvalues ofG are no larger than unity in
modulus. Assuming for instance second-order central differencing (i.e.̃kh= sin(kh)), it turns out that the scheme (29)
is unconditionally stable forM0 = u0/c0 . 1. A similar analysis can be carried out (details are omitted) for the
Runge-Kutta time stepping scheme of Eqn. (26). In the case ofexplicit time integration (i.e.γ = 0) the scheme is
stable for CFL.

√
3, where CFL= (u0 + c0)∆t/h. In the case of semi-implicit time integration (withγ = 0.6,α = 1)

unconditional stability is achieved forM0 . 0.525.
To provide an idea of the accuracy of the algorithm, in Fig. 2 we show the smallest eigenvalues of the amplification

matrix at various Courant numbers for explicit and semi-implicit Runge-Kutta time integration. For reference, the
amplification factor of the baseline Beam-Warming algorithm is also shown. At CFL numbers lower than the stability
limit for explicit discretization (panel (a)), the semi-implicit and the fully explicit algorithms have similar performance,
whereas the Beam-Warming algorithm has somewhat higher diffusion. At higher Courant numbers the explicit scheme
goes unstable, and semi-implicit and fully implicit schemehave similar performance, with slightly less diffusive
behavior of Beam-Warming at higher CFL. Notably, all schemes have unit amplification factor at the Niquist limit
(kh= π), hence they are not dissipative in the sense of Kreiss. Thisis the reason why schemes of the Beam-Warming
family are typically used with explicit addition of artificial diffusion terms [6, 12].
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Scheme CPU/CPUEXPL

EXPL 1.
ATI 1.14
ATI-CYC 1.16
AVTI 1.32
AVTI-CYC 1.37
BW 1.67
BW-CYC 2.21
BWV 1.87
BWV-CYC 2.33

Table 1: Computational cost for implicit schemes compared to fully explicit discretization. Figures refer to implicit
treatment of a single space direction.

2.6. Spatial discretization

All the convective derivatives at the right-hand-side operator defined in Eqn. (4) are discretized using conserva-
tive, energy-preserving formulas [36], based on application of standard central difference approximations to the fully
expanded form of the convective derivatives [37]. In the explicit case this discretization allows to exactly preserve the
total kinetic energy from convection, and conserve the entropy variance in the inviscid limit, hence providing strong
nonlinear stability to the algorithm without introducing any numerical diffusion [28, 38]. We have found that this
feature is very important to prevent nonlinear divergence caused by accumulation of aliasing errors, especially in light
of the fact that the semi-implicit algorithms herein dealt with have zero numerical diffusion at the highest resolved
wavenumbers. Hence, no explicit addition of artificial diffusion is needed for the semi-implicit algorithm herein
developed. Viscous terms are also expanded to Laplacian form and discretized by means of central formulas [39].

Consistency requires that the same finite-difference operators are applied to the implicit and the implicit operators.
Hence, for the sake of simplicity in the present work we only consider second-order space discretizations, which only
require the inversion of standard tridiagonal matrices. However, extension of the algorithm to higher-order spatial
accuracy is straightforward, and it can be achieved by considering compact-difference approximations with narrow
stencil [12], or by simply widening the stencil. In the latter case, fourth-order order spatial accuracy can be achieved
at the price of inverting standard pentadiagonal matrices,and so on.

2.7. Computational efficiency

Achieving higher computational efficiency is obviously the main motivation for using implicit algorithms, which
are inherently more computationally intensive than explicit ones. Computational cost figures for the present semi-
implicit algorithm and for the Beam-Warming scheme are listed in table 1, as a fraction of the cost for the baseline
explicit algorithm. Cost estimates are given for implicit treatment of convective terms only, and for simultaneous
treatment of convective and viscous terms, referring to a single space direction. Also for ease of later reference, we
use the following notation to distinguish the various schemes. The semi-implicit scheme herein developed is referred
to as either ATI (acoustic terms-implicit, as in Eqn. (10)),or ATVI in the case that both convective and viscous terms
are handled implicitly (Eqn. (18)). As a basis of comparison, cost figures for the Beam-Warming (BW) scheme,
also with implicit treatment of the viscous terms (BWV) are reported. Cost figures are provided for both the case
of periodic (CYC) and non-periodic boundary conditions. Itshould be noted that the cost estimates refer to actual
parallel computations, and also include the computationaloverhead for data transposition across processors in non-
contiguous space directions. Of course, precise figures maychange depending on the specific implementation of the
algorithm and/or machine architecture, but we trust that the numbers listed in the table provide a reasonably robust
estimate. It appears that the computational overhead of theATI algorithm is rather limited, hence implicit treatment of
a given space direction is computationally advantageous provided the attainable time step is at least 20% higher than
for fully explicit. Substantial improvement of computational efficiency over standard Beam-Warming discretization
is also apparent, for comparable expected accuracy (recalling Fig. 2).
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Figure 3: Numerical simulations of homogeneous isotropic turbulence atMt = 0.3, k0 = 4, Reλ = 30, with ATI-XYZ
scheme. Time history of turbulence kinetic energy (a), and pressure variance (b), and spectra of velocity (c) and
pressure fluctuations (d) att/τ = 5. Solid lines denoted reference results obtained with explicit time discretization
at CFL = 1. Symbols denote results obtained with ATI scheme at CFL= 1 (squares), CFL= 2 (circles), CFL= 3
(triangles), CFL= 4 (down-triangles), CFL= 5 (diamonds).

