Skip to main content
Log in

Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We show that two widely used Galerkin formulations for second-order elliptic problems provide approximations which are actually superclose, that is, their difference converges faster than the corresponding errors. In the framework of linear elasticity, the two formulations correspond to using either the stiffness tensor or its inverse the compliance tensor. We find sufficient conditions, for a wide class of methods (including mixed and discontinuous Galerkin methods), which guarantee a supercloseness result. For example, for the HDG\(_{k}\) method using polynomial approximations of degree \({k>0}\), we find that the difference of approximate fluxes superconverges with order \({k+2}\) and that the difference of the scalar approximations superconverges with order \({k+3}\). We provide numerical results verifying our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arbogast, T., Wheeler, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34(2), 828–852 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, N.D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  5. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G.: The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)] (2002)

  7. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G.R., Brezzi, F., Cagniani, A., Georgoulis, E.H. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes of Computer Science Engineering, pp. 129–177. Springer, Berlin, 2016. LMS Durham Symposia funded by the London Mathematical Society. Durham, 8–16 July (2014)

  8. Cockburn, B., Di-Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di-Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  17. Di-Pietro, D.A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris Ser. I 353, 31–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Di-Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Mathematics, Vol. 606, pp. 292–315. Springer, Berlin (1977)

  20. Soon, S.-C.: Hybridizable discontinuous Galerkin methods for solid mechanics. Ph.D. thesis, University of Minnesota, Minneapolis (2008)

  21. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80(8), 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to the thank one of the referees for constructive criticism leading to a better presentation of the material, including the discussion about the IP methods which we originally did not consider.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockburn, B., Sánchez, M.A. & Xiong, C. Supercloseness of Primal-Dual Galerkin Approximations for Second Order Elliptic Problems. J Sci Comput 75, 376–394 (2018). https://doi.org/10.1007/s10915-017-0538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0538-0

Keywords

Mathematics Subject Classification

Navigation