Skip to main content
Log in

Compact Direct Flux Reconstruction for Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, a high-order discontinuous compact direct flux reconstruction (CDFR) method is developed to solve conservation laws numerically on unstructured meshes. Without explicitly constructing any polynomials, the CDFR method directly calculates the nodal flux derivatives via the compact finite difference approach within elements. To achieve an efficient implementation, the construction procedure of flux derivatives is conducted in a standard element. As a result, a standard flux-derivative-construction matrix can be formulated. The nodal flux derivatives can be directly constructed through the multiplication of this matrix and the flux vectors. It is observed that the CDFR method is identical with the direct flux reconstruction method and the nodal flux reconstruction–discontinuous Galerkin method if Gauss–Legendre points are selected as solution points for degrees p up to 8 tested. A von Neumann analysis is then performed on the CDFR method to demonstrate its linear stability as well as dissipation and dispersion properties for linear wave propagation. Finally, numerical tests are conducted to verify the performance of the CDFR method on solving both steady and unsteady inviscid flows, including those over curved boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (1998)

    Article  Google Scholar 

  2. Wang, Z.J.: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43, 1–41 (2007)

    Article  Google Scholar 

  3. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. Int. J. Numer. Meth. Fluids 72, 811–845 (2013)

    Article  MathSciNet  Google Scholar 

  4. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: The 18th AIAA Computational Fluid Dynamics Conference, (Miami, FL), AIAA-2007-4079 (2007)

  13. Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin methods for diffusion. In: The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace, (Orlando, FL). AIAA-2009-403 (2007)

  14. Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghosh, D., Baeder, J.: Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34, A1678–A1706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gustaffson, B.: The convergence rate for difference approximations to general mixed initial-boundary value problems. SIAM J. Numer. Anal. 18, 179–181 (1981)

    Article  MathSciNet  Google Scholar 

  20. Svard, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 621–645 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 231, 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129, 74–86 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ranocha, H., Offner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 331, 299–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014)

    Article  MathSciNet  Google Scholar 

  26. Romero, J., Asthana, K., Jameson, A.: A simplified formulation of the flux reconstruction method. J. Sci. Comput. 67, 351–372 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Romero, J., Jameson, A.: Extension of the flux reconstruction method to triangular elements using collapsed-edge quadrilaterals. In: The 54th AIAA Aerospace Sciences Meeting, (San Diego, CA). AIAA-2016-1825 (2016)

  28. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: The 17th AIAA Computational Fluid Dynamics Conference, (Toronto, Ontario, Canada). AIAA-2005-5108, (2005)

  29. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A., Dinh, N.: A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 229, 6961–6978 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Z.L., Liu, Y.J., Du, H.J., Lin, G., Shu, C.-W.: Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. J. Comput. Phys. 230, 6843–6865 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, L.P., Liu, W., He, L.X., Deng, X.G., Zhang, H.X.: A class of hybrid DG/FV methods for conservation laws I: basic formulation and one-dimensional systems. J. Comput. Phys. 231, 1081–1103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45, 348–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230, 8134–8154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. den Abeele, K.V.: Development of High-order Accurate Schemes for Unstructured Grids. Ph.D. Thesis, Vrije Universiteit Brussel (2009)

  36. Asthana, K., Jameson, A.: High-order flux reconstruction schemes with minimal dispersion and dissipation. J. Sci. Comput. 62, 913–944 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu, M.L., Wang, Z.J.: Homotopy continuation for correction procedure via reconstruction–discontinuous Galerkin (CPR-DG) methods. In: the 53rd AIAA Aerospace Sciences Meeting, (Kissimmee, FL). AIAA-2015-0570 (2015)

  39. Yu, M.L., Wang, Z.J., Liu, Y.: On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods. J. Comput. Phys. 259, 70–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. The 1st International Workshop on High-Order CFD Methods. In: The 50th AIAA Aerospace Sciences Meeting, (Nashville, TN) (2012). http://dept.ku.edu/~cfdku/hiocfd.html

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Office of Naval Research through the Award N00014-16-1-2735, and the faculty startup support from the department of mechanical engineering at University of Maryland, Baltimore County (UMBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meilin Yu.

Appendix: Details About Matrix \( \varvec{\alpha ^{-1}\beta } \) for 3rd , 4th and 5th CDFR

Appendix: Details About Matrix \( \varvec{\alpha ^{-1}\beta } \) for 3rd , 4th and 5th CDFR

Each element of \( \varvec{\alpha ^{-1}\beta } \) for the 3rd-, 4th-, and 5th-order CDFR schemes is archived in Table 1 with 16 decimal digits.

Table 1 (ij) element of \( \varvec{\alpha ^{-1}\beta } \) for the 3rd-, 4th- and 5th-order CDFR schemes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, M. Compact Direct Flux Reconstruction for Conservation Laws. J Sci Comput 75, 253–275 (2018). https://doi.org/10.1007/s10915-017-0535-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0535-3

Keywords

Navigation