3. Numerical results

The performance of the semi-implicit algorithm herein developed is tested through application to a series of
canonical compressible turbulent flows, in order of increasing physical complexity.

3.1. Isotropic turbulence

Numerical simulations of homogeneous isotropic turbulence have been frequently carried out to evaluate the
properties of numerical schemes for turbulent flows [40]. DNS are here carried out in a triply periodic (2π)3 box,
discretized with 642 collocation points. At the initial time pressure and density are taken to be uniform, and solenoidal
velocity perturbations are added according to the procedure introduced by Blaisdell et al. [41], with prescribed three-
dimensional energy spectrum

E(k) = 16

√
2
π

u2
0

k0

(
k4

k0

)4

e−2(k/k0)2
, (31)

wherek0 = 4 is the most energetic mode. The initial turbulent Mach number is given byMt0 =
√

3u0/c0 = 0.3, and
the Reynolds number based on the Taylor microscale isReλ = 2ρ0u0/(µ0k0) = 30. Time is made nondimensional with
respect to the eddy turnover timeτ = 2

√
3/(k0Mt0c0).
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Figure 4: Numerical simulations of homogeneous isotropic turbulence atMt = 0.3, k0 = 4, Reλ = 30, with BW-XYZ
scheme. Time history of turbulence kinetic energy (a), and pressure variance (b), and spectra of velocity (c) and
pressure fluctuations (d) att/τ = 5. Solid lines denoted reference results obtained with explicit time discretization
at CFL = 1. Symbols denote results obtained with BW scheme at CFL= 1 (squares), CFL= 2 (circles), CFL= 3
(triangles), CFL= 4 (down-triangles),
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Case Mb M0 Reb Reτ ∆y+w ∆x+ ∆z+ ∆t+x ∆t+y ∆t+z ∆t+yv ∆t+ CPU
CH01-EXPL 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.0077 1
CH01-ATI-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.077 0.15
CH01-BW-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026 1.3 0.077 0.82
CH15a-EXPL 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.20.099 1
CH15a-ATI-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.2 0.24 0.48
CH15a-BW-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.20.24 0.70
CH15b-EXPL 1.5 1.28 6000 220 0.15 10.8 4.08 0.32 0.11 0.27 0.062 0.021 1
CH15b-AVTI-Y 1.5 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.27 0.062 0.21 0.13
CH15b-BWV-Y 1.5 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.27 0.062 0.21 0.19

Table 2: Flow parameters for DNS of plane channel flow (CH).Mb andReb are the bulk Reynolds and Mach number,
respectively.M0 = Mb

√
Tw/Tb is the reference Mach number, introduced when discussing Eqn. (1). The computa-

tional box dimension is 4πh× 2h× 4/3π for all flow cases.∆y+w is the distance of the first grid point from the wall,
and∆x+, ∆z+ are the streamwise and spanwise grid spacings. The∆t+i are the allowable time steps in the coordinate
directions, estimated according to Eqns. (1),(3).∆t+ is the time step actually used in the simulations. CPU is the cost
to cover a unit time interval, compared to the standard fullyexplicit algorithm (EXPL).

