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Abstract

We develop a semi-implicit algorithm for time-accurate slation of the compressible Navier-Stokes equations,
with special reference to wall-bounded flows. The methodasell on linearization of the partial convective fluxes
associated with acoustic waves, in such a way to suppress, least mitigate the acoustic time step limitation.
Together with replacement of the total energy equation thighentropy transport equation, this approach avoids the
inversion of block-banded matrices involved in classicatimods, which is replaced by less demanding inversion of
standard banded matrices. The method is extended to déaimpgticit integration of viscous terms and to multiple
space dimensions through approximate factorization, aed as a building block of third-order Runge-Kutta time
stepping scheme. Numerical experiments are carried ousdtnopic turbulence, plane channel flow, and flow in a
square duct. All available data support higher computatieficiency than existing methods, and saving of resources
ranging from 85% under low-subsonic flow conditions, to &k&fi%6 in supersonic flow.
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1. Introduction

Compressible wall-bounded flows play an important role imynaerospace applications of industrial and aca-
demic interest. The direct numerical solution (DNS) of thenpressible Navier-Stokes equations for wall-bounded
turbulent flows has recently becom@madable owing to the large increase in available computeepoand canonical
incompressible flows have been simulated up to high Reyrm]d&ber[ﬂl]. However, it is know that the numerical
solution of the compressible Navier-Stokes equationgisitantly more time consuming than their incompressible
counterpart, partly owing to the inherently higher numtdloating point operations (flops) per grid point, but mainly
because of the much smaller time step imposed by the acatsliity restriction. In free-shear flows, conventional
explicit algorithms can still be usedfiently as long as the typical Mach number is of the order afyutlowever,
wall-bounded flows inevitably include regions with neagstant flow and tiny grid spacing adjacent to solid surfaces,
which makes the acoustic time step limitation in the waltmal direction dominant, even at high bulk Mach num-
bers. Besides being dictated by stability consideratitmg step limitations in turbulent flows also have a physical
interpretation, as in order to capture the relevant physitsansport phenomena with given speed (83yon a mesh
with given size (say), time steps no larger thakyU should be used. Hence, CFL numbers (defined as the ratio of
the time advancement step to the maximum allowed time stepxfdlicit time integration) should always be of the
order of unity for genuine DNS. In compressible flows, infation simultaneously propagate at the hydrodynamic
and at the acoustic speed. However, acoustic waves typitalke a negligible contribution to the overall energetics
of turbulent flows|[2]. Hence, with the obvious exception aées where acoustic instabilities play an important role,
such as in certain combustion applicatidﬂs [3] orin direntgation of aerodynamic noise [4], using a time step which
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Figure 1: Inviscid time step limitation in the coordinateeatitions as from Eqn[]1) as a function of the reference
Mach numbeiMo. In panel (a) we showt, (solid), Aty (dashed)At, (dot-dashed). In panel (b) we show the ratios
Aty/Aty (solid), At/ Aty (dot-dashed). For reference, in panel (a) we report withegt ine the ‘incompressible’ time
limitation given in Eqn.[(R). The symbols denote the timgdtmits for the ATI algorithm as dictated by accuracy
(circles) and stability (squares), as discussed in SeBiBn

allows to resolve the hydrodynamic (vortical) mode whileilgg up accurate representation of acoustic phenomena
may be a legitimate choice, which actually subtends muchefésearch carried out for low-speed solvers.

It is the goal of this paper to develop a numerical algoritlomdirect numerical simulation of compressible flow
which is capable of seamlesSieient operation throughout the Mach number range, down aolyyéncompressible
conditions. The algorithm is at the same time meant to remoe least alleviate the acoustic time step limitation in
the presence of solid boundaries. To gain a clearer pecorefar the problem, we refer to a canonical compressible
boundary layer flow over a flat surface, or flow in a planar clearicet Ax, Az be the mesh spacings in the streamwise
and spanwise directions, respectively, andlebe the minimum mesh spacing in the wall-normal directiosyasng
unit CFL number, the time step limitations associated withdiscretization of the convective terms in the coordinate

directions are
_ A + _ . 1

N AX*Mo+/C/2 mm(l,m \/T,/To),

At = A - Ay*Mo /C(/2 (1)

At = m = AZ"Mo +/C(/2 mln(l, \/TW/TO),
where the 4+’ superscript is used to denote quantities made nondimeakiaith respect to local wall units, namely
the friction velocityu. = (rw/pw)¥?, and the viscous length scaig = v/u., the subscript 0 is used to denote flow
properties at the centerline (for channels) and at thegtessam (for boundary layers), ando denote wall properties,

withCt = ZTW/(poUS). It should be noted that if acoustic waves are suppresseslflae case of strictly incompressible
flow, the time step is controlled by the streamwise directaomd

AtF = AX* \[Cy/2. )

The viscous time step limitation is mainlytective in the wall-normal direction, and in wall units onesha

At = Ay (3)

For the sake of graphical representation of the above fasyule assume: i) the distance of the first point from
the wall isAyf, ~ 0.7, which is the maximum value for which accurate turbulertaéstics are 0btaine&|[5]; i) the
minimum mesh spacing in the wall-normal directiom\is = 2Ay,,, which can be achieved by staggering the mesh in
the vertical direction, thus alleviating the stability trétions [5]; iii) the wall-parallel mesh spacings ate* = 8,

