Skip to main content
Log in

A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a projection method for the conservative discretizations of parabolic partial differential equations. When we solve a system of discrete equations arising from the finite difference discretization of the PDE, we can use iterative algorithms such as conjugate gradient, generalized minimum residual, and multigrid methods. An iterative method is a numerical approach that generates a sequence of improved approximate solutions for a system of equations. We repeat the iterative algorithm until a numerical solution is within a specified tolerance. Therefore, even though the discretization is conservative, the actual numerical solution obtained from an iterative method is not conservative. We propose a simple projection method which projects the non-conservative numerical solution into a conservative one by using the original scheme. Numerical experiments demonstrate the proposed scheme does not degrade the accuracy of the original numerical scheme and it preserves the conservative quantity within rounding errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  3. Lee, D., Huh, J.Y., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comp. Mater. Sci. 81, 216–225 (2014)

    Article  Google Scholar 

  4. Li, X., Zhang, L., Wang, S.: A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 219, 3187–3197 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Chang, Q., Xu, L.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. Comput. Math. 4, 191–199 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Chang, Q., Wang, G.: Multigrid and adaptive algorithm for solving the nonlinear Schrödinger equation. J. Comput. Phys. 88, 362–380 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, Q., Wang, G., Guo, B.: Conservative scheme for a model of nonlinear dispersive waves and its solitary waves induced by boundary notion. J. Comput. Phys. 93, 360–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, F., Vazquez, L.: Two energy conserving numerical schemes for the Sine–Gordon equation. Appl. Math. Comput. 45, 17–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wong, Y.S., Chang, Q., Gong, L.: An initial-boundary value problem of a nonlinear Klein–Gordon equation. Appl. Math. Comput. 84, 77–93 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Chang, Q., Jiang, H.: A conservative scheme for the Zakharov equation. J. Comput. Phys. 113, 309–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, Q., Guo, B., Jiang, H.: Finite difference method for generalized Zakharov equation. J. Comput. Phys. 113, 309–319 (1994)

    Article  MathSciNet  Google Scholar 

  15. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87, 675–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choo, S.M., Chung, S.K.: Conservative nonlinear difference scheme for the Cahn–Hilliard equation. Comput. Math. Appl. 36, 31–39 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Furihata, D., Matsuo, T.: A stable, convergent, conservative and linear finite difference scheme for the Cahn–Hilliard equation. Jpn. J. Ind. Appl. Math. 20, 65–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Mello, E.V.L., da Silveira Filho, O.T.: Numerical study of the Cahn–Hilliard equation in one, two and three dimensions. Phys. A. 347, 429–443 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks Cole, Boston (2011)

    MATH  Google Scholar 

  21. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  22. Briggs, W.L., McCormick, S.F.: A Multigrid Tutorial. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  23. Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic press, London (2000)

    MATH  Google Scholar 

  24. Wesseling, P.: Introduction to Multigrid Methods. Wiley, Chichester (1992)

    MATH  Google Scholar 

  25. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Elliott, C.M.: The Cahn–Hilliard Model for the Kinetics of Phase Separation Number 88 in International Series of Numerical Mathematics. Birkhauser, Basel (1989)

    Google Scholar 

  27. Cahn, J.W., Chow, S.N., van Vleck, E.S.: Spatially iscrete nonlinear diffusion equations. Rocky Mt. J. Math. 25(1), 87–118 (1995)

    Article  MATH  Google Scholar 

  28. Maier, R.S., Rath, W., Petzold, L.R.: Parallel solution of large-scale differential-algebraic systems. Concurr. Comput.-Pract. E. 7(8), 795–822 (1995)

    Google Scholar 

  29. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: MRS Proceedings, 529 pp. 39. Cambridge University Press (1998)

  30. Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection-diffusion equation. Appl. Math. Comput. 113(2), 249–274 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Guillet, T., Teyssier, R.: A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries. J. Comput. Phys. 230(12), 4756–4771 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fulton, S.R., Ciesielski, P.E., Schubert, W.H.: Multigrid methods for elliptic problems: a review. Mon. Weather Rev. 114(5), 943–959 (1986)

    Article  Google Scholar 

  33. Lee, C., Jeong, D., Shin, J., Li, Y., Kim, J.: A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Phys. A. 409(1), 17–28 (2014)

    Article  MathSciNet  Google Scholar 

  34. Kim, J.: Three-dimensional numerical simulations of a phase-field model for anisotropic interfacial energy. Commun. Korean. Math. Soc. 22(3), 453–464 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, J.: A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl. Math. Comput. 160(2), 589–606 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Briggs, W.: A Multigrid Tutorial. SIAM, Philadelphia (1977)

    MATH  Google Scholar 

  37. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic press, London (2000)

    MATH  Google Scholar 

  38. Shin, J., Jeong, D., Kim, J.: A conservative numerical method for the Cahn–Hilliard equation in complex domains. J. Comput. Phys. 230(19), 7441–7455 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author (D. Jeong) was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014R1A6A3A01009812). The corresponding author (J.S. Kim) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2014R1A2A2A01003683). The authors greatly appreciate the reviewers for their constructive comments and suggestions, which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Kim, J. A Projection Method for the Conservative Discretizations of Parabolic Partial Differential Equations. J Sci Comput 75, 332–349 (2018). https://doi.org/10.1007/s10915-017-0536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0536-2

Keywords

Navigation