The results obtained with ATI and BW discretization in all space directions are shown in Figs. 3 and 4, respectively,
at various Courant numbers. Stable results are obtained forCFL . 5.1 for ATI, and CFL . 4.8 for BW. Loss
of stability at larger time steps is due to flux linearizationand/or factorization errors, which prevent unconditional
stability in practical computations [12]. The time behavior of turbulence kinetic energy (panel (a)) is well predicted
at all Courant numbers up to the stability limit, whereas pressure fluctuations (panel (b)) are overdamped starting
at CFL ≈ 3, in both ATI and BW. The different behavior is caused by the fact that pressure receives contributions
of both hydrodynamic and acoustic nature. As seen in the previous Section, acoustic waves undergo significant
damping at high Courant number. This is even clearer in the velocity and pressure spectra, shown in panels (c) and
(d), respectively. While velocity spectra are perfectly captured at all Courant numbers, pressure spectra undergo
numerical damping, especially at intermediate wavenumbers, which is easily understood based on the amplification
factors shown in Fig. 2. Given the similar performance of thetwo implicit methods for this test case, ATI is certainly
preferable owing to its lower computational cost, which allows to achieve an effective speed-up over the explicit case
(see table 1) of about a factor of three, whereas BW yields almost the same efficiency.

3.2. Turbulent flow in plane channel

Channel flow is the simplest prototype of wall-bounded flows,and it has been studied by many authors in the
incompressible [42, 43, 1], as well as in the compressible regime [44, 45, 5]. The controlling parameters are the
bulk Mach numberMb = ub/cw = 1.5 (whereub is the average velocity across the channel thickness, andcw the
sound speed at the wall temperature), and the bulk Reynolds numberReb = 2ρbubh/µw = 6000 (whereρb is the bulk
density,µw the dynamic viscosity at the wall, andh the channel half height). All DNS are initialized with a parabolic
velocity profile with superposed small perturbations, whereas density and pressure are uniform. Periodic boundary
conditions are applied in the streamwise (x) and spanwise (z) coordinate directions, and no-slip, isothermal boundary
conditions are applied at the walls. A spatially uniform forcing is applied to the streamwise momentum equation,
and dynamically adjusted in time to maintain constant mass flow rate [5]. Favre density-weighted decomposition is
applied to separate mean values from fluctuations, namelyφ = φ̃ + φ′′, with φ̃ = ρφ/ρ).

The main flow parameters are listed in Tab. 2. Three flow cases have been considered, one atMb = 0.1 (denoted as
CH01), and two atMb = 1.5 (denoted as CH15a-b), the latter two only differing in the distance of the first grid point
from the wall. Reference DNS have been carried out with fullyexplicit time discretization, at CFL≈ 1, which are
used as a basis of comparison for the ATI and BW algorithms. Inorder to understand the effectiveness of the (semi-
)implicit algorithms, in Tab. 2 we report the time step restrictions associated with the three coordinate directions, as
estimated from Eqns. (1),(3), as well as the actual time stepused in the DNS, all in wall units. As expected, in all
flow cases the time step limitation in the wall-normal direction is the most restrictive. Although larger time steps are
allowed on grounds of sole numerical stability, all DNS havebeen carried out at the maximum time step for which
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Case Mb M0 Reb Reτ ∆y+w ∆x+ ∆z+ ∆t+x ∆t+y ∆t+z ∆t+yv ∆t+ CPU
DU02-EXPL 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 0.019 0.019 1.69 0.018 1
DU02-ATI-XYZ 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 0.019 0.019 1.69 0.18 0.15

Table 3: DNS dataset for square duct (DU) flow.Mb andReb are the bulk Reynolds and Mach number, respectively.
M0 = Mb

√
Tw/Tb is the reference Mach number, introduced when discussing Eqn. (1). The computational box

dimension is 8πh× 2h× 2h. ∆y+w is the distance of the first grid point from the wall, and∆x+,∆z+ are the streamwise
and spanwise grid spacings. The∆t+i are the allowable time steps in the coordinate directions, estimated according
to Eqns. (1),(3).∆t+ is the time step actually used in the simulations. CPU is the cost to cover a unit time interval,
compared to the standard fully explicit algorithm (EXPL).

accurate results are obtained, which corresponds toCLF ≈ 1 for the fully explicit simulations. For ease of reference,
the maximum time steps associated with accuracy and stability restrictions are also reported in Fig. 1(a) with circle
and square symbols, respectively.

As a first test, we consider flow at low subsonic Mach number (CH01), for which the explicit time advancement
step is very small, hence we apply implicit treatment is all coordinate directions (XYZ). We find that, although the
wall-normal time step restrictions can be removed, the allowed time step for accurate calculations cannot substantially
larger than for the streamwise convective restriction (seeFig. 1(a)). This is probably due to inherent mesh anisotropy
in DNS of wall-bounded flows. In fact, mesh spacing is over-resolved in the wall-normal direction, hence the relevant
values of the reduced wavenumberkh are small, which allows to operate at high values of CFL with little error,
recalling (see Fig. 2) that the dissipation error grows withboth kh and CFL. On the other hand, the typical wall-
parallel mesh spacings used in DNS are barely sufficient to resolve the smallest scales of turbulence, hence the typical
reduced wavenumbers are higher, and time accuracy is a factor in that case. We find that both ATI and BW are
capable of boosting the time step by about a factor of ten, with efficiency gain of 85% for ATI, and results almost
indistinguishable from the fully explicit case (see below). Still, the time step is far from that allowed by incompressible
solvers (again, see Fig. 1(a)). This issue will be further recalled in the concluding discussion.