AZ" = 4, which is typical for DNS; iv) the wall is isothermal, wiffy, = To. Figureldl shows the inviscid time step
restrictions according to Eqri](1) as a function of the i&iee Mach numbeW,, scaled by+/Cs/2 (panel a), and
as a fraction of the wall-normal allowed time step (panellbgfficiency of explicit compressible solvers is apparent
in the low-Mach-number regime, where vanishingly smalldisteps are required. Time steps comparable to those
achievable in incompressible flow are only possible stgréitMy ~ 3. With the exception of hypersonic flow, the
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most restrictive time limitation is that associated witle trertical direction, and an increase by at least a factor of
two can be gained by removing it (see panel b). It is also @stiang to note that the acoustic time limitation in the
spanwise size is more restrictive than the streamwisedtioit up toMg ~ 1, whereas at supersonic Mach numbers
the convective limitation irx is controlling. Removing the wall-normal acoustic time iliation in supersonic flow

is suficient to achieve a similar time step as in incompressible, flelereas in subsonic flow it is also necessary
to remove the acoustic time restriction in the wall-patalieections. We further note that the normalized viscous
time limitation At/ +/C¢/2, with At given in Eqgn.[(B) is always much weaker than the convectiespprovided
Ay* ~ 1, and considering that the range of friction fia@ents typically accessed by DNS is2072 < C; < 6x1073.
While the above estimates are reported for typical DNS mpskisgs, the case of wall-resolved RANS, LES and
DES is even more severe, as the aspect ratio of near-walisesubstantially higher, hence making suppression of
the wall-normal time step restriction mandatory for anycpical calculation.

All the above-mentioned diculties are well know to the CFD community, and a variety ehi@ques have been
developed to cope with the numericaltess of the compressible Navier-Stokes equations. Thédiéce in this
respect has traditionally been the use of (semi-)impligietintegration schemes. A landmark contribution in this
sense was given by Beam and Warmiﬂd:[& 7], who proposed aitirpkcit algorithm for the solution of the Navier-
Stokes equations in conservative form based on lineasizaif the convective and viscous flux vectors, coupled
with approximate factorizatiorﬂ[S] to handle multiple spatimensions. However, the method is computationally
expensive as it requires the inversion ok% block-banded systems of equations, which is more expertisan,
e.g. standard banded systems. In this respect we note thateas the classical Thomas algorithm for tridiagonal
matrices requires a number of floating point operations ¢llap O(6N) (whereN is the number of grid points in
a given coordinate direction), its block-tridiagonal versrequiresO(3N(M? + M?)) flops, whereM (= 5 in the
Beam-Warming algorithm) is the size of each biddk [9]. Thmpatational cost is about twice as much in the case of
periodic boundary conditionﬁllO]. Pulliam and Chaus@h& fieveloped a variant of the Beam-Warming algorithm
which involves the inversion of standard tridiagonal sgsteather than block matrices, with large saving of computer
time, but with loss of accuracy and stability in the case oftaady simulations [12]. Algorithms of the Beam-
Warming family are at the heart of highly successful aerospaFD softwarem 4]. Algorithms which avoid
inversion of banded systems of equations have also beenglsIELE], which may be useful fofffecient parallel
implementation. However, those algorithms require puiige iterative procedures whereby the right-hand-side of
the equations must be evaluated several times per timevgtdpjnclear outcome in terms of overattieiency.

Alternative approaches to circumvent thefaiss of compressible Navier-Stokes equations rely on theofis
pre-conditioning techniques, based on the attempt to ahérgyeigenvalues of the system of equations in order to
remove the large disparity of wave speeds. This is accohmgaliby pre-multiplying the time derivatives by a matrix
that slows the speed of the acoustic waves down toward tmasfhfiedu_ﬂ 7]. Preconditioning is the choice of
election for steady-state application, however its extant® unsteady flow problem is not straightforward, reagri
the use of dual time stepping techniques, namely innettitersin terms of a pseudo—tirﬂa@ 20]. However, the
number of iterations per physical time step can be very |laxiid subsequent loss of computationfil@ency.

Specialized algorithms for the Navier-Stokes equationgHzeen also developed for the low-Mach number
regime, which allow to account for temperature-dependensity variations, as is typically the case in combustion.
All these variable-density algorithms are based on the ideanly the terms which bring an acoustic contribution
should be advanced implicitly in time, in such a way that tbeusstic time limitation is removed. Numerical schemes
of this kind were pioneered by Casulli and Greensﬁh [21h moposed to treat implicitly only the pressure term
in the momentum equation and the dilatation term in the in@keenergy equation, which results in having to solve
an elliptic equation for pressure, with large incurred tvead. Pierce [22], Wall et aI:L|23] extended the classical
pressure-correction methd:T_t24] to variable-density flwsolving a Helmholtz equation for the pressure correc-
tion, and the use of sub-iterations. LES results were @hatg in which a time step forty times larger than the explicit
case was achieved, with modest computational cost overlivagreau et aI.|E5] developed an implicit scheme for
the removal of the acoustic limitation which also relies ba solution of a Helmholtz equation, however without
reverting to sub-iterations, with an overhead CPU time @ftal25% with respect to standard incompressible solvers.
Hence it appears that, in one way or another, algorithmertadl for the near-incompressible regime involve either
iterative procedures ayat the inversion of elliptic systems of equations. The fatn only be carried outiéciently
in the case that periodic directions are present, whichvallor the use of direct solverls [26].
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In this paper we develop a novel semi-implicit algorithm flee compressible Navier-Stokes equations based on
a modification of the basic Beam-Warming linearization,stlawoiding any iterative procedure. The algorithm is
presented in Sectidd 2, which also includes a discussioneofreatment of viscous terms, accurate time integration,
and extension to multiple space dimensions. Numerical gi@snare given in Sectidd 3, which include DNS of
turbulent flows from the low subsonic to the supersonic regifinal remarks and suggestions for future work are
given in Sectiofi 4.

2. Formulation of the algorithm

The Navier-Stokes equations for a compressible perfecagasonsidered in which the total energy equation is
replaced with the entropy equation
w5 of & ofY

AL - I i Ay 4
at izlaxiJ"i;a)qJ" ’ @

wherew is the vector of the conserved variablgsandfy are the convective and viscous fluxes in tth direction,
with x,y, zthe streamwise, wall normal and spanwise directions3he source terms in the entropy equation,

0

P pu; 0 0
w=|pujf, fi=|puuj+ péij], ff=| oij |, S= 0 , (5)

pS puUS -Gi/T 0

T O _ G 0T

T 0%m T2 0%,

wherep is the density, p is the pressure, T is the temperatureugnid= 1, 2, 3 the velocity components in theth
direction (also denoted asv, w in the following),s = c,In(pp~7) is the entropy per unit masg, ando; are the
components of the viscous stress tensor and heat flux,

o Ui (9Uj 2 Ouk - o kaT
wherey is the dynamic viscosity = uc,/Pr the thermal conductivity anBlr = 0.72 the molecular Prandtl number.
As shown in the following, the use of the entropy equatiom&rumental to achievingfécient implicit treatment
of the acoustic terms, and also yield benefits in terms ok@meed robustness as compared to algorithms solving for
the energy equatioﬂlZIZ_,JZB]. On the other hand, this seftiegents correct capturing of shock waved [29], hence
in the following we restrict ourselves to discussing theecassmooth compressible flows. Possible extensions to
shocked flows will be discussed in the Conclusions.

(6)

2.1. Implicit treatment of acoustic waves

In order to remove the time acoustic time step limitationhia generic coordinate direction (s&y, we proceed
by splitting the convective flux vector into a purely adveetpart, and a part which supports acoustic fluctuations,
namely

0 PV
puv 0
fy=1fy +13, fJ= V2|, f9=1p|. (7
PVW 0
pVS 0

In a linearized setting, this splitting yields full decoing of the acoustic, vortical and entropy modes [30]. Themai
advantage for numerical purposes is that the acoustiapfitik Jacobian has a simple structure,

0 01 0 O

ofa 0 0 0 0 O

_ Y _|P P
s- % _lpG-g) 000 & ®

0 0 0 0 O

0 00 0 O



Splitting of the flux vectors into pressure and velocity cimitions was previously considered by Ste@ [31], Barth
and StegeﬂEZ] based on the attempt to reduce the blockirsittee implicit operator as compared to the Beam-
Warming algorithm. In essence, these decompositions ated@] to isolating the pressure gradient in the mo-
mentum equation and the pressure flux in the total energytiequaHowever, besides being consistent with wave
decomposition in a linear setting, we find the splittiily Bjpe vastly more robust in practice.

We proceed to discretize Egfil (4) between two consecutive kvelsn andn + 1, by evaluating explicitly the
advective partial flux, and evaluating the acoustic pafttial implicitly, upon linearization about time leva] namely

fo™ = 15"+ AJ" (W - w") + O(AP), 9)

thus obtaining

n

d an n (9fy n n
| + AtglAy AW = —Ata—y + AtFD, = AtR", (10)

whereAw" = w1 —w", and where terms containing transverse flux derivativevimogus terms are lumped together
into Fy.. It is important to note that, because of the special streaddi the acoustic flux Jacobian, the inversion of
Eqgn. [Z0) is much simpler than for the standard Beam-Warralggrithm, which relies on linearization of the full
convective flux. Component-wise, EqR.]10) reads

AW + At AV\P AR} (11a)
AW) = AtR” (11b)
A + At ( AW + At ( nAWE) = AR} (11c)
AW = AtR”4 (11d)
Awg = AtRE. (11e)

Hence, the time increments of entropy and of the transveskity components can be evaluated explicitly, thus
effectively reducing the system of equations to be solved to

AW] + At— yAV\P AtR] (12a)
o —
AW + At ( 3 AW) = AtR; — Ata/ (A3 AWE) =: AtRg, (12b)

which, upon discretization of the space derivative opesatgelds a 2< 2 block-banded system of equations, whose
solution returns the time incrementswéndpv. Equation[(IP) can be further rearranged by formally sgjor Aw]

in (IZ4), to obtain

2pan O 25 0 20 (pan

an al n

1- At Aygla S — At ay 3 AW] = AtR] — At ay( "R (13)
whose solution requires the inversion of a single ordinanyded system of equations, with bandwidth depending on
the accuracy in the approximation of the first and secondespgarvative operators. Back substitution irffo {12a) then
returns the time increment of density. Although apparectimbersome, we find the latter formulation to be more
computationally &icient than the solution of the2 2 block system given by Eqri_{{L2), while the accuracy is earl
identical. Hence, Eqnl{13) is used in all the forthcomingeuical applications.

2.2. Implicit treatment of viscous terms

If needed, viscous terms can also be handled implicithnaisipproximate factorization. For that purpose, we
split the viscous flux derivatives in Eqii] (4) into a Laplaciarm and a dierence thereof

ofY 62\/
6_))// = ”6_y2 + ‘Py, (14)
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wherev is the vector of primitive variables, = [p, u,v,w, T], andu is the viscosity matrix,

0000 O
O g OO0 O

u=|0 0 o 0 O . (15)
0 00u O

“Cp
OOOOPF

Freezing for simplicity the viscosity matrix at time stepthe following linearization is considered,

ov\™ [ v\" | a%PAW"
— ~|lu— , 16
(” 6y2) (” 6y2) a2 (10)
whereP is the Jacobian of the conservative-to-primitive varialifansformation
1 0 0 0 O
-4 200 0
_ 3_" -|-¥ 00 o (17)
W —TV;V 001 o0
- T
p—cvs 0 0 0
Following similar steps as done to arrive at Eqnl (10), trewijous linearization yields
0 \an 92
(I + Ata/A';‘ - Aty”a—sz”) AW" = AtR", (18)
which can be approximately factorized as follows
L+ arZaan)(, —Atp”a—zP” AW" = AtR" (19)
ay VY 0y? ‘
Inversion of Eqn.[(119) can be then carried out into two setiaksub-steps,
0 —n
| + At—AZ"|Aw = AtR", 20
(+ ay y) (20)
ot Lp)aw = AW (21)
Il 6y2 - ’

whereby the provisional time incremeAw’ is first evaluated through the inversion procedure for theveotive
fluxes described in sectidn 2.1. The actual time incremevit is then evaluated by inverting the viscous implicit
operator at the left-hand-side of Eqh.](21) which, in lightlee special structure of the Jacobian matrix given in
Eqn. [IT), can be carried out sequentially, as follows