To show effectiveness in removing the wall-normal acoustic time limitation is supersonic flow calculations, in flow
case CH15a the first grid point is placed sufficiently far from the wall that the viscous limitation is ineffective. Hence,
the implicit algorithms are applied only in the wall-normaldirection (Y), and viscous terms are handled explicitly.
The ATI and BW algorithms are both found to effectively suppress the wall-normal acoustic time step limitation,
and achieve the same maximum time step for accurate flow resolution, corresponding to about CFL= 2.4. Hence,
accounting for the cost figures given in table 1, we find a speed-up of about a factor of two for the ATI algorithm, and
30% gain with BW.

To prove effectiveness of the implicit treatment of the viscous terms proposed in Section (2.2), in flow case CH15b
the first grid point is placed closer to the wall, in such a way that the viscous time limitation also becomes relevant,
after the acoustic one. Both wall-normal time step restrictions are suppressed through use of the AVTI and BWV
algorithms, hence the achieved time step is similar to flow case CH15a. Both algorithms here achieve CFL≈ 10, at a
cost which is a small fraction of the fully explicit algorithm.

For the sake of comparison, in Figs. 5-7 we show the main statistics for the flow cases listed in Table 2. As
anticipated, excellent agreement is observed between implicit algorithms and the reference explicit solution, including
pressure and temperature fluctuations, which is especiallysatisfactory.

3.3. Turbulent flow in square duct

As a further step in complexity we consider the flow inside a straight duct with square cross-section. This flow
has been the subject of several DNS studies in the incompressible regime [46, 47, 48], all limited to low Reynolds
number. One of the main difficulties that arise when dealing with square duct flows is the long averaging time
necessary to attain convergence of even the basic mean flow statistics, caused by the extremely long typical time
scales of secondary corner eddies. In fact, Pinelli et al. [48] reported that an averaging time of about 8000h/ub was
needed to have symmetric statistics in the four quadrants ofthe cross section. Hence, it is clear that efficient numerical
methods are needed to study turbulent compressible flow in ducts. Numerical simulations have been here carried out
(see Table 3 for the main flow parameters) at the same Reynoldsnumber as Pinelli et al. [48], and sufficiently low
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Figure 5: Flow statistics for DNS of flow case CH01 (see Table 2): mean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH01-EXPL (squares), CH01-ATI-XYZ (circles), CH01-BW-XYZ (trian-
gles).Tτ = qw/(ρwcpuτ) is the friction temperature.
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Figure 6: Flow statistics for DNS of flow case CH15a (see Table2): mean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH15a-EXPL (squares), CH15a-ATI-Y (circles), CH15a-BW-Y (trian-
gles).
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Figure 7: Flow statistics for DNS of flow case CH15b (see Table2): mean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH15b-EXPL (squares), CH15b-AVTI-Y (circles), CH15b-BWV-Y (tri-
angles).
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Figure 8: DNS of flow in square duct (see Table 3): mean velocity (a), Reynolds stresses (b), r.m.s. pressure (c)
and r.m.s. temperature (d), for DU02-EXPL (squares), DU02-ATI-XYZ (circles). Triangle symbols denote reference
incompressible DNS data [48].

Mach number (Mb = 0.2) that direct comparison with incompressible data is possible. The duct lengthLx = 8h
(where 2h is the length of each side of the duct), and the time window forcollecting the flow statistics is the same
used by Pinelli et al. [48]. As in plane channel flow, a spatially uniform forcing is applied to the momentum equation
to maintain a time constant mass flow rate. Note that, unlike in channel flow, the mesh is also non-uniformly spaced in
thezdirection, hence a range of mesh spacings is reported in Table 3. A reference fully explicit numerical simulation
has been carried out and used as a basis of reference for the ATI algorithm, here applied to all coordinate directions.
As seen in Table 3, the corresponding CFL number is about unity. As in the case of plane channel, DNS were carried
out at increasing values of CFL, until deviations from the reference data were found, to determine the maximum
allowed time step for accuracy. It appears that accurate results of the semi-implicit algorithm are recovered up to
CFL ≈ 10. Again, implicit treatment of thex direction is not capable of fully suppressing the corresponding time step
limitation, owing to the emergence of accuracy issues. Similar to channel flow, use of the ATI algorithm allows for
about 85% cost reduction. Figure 8 confirms that excellent matching of the flow statistics is found among DU02-ATI,
DU02-EXPL and the data of Pinelli et al. [48], except for somedifferences in the wall-normal Reynolds stress and the
pressure r.m.s., which may be due to the greater importance of acoustic waves in the presence of a fully confined flow
geometry.