AW = Aw," (22a)
n 9 n e n i n
1- pzzAta—yz Pl | AW) = Aw, + ,uzzA'[a—yz (P5.AW)) (22b)
0? —n 9
(1 - yg3Ata—yz Pg3) AW = Awg + ,ugsAta—yz (P3.AW)) (22¢)
n 5 n o n 0 n
1 Haabt Pl | AW, = Aw, + Haabt s (Ph.AW)) (22d)
92 —n 92
(1- e ) vt = "+ e (P (22¢)

The inversion of four standard narrow-banded systems odt@ns is thus required for the purpose. We point out
that the present procedure is agaifietient than the original Beam-Warming procedure, whiclesadin linearization
of the full viscous flux vectors, hence requiring the invensof block-banded systems. However, we have found that
numerical robustness is very weakljexted by the approximations herein made.
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2.3. Multiple space dimensions

As done for the case of a single space dimension, the acarsliziscous time limitations can be removed in
more than one direction through direction-wise factoi@aof the implicit operators. For instance, assuming that a
space directions are handled in semi-implicit fashion,.Hf8) is replaced by

L"AwW" = R", (23)
where
) i, )
L"= (I +Ata—XA§”)(I +Ata/A§”)(l +Ata—ZA;“).
92 82 92
| — Att"—P" ||l = Atu"—P"| (I — Atu"—P"]. 24
( “oxe )( Y. )( ”azz) 4)

Hence, repeated application of the procedures develofibd previous two sections isicient. Practical application
of Eqn. [2%) requires some caution, as the order in which éieus inversions are carried out is not immaterial. We
have found that, in order to remove possible spurious amigi@s, it is a good practice to dffie the order of the
implicit left-hand-side operators.

2.4. Time integration

Time accuracy and stability enhancement is typically atgdiby Runge-Kutta schemes as wrapper to one-step
implicit procedures outlined in the previous paragraph@wistorage algorithms are a popular choice, and here
we consider for example Wray’s three-stage, third-ordéeste l[__ab], adapted to semi-implicit integration of the
convective terms,

LOAWED = o, AtREY 4+ g,ARO,  £=0,1,2, (25)

whereAwW® = w&D — wO w0 = w" w1l = w®, the left-hand-side implicit operator is a generalizatain
Eqn. [23), namely

0 0 0
o — 0 (0) (0
LY = (I + ygAtaxA‘f(1 )(I + wAtayA? )(I + ygAtazA‘;1 )

© % o 0% 0 © 9% oo
| —’)/[At/.l WP | —’)/[At/.l 6—y2P | —’)/[At/.l ﬁp N

and the integration cdicient area, = (0,17/60,-5/12),8, = (8/15,5/12,3/4),y, = a, + B,. We have found this
time stepping scheme to work well in practice, however bseaf the partial flux linearization, the method is only
formally first-order accurate in time.

A genuinely third-order accurate semi-implicit Runge-t&scheme was derived by Nikitiﬂ34], which can be
conveniently cast as follows

L Aw® = éAtR“ (26a)
LOAW® = — (w® —w") + %AtR” + %AtR(l) (26b)
AW® = % (W(Z) - W”) - gaAW(Z) (26¢)
LEOAW® = — (W —w") + %AtR” + gAtR(l) (26d)
LOAW® = — (w® —w") + %AtR” + gAtR(Z), (26€)

wherey, = y is the same for all sub-steps, amdire free parameters (hereafter, we assumel, y = 0.6). With
respect to Wray’s algorithm, Eqii._(26) is not in low-storégen (although it can be implemented using three arrays
only), and it involves an additional inversion, but no adudtial evaluation of the explicit operator. Despite theldlig
computational overhead, all the following analysis and atioal experiments are carried out with algoritiml (26)
because of its higher formal accuracy.
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Figure 2: Smallest eigenvalue of amplification matrix at CEL1 (a), CFL = 2 (b), CFL = 5 (c), for explicit
Runge-Kutta time integration (dotted lines), semi-imipltone integration (withe = 1, y = 0.6, solid lines), and
fully implicit Beam-Warming scheme (dashed lines), at MacimberMy = 0.3. Curves are only shown for stable
schemes.

2.5. Stability analysis

The stability of the semi-implicit algorithm herein devp& is here analyzed within the simplified setting of the
linearized inviscid acoustic equations in the presenceméan flowug, which can be cast as

ov AaV_O’ V:[p}’ A:[Uo Po

i = 27
6'[+ [0).4 u C(zj/po Uo|’ (27)

where the subscript O refers to the unperturbed state, ameépto fluctuations thereof. A semi-implicit discretizarti
of (Z1) can be obtained by considering the linearized capatéof the partial flux Jacobiahl(8), namely

a_| Uo Lo
ool m -

Backward Euler discretization of Eqf_{27) then yields

0 ov"h
| — AtAZ— |AV" = —AtA —. 2
( t 6x) v t ox (29)

Transforming Eqn[{29) to Fourier space with the tokéx t) = U(t)e** yields the amplification matrix of the scheme
G =1 — (I - iAtRA?) " IALRA, (30)

wherev™! = Gv", andk is the modified wavenumber corresponding to the discrétizatf the space first derivative
operatorEiB]. Von Neumann'’s stability condition requitbat both eigenvalues d& are no larger than unity in
modulus. Assuming for instance second-order centtBédincing (i.ekh = sin(kh)), it turns out that the schen{e {29)
is unconditionally stable foMy = up/co < 1. A similar analysis can be carried out (details are omjtfed the
Runge-Kutta time stepping scheme of Eqnl (26). In the casxlfcit time integration (i.ey = 0) the scheme is
stable for CFLS V3, where CFL= (up + Go)At/h. In the case of semi-implicit time integration (with= 0.6, = 1)
unconditional stability is achieved fddy < 0.525.

To provide an idea of the accuracy of the algorithm, in Eig €2slvow the smallest eigenvalues of the amplification
matrix at various Courant numbers for explicit and semilioippRunge-Kutta time integration. For reference, the
amplification factor of the baseline Beam-Warming alganmitis also shown. At CFL numbers lower than the stability
limit for explicit discretization (panel (a)), the semi4uticit and the fully explicit algorithms have similar perfoance,
whereas the Beam-Warming algorithm has somewhat higfiesain. At higher Courant numbers the explicit scheme
goes unstable, and semi-implicit and fully implicit schehsve similar performance, with slightly lessffdisive
behavior of Beam-Warming at higher CFL. Notably, all scherhave unit amplification factor at the Niquist limit
(kh = r), hence they are not dissipative in the sense of Kreiss. i§liie reason why schemes of the Beam-Warming
family are typically used with explicit addition of artifai diffusion terms{ 6, 12].
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Scheme CPICPU:zxpL

EXPL 1.

ATI 1.14
ATI-CYC 1.16
AVTI 1.32
AVTI-CYC 1.37
BW 1.67
BW-CYC 2.21
BWV 1.87
BWV-CYC 2.33

Table 1: Computational cost for implicit schemes compacefily explicit discretization. Figures refer to implicit
treatment of a single space direction.

2.6. Spatial discretization

All the convective derivatives at the right-hand-side aper defined in Eqn[{4) are discretized using conserva-
tive, energy-preserving formuIaElSG], based on applicetif standard central fierence approximations to the fully
expanded form of the convective derivativies [37]. In theliexase this discretization allows to exactly presefwe t
total kinetic energy from convection, and conserve theagytvariance in the inviscid limit, hence providing strong
nonlinear stability to the algorithm without introducingyanumerical difusion @,L_S_B]. We have found that this
feature is very important to prevent nonlinear divergeraaesed by accumulation of aliasing errors, especially intlig
of the fact that the semi-implicit algorithms herein deaithwhave zero numerical fiusion at the highest resolved
wavenumbers. Hence, no explicit addition of artificiaffd$ion is needed for the semi-implicit algorithm herein
developed. Viscous terms are also expanded to Laplaciandod discretized by means of central formulas$ [39].

Consistency requires that the same finitdedence operators are applied to the implicit and the intjoérators.
Hence, for the sake of simplicity in the present work we orgsider second-order space discretizations, which only
require the inversion of standard tridiagonal matricesweleer, extension of the algorithm to higher-order spatial
accuracy is straightforward, and it can be achieved by denisig compact-dierence approximations with narrow
stencil [12], or by simply widening the stencil. In the lattase, fourth-order order spatial accuracy can be achieved
at the price of inverting standard pentadiagonal matriged,so on.

2.7. Computationalfgciency

Achieving higher computationatigciency is obviously the main motivation for using impliclgarithms, which
are inherently more computationally intensive than exippioes. Computational cost figures for the present semi-
implicit algorithm and for the Beam-Warming scheme areetisin tabldll, as a fraction of the cost for the baseline
explicit algorithm. Cost estimates are given for implicgdtment of convective terms only, and for simultaneous
treatment of convective and viscous terms, referring tonglsispace direction. Also for ease of later reference, we
use the following notation to distinguish the various schenThe semi-implicit scheme herein developed is referred
to as either ATI (acoustic terms-implicit, as in Eqn.J(1@y) ATVI in the case that both convective and viscous terms
are handled implicitly (Eqn[{18)). As a basis of comparisoost figures for the Beam-Warming (BW) scheme,
also with implicit treatment of the viscous terms (BWV) asported. Cost figures are provided for both the case
of periodic (CYC) and non-periodic boundary conditionsshbuld be noted that the cost estimates refer to actual
parallel computations, and also include the computatiomathead for data transposition across processors in non-
contiguous space directions. Of course, precise figuresamayge depending on the specific implementation of the
algorithm angor machine architecture, but we trust that the numberdlistéhe table provide a reasonably robust
estimate. It appears that the computational overhead @Thalgorithm is rather limited, hence implicit treatmerit o
a given space direction is computationally advantageoasged the attainable time step is at least 20% higher than
for fully explicit. Substantial improvement of computatal eficiency over standard Beam-Warming discretization
is also apparent, for comparable expected accuracy (ireg&lig.[2).
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Figure 3: Numerical simulations of homogeneous isotropibulence aM; = 0.3, kg = 4, Re; = 30, with ATI-XYZ
scheme. Time history of turbulence kinetic energy (a), aresgure variance (b), and spectra of velocity (c) and
pressure fluctuations (d) str = 5. Solid lines denoted reference results obtained withiekpime discretization

at CFL = 1. Symbols denote results obtained with ATl scheme at €FL (squares), CFl= 2 (circles), CFL= 3
(triangles), CFL= 4 (down-triangles), CFl= 5 (diamonds).

3. Numerical results

The performance of the semi-implicit algorithm herein deped is tested through application to a series of
canonical compressible turbulent flows, in order of incireaphysical complexity.