4. Conclusions

A novel semi-implicit algorithm for time-accurate solution of the compressible Navier-Stokes equations has been
developed, which is capable to operate efficiently all the way from low subsonic to supersonic flow conditions. The
main features of the algorithm are as follows: i) use of the entropy transport equation instead of total energy conser-
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vation; ii) Beam-Warming-like linearization of the partial convective flux associated with acoustic propagation; iii)
energy-consistent discretization of the convective derivatives in the explicit part of the time-advancement operator;
iv) semi-implicit treatment of viscous fluxes based on isolation of Laplacian terms; v) approximate factorization for
implicit treatment of multiple space directions; vi) third-order accurate Runge-Kutta time integration, according to the
algorithm proposed by Nikitin [34]. The main advantage of the algorithm is that, unlike the classical Beam-Warming
scheme, it avoids the computationally expensive inversionof 5 × 5 block-banded matrices, but rather of standard
banded matrices (tridiagonal matrices in the case of second-order accurate space discretization). Specifically, a single
banded matrix inversion is needed for implicit treatment ofthe convective terms, whereas five matrix inversions are
needed if viscous terms are also handled implicitly. The cost overhead with respect to standard explicit algorithms (see
Table 1) is quite modest, ranging from 20% to 30%, for each space direction to be handled implicitly. Modification
of existing compressible flow solvers to incorporate the present method is straightforward, as the explicit part of the
algorithm is unchanged.

The method nominally allows unconditional stability for low-Mach-number flows. However, flux linearization and
approximate factorization reduce the stability margins, and CFL number of the order of 5-10 are achieved in practical
computations, which is probably less than achievable with iterative methods. However, compared to compressible flow
algorithms based on pre-conditioning, the present method avoids use of inner time iterations, whose computational
cost is difficult to estimate a-priori. The other possible shortcoming of the method is the use of the entropy equation,
which is instrumental to achieve (approximate) separationof hydrodynamic from acoustic effects. While use of the
entropy equation yields improved numerical stability, it also makes proper capturing of shock waves difficult, as the
equations are not in conservation form. We have found that this issue can be fixed by locally reverting to a total energy
formulation for the explicit time increment in the presenceof shocks, as identified through a shock sensor [38]. The
resulting time increments are then converted to the entropyincrements, prior to application of the implicit operator.

Although the algorithm herein developed has in principle much wider range of applications, the main focus of this
paper was on DNS of compressible wall-bounded flows, which isnotoriously plagued by severe time step restrictions
inherited from the wall-normal acoustic and viscous stability conditions. We have found that the wall-normal acoustic
time limitation can be effectively removed through semi-implicit treatment. The same conclusion also applies to the
viscous time step restriction, although the most efficient way to remove it is placing the first grid point sufficiently
away from the wally+ ≈ 0.5− 0.7, and using suitable staggering [5], with no effect of accuracy. The wall-parallel
stability restrictions can also be suppressed through semi-implicit treatment. However, accuracy considerations lead
to the practical rule (see Fig. 1) that the time step cannot bemuch larger than the one stemming from the streamwise
time limitation. Hence, we suggest that in low-subsonic flowboth the wall-normal and the spanwise convective terms
are handled implicitly, whereas the streamwise terms can beevaluated explicitly. The resulting saving of computer
time can then be of the order of 85% with respect to a fully explicit solver. In high subsonic or supersonic flow,
implicit treatment of the wall-normal convective derivatives is sufficient, with typical savings of to order of 50%, in
line with theoretical estimates.

We foresee that the present technique can be fruitfully extended to numerical simulation of wall-bounded tur-
bulent flows with time-accurate models, such as LES or DES [49]. In that case, given the higher aspect ratio of
near-wall cells, higher gains are expected. Advantages with respect to classical algorithms based on Beam-Warming
linearization are also expected for steady RANS applications. Indeed, although the present algorithm is in principle
only capable of suppressing the acoustic time step limitation, it is found to be at least as stable as Beam-Warming in
practical computations.
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