3.1. Isotropic turbulence

Numerical simulations of homogeneous isotropic turbuéehave been frequently carried out to evaluate the
properties of numerical schemes for turbulent flows [40]. Dare here carried out in a triply periodicr2 box,
discretized with 64 collocation points. At the initial time pressure and denait taken to be uniform, and solenoidal
velocity perturbations are added according to the proeehtiroduced by Blaisdell et a|1|41], with prescribed three

dimensional energy spectrum
205 (KY' oy

whereky = 4 is the most energetic mode. The initial turbulent Mach nemni given byM, = V3up/co = 0.3, and
the Reynolds number based on the Taylor microscaReis= 20quUo/(uoko) = 30. Time is made nondimensional with
respect to the eddy turnover tine= 2 \/§/(koMtoco).
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Figure 4: Numerical simulations of homogeneous isotropibulence aM; = 0.3, kg = 4, Re; = 30, with BW-XYZ
scheme. Time history of turbulence kinetic energy (a), aresgure variance (b), and spectra of velocity (c) and
pressure fluctuations (d) str = 5. Solid lines denoted reference results obtained withieikpime discretization

at CFL = 1. Symbols denote results obtained with BW scheme at EAL(squares), CFl= 2 (circles), CFL= 3
(triangles), CFL= 4 (down-triangles),
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Case My, Mo Re, Re Ay;, Axt A7 At At; At} At;v At CPU
CHO1-EXPL 0.1 01 5790 180 0.60 8.80 3.90 0.053 0.0077 0.026.3 10.0077 1

CHO1-ATI-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 26.0 1.3 0.077 0.15
CHO1-BW-XYZ 0.1 0.1 5790 180 0.60 8.80 3.90 0.053 0.0077 6.021.3 0.077 0.82
CH15a-EXPL 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.2.099 1

CH15a-ATI-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 2 1. 0.24 0.48
CH15a-BW-Y 1.5 1.28 6000 220 0.70 10.8 4.80 0.32 0.11 0.27 1.20.24 0.70
CH15b-EXPL 1.5 1.28 6000 220 0.15 10.8 4.08 0.32 0.11 0.27 620.00.021 1

CH15b-AVTI-Y 1.5 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.27.062 0.21 0.13
CH15b-BWV-Y 15 1.28 6000 220 0.15 10.8 4.80 0.32 0.11 0.2706®. 0.21 0.19

Table 2: Flow parameters for DNS of plane channel flow (OQ¥#).andRg, are the bulk Reynolds and Mach number,
respectively.My = My VTy/Ty, is the reference Mach number, introduced when discussimg @ The computa-
tional box dimension is#h x 2h x 4/3x for all flow cases.Ay{, is the distance of the first grid point from the wall,
andAx*, Az" are the streamwise and spanwise grid spacings.Athare the allowable time steps in the coordinate
directions, estimated according to Eqis. [1),(8). is the time step actually used in the simulations. CPU is ts¢ ¢
to cover a unit time interval, compared to the standard feilicit algorithm (EXPL).

The results obtained with ATl and BW discretization in athep directions are shown in Fig$. 3 &ihd 4, respectively,
at various Courant numbers. Stable results are obtaine@Far < 5.1 for ATI, and CFL < 4.8 for BW. Loss
of stability at larger time steps is due to flux linearizatemmjor factorization errors, which prevent unconditional
stability in practical computationﬂllZ]. The time behavad turbulence kinetic energy (panel (a)) is well predicted
at all Courant numbers up to the stability limit, whereasspuge fluctuations (panel (b)) are overdamped starting
at CFL ~ 3, in both ATl and BW. The dferent behavior is caused by the fact that pressure receiveshutions
of both hydrodynamic and acoustic nature. As seen in theigus\vSection, acoustic waves undergo significant
damping at high Courant number. This is even clearer in thecitg and pressure spectra, shown in panels (c) and
(d), respectively. While velocity spectra are perfectlpteaed at all Courant numbers, pressure spectra undergo
numerical damping, especially at intermediate wavenumhehich is easily understood based on the amplification
factors shown in Fid.]2. Given the similar performance oftthe implicit methods for this test case, ATl is certainly
preferable owing to its lower computational cost, whicloal to achieve anfiective speed-up over the explicit case
(see tablgll) of about a factor of three, whereas BW yieldssttie sameficiency.

3.2. Turbulent flow in plane channel

Channel flow is the simplest prototype of wall-bounded floasd it has been studied by many authors in the
incompressible@ﬂﬂ 1], as well as in the compressikgéane @l[b] The controlling parameters are the
bulk Mach numbeM, = uy/c, = 1.5 (whereu, is the average velocity across the channel thicknessgcartlde
sound speed at the wall temperature), and the bulk ReynaliberRe, = 2opush/uw = 6000 (wWhere, is the bulk
density,uy, the dynamic viscosity at the wall, amdhe channel half height). All DNS are initialized with a placdic
velocity profile with superposed small perturbations, velasrdensity and pressure are uniform. Periodic boundary
conditions are applied in the streamwis¢ &nd spanwisez] coordinate directions, and no-slip, isothermal boundary
conditions are applied at the walls. A spatially uniformdiog is applied to the streamwise momentum equation,
and dynamically adjusted in time to maintain constant mass fate [5]. Favre density-weighted decomposition is
applied to separate mean values from fluctuations, namely + ¢, with ¢ = p@/p).

The main flow parameters are listed in Tab. 2. Three flow camesieen considered, oneMyg = 0.1 (denoted as
CHO01), and two aM;, = 1.5 (denoted as CH15a-b), the latter two onlffeling in the distance of the first grid point
from the wall. Reference DNS have been carried out with faktplicit time discretization, at CFl 1, which are
used as a basis of comparison for the ATl and BW algorithmsrdier to understand thdfectiveness of the (semi-
)implicit algorithms, in Tab R we report the time step rigstons associated with the three coordinate directioss, a
estimated from EqnsJ(1)](3), as well as the actual time sgggl in the DNS, all in wall units. As expected, in all
flow cases the time step limitation in the wall-normal directis the most restrictive. Although larger time steps are
allowed on grounds of sole numerical stability, all DNS haeen carried out at the maximum time step for which
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Case M, Mo Re Re Ay, Ax* AZ" At} At; At} At;\, At CPU
DUO02-EXPL 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 0.01901D. 1.69 0.018 1
DUO02-ATI-XYZ 0.2 0.2 4410 150 0.66 8.40 0.66-3.20 0.094 ®010.019 169 0.18 0.15

Table 3: DNS dataset for square duct (DU) fldW, andRe, are the bulk Reynolds and Mach number, respectively.
Mo = My VTw/Ty is the reference Mach number, introduced when discussing @). The computational box
dimension is 8h x 2h x 2h. Ay¢, is the distance of the first grid point from the wall, afg",Az" are the streamwise
and spanwise grid spacings. The& are the allowable time steps in the coordinate directiosi#nated according

to Eqns. [(1)[(B).At* is the time step actually used in the simulations. CPU is t® to cover a unit time interval,
compared to the standard fully explicit algorithm (EXPL).

accurate results are obtained, which correspon@d e ~ 1 for the fully explicit simulations. For ease of reference,
the maximum time steps associated with accuracy and syat@htrictions are also reported in Hig. 1(a) with circle
and square symbols, respectively.

As a first test, we consider flow at low subsonic Mach numberQ©Hfor which the explicit time advancement
step is very small, hence we apply implicit treatment is abrdinate directions (XYZ). We find that, although the
wall-normal time step restrictions can be removed, thenadtbtime step for accurate calculations cannot substantial
larger than for the streamwise convective restriction Egdl(a)). This is probably due to inherent mesh anisotropy
in DNS of wall-bounded flows. In fact, mesh spacing is oveseteed in the wall-normal direction, hence the relevant
values of the reduced wavenumbdr are small, which allows to operate at high values of CFL witthel error,
recalling (see Fid.]2) that the dissipation error grows viitith kh and CFL. On the other hand, the typical wall-
parallel mesh spacings used in DNS are barefig@ant to resolve the smallest scales of turbulence, herctyical
reduced wavenumbers are higher, and time accuracy is a factbat case. We find that both ATl and BW are
capable of boosting the time step by about a factor of terh) @iticiency gain of 85% for ATI, and results almost
indistinguishable from the fully explicit case (see belo®ijill, the time step is far from that allowed by incompréssi
solvers (again, see Fig. 1(a)). This issue will be furthealled in the concluding discussion.

To show éfectiveness in removing the wall-normal acoustic time litiétn is supersonic flow calculations, in flow
case CH15a the first grid point is placedfstiently far from the wall that the viscous limitation is ffiective. Hence,
the implicit algorithms are applied only in the wall-nornthtection (), and viscous terms are handled explicitly.
The ATI and BW algorithms are both found téfectively suppress the wall-normal acoustic time step &ton,
and achieve the same maximum time step for accurate flowutéso| corresponding to about CFE 2.4. Hence,
accounting for the cost figures given in taple 1, we find a speedf about a factor of two for the ATl algorithm, and
30% gain with BW.

To prove dfectiveness of the implicit treatment of the viscous ternappsed in Sectiof (2.2), in flow case CH15b
the first grid point is placed closer to the wall, in such a wagtthe viscous time limitation also becomes relevant,
after the acoustic one. Both wall-normal time step restmst are suppressed through use of the AVTI and BWV
algorithms, hence the achieved time step is similar to floge@H15a. Both algorithms here achieve C¥IL0, at a
cost which is a small fraction of the fully explicit algorith

For the sake of comparison, in Fig$[b-7 we show the mainstitatifor the flow cases listed in Talile 2. As
anticipated, excellent agreement is observed betweernditrgdgorithms and the reference explicit solution, irdilg
pressure and temperature fluctuations, which is espesitiigfactory.

3.3. Turbulent flow in square duct

As a further step in complexity we consider the flow insideraight duct with square cross-section. This flow
has been the subject of several DNS studies in the inconiplessgime [45[ 47, 48], all limited to low Reynolds
number. One of the main fliculties that arise when dealing with square duct flows is timg laveraging time
necessary to attain convergence of even the basic mean #tistiss, caused by the extremely long typical time
scales of secondary corner eddies. In fact, Pinelli e@ﬂ. f[dported that an averaging time of about 80A§ was
needed to have symmetric statistics in the four quadrariteafross section. Hence, it is clear thiitogent numerical
methods are needed to study turbulent compressible flowdtsdNumerical simulations have been here carried out
(see Tabl€I3 for the main flow parameters) at the same Reynaliber as Pinelli et aIEhS], and iciently low
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Figure 5: Flow statistics for DNS of flow case CHO1 (see Tablenean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CHO1-EXPLgseg), CHO1-ATI-XYZ (circles), CHO1-BW-XYZ (trian-
gles).T: = qu/(pwCpU;) is the friction temperature.
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Figure 6: Flow statistics for DNS of flow case CH15a (see T@plemean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH15a-EXPuass), CH15a-ATI-Y (circles), CH15a-BW-Y (trian-
gles).
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Figure 7: Flow statistics for DNS of flow case CH15b (see TB)lemean velocity (a), Reynolds stresses (b), r.m.s.
pressure (c) and r.m.s. temperature (d), for CH15b-EXPudseg), CH15b-AVTI-Y (circles), CH15b-BWV-Y (tri-
angles).
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Figure 8: DNS of flow in square duct (see Table 3): mean vsjldei}, Reynolds stresses (b), r.m.s. pressure (c)

and r.m.s. temperature (d), for DU02-EXPL (squares), DBURXYZ (circles). Triangle symbols denote reference

incompressible DNS data [48].
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Mach number 1, = 0.2) that direct comparison with incompressible data is fasiThe duct length., = 8h
(where 2 is the length of each side of the duct), and the time windowctdlecting the flow statistics is the same
used by Pinelli et al| [48]. As in plane channel flow, a sphtiahiform forcing is applied to the momentum equation
to maintain a time constant mass flow rate. Note that, untilehannel flow, the mesh is also non-uniformly spaced in
thezdirection, hence a range of mesh spacings is reported ire[BalA reference fully explicit numerical simulation
has been carried out and used as a basis of reference for tlaghFithm, here applied to all coordinate directions.
As seen in TablEl3, the corresponding CFL number is about.ukdtin the case of plane channel, DNS were carried
out at increasing values of CFL, until deviations from th&erence data were found, to determine the maximum
allowed time step for accuracy. It appears that accuratdtgsesf the semi-implicit algorithm are recovered up to
CFL =~ 10. Again, implicit treatment of the direction is not capable of fully suppressing the corresiiomtime step
limitation, owing to the emergence of accuracy issues. I8m channel flow, use of the ATI algorithm allows for
about 85% cost reduction. Figurk 8 confirms that excellettiiag of the flow statistics is found among DU02-ATI,
DUO02-EXPL and the data of Pinelli et dl. |48], except for saufiféerences in the wall-normal Reynolds stress and the
pressure r.m.s., which may be due to the greater importdrammastic waves in the presence of a fully confined flow
geometry.

4. Conclusions

A novel semi-implicit algorithm for time-accurate solutiof the compressible Navier-Stokes equations has been
developed, which is capable to operafogently all the way from low subsonic to supersonic flow caiais. The
main features of the algorithm are as follows: i) use of thieagmy transport equation instead of total energy conser-
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vation; ii) Beam-Warming-like linearization of the patt@nvective flux associated with acoustic propagatioi; iii
energy-consistent discretization of the convective @girres in the explicit part of the time-advancement operato
iv) semi-implicit treatment of viscous fluxes based on isotaof Laplacian terms; v) approximate factorization for
implicit treatment of multiple space directions; vi) thiadder accurate Runge-Kutta time integration, accordirthe
algorithm proposed by Nikitir [34]. The main advantage & #ghgorithm is that, unlike the classical Beam-Warming
scheme, it avoids the computationally expensive inversio x 5 block-banded matrices, but rather of standard
banded matrices (tridiagonal matrices in the case of seoomel accurate space discretization). Specifically, glsin
banded matrix inversion is needed for implicit treatmenthaf convective terms, whereas five matrix inversions are
needed if viscous terms are also handled implicitly. The cesrhead with respect to standard explicit algorithme (se
Table[1) is quite modest, ranging from 20% to 30%, for eacleslirection to be handled implicitly. Modification
of existing compressible flow solvers to incorporate thespne method is straightforward, as the explicit part of the
algorithm is unchanged.

The method nominally allows unconditional stability fomdMach-number flows. However, flux linearization and
approximate factorization reduce the stability margimsl @~L number of the order of 5-10 are achieved in practical
computations, which is probably less than achievable wéttative methods. However, compared to compressible flow
algorithms based on pre-conditioning, the present metkotls use of inner time iterations, whose computational
cost is dificult to estimate a-priori. The other possible shortcomifidne method is the use of the entropy equation,
which is instrumental to achieve (approximate) separatfdmydrodynamic from acoustidiects. While use of the
entropy equation yields improved numerical stability,|lfcamakes proper capturing of shock waveidilt, as the
equations are not in conservation form. We have found tfigigtbue can be fixed by locally reverting to a total energy
formulation for the explicit time increment in the presendshocks, as identified through a shock sensdr [38]. The
resulting time increments are then converted to the entirmpgments, prior to application of the implicit operator.

Although the algorithm herein developed has in principlemwider range of applications, the main focus of this
paper was on DNS of compressible wall-bounded flows, whictoteriously plagued by severe time step restrictions
inherited from the wall-normal acoustic and viscous sighilonditions. We have found that the wall-normal acoustic
time limitation can be #ectively removed through semi-implicit treatment. The earanclusion also applies to the
viscous time step restriction, although the md&tcent way to remove it is placing the first grid pointfSciently
away from the wally*™ ~ 0.5 - 0.7, and using suitable staggeri@ [5], with nideet of accuracy. The wall-parallel
stability restrictions can also be suppressed through-gaplicit treatment. However, accuracy consideratiorslle
to the practical rule (see Figl 1) that the time step cannotbeh larger than the one stemming from the streamwise
time limitation. Hence, we suggest that in low-subsonic fimth the wall-normal and the spanwise convective terms
are handled implicitly, whereas the streamwise terms cagvhkiated explicitly. The resulting saving of computer
time can then be of the order of 85% with respect to a fully iekpolver. In high subsonic or supersonic flow,
implicit treatment of the wall-normal convective derivegs is stficient, with typical savings of to order of 50%, in
line with theoretical estimates.

We foresee that the present technique can be fruitfullyredad to numerical simulation of wall-bounded tur-
bulent flows with time-accurate models, such as LES or I:Eiﬁ [49 that case, given the higher aspect ratio of
near-wall cells, higher gains are expected. Advantagdsmegpect to classical algorithms based on Beam-Warming
linearization are also expected for steady RANS applioatidndeed, although the present algorithm is in principle
only capable of suppressing the acoustic time step limitait is found to be at least as stable as Beam-Warming in
practical computations.
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