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Jacobi polynomials on the Bernstein ellipse
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Abstract

In this paper, we are concerned with Jacobi polynomials P
(α,β)
n (x) on the Bern-

stein ellipse with motivation mainly coming from recent studies of convergence rate

of spectral interpolation. An explicit representation of P
(α,β)
n (x) is derived in the

variable of parametrization. This formula further allows us to show that the maxi-

mum value of
∣∣∣P (α,β)

n (z)
∣∣∣ over the Bernstein ellipse is attained at one of the endpoints

of the major axis if α+β ≥ −1. For the minimum value, we are able to show that for
a large class of Gegenbauer polynomials (i.e., α = β), it is attained at two endpoints
of the minor axis. These results particularly extend those previously known only
for some special cases. Moreover, we obtain a more refined asymptotic estimate for
Jacobi polynomials on the Bernstein ellipse.

Keywords: spectral method, Jacobi polynomials, Bernstein ellipse, extrema, asymp-
totic estimate

AMS classifications: 65N35, 65D05, 41A05, 41A25.

1 Introduction

Spectral collocation method is a classical and powerful tool to solve integral and differen-
tial equations. Suppose that the equation is defined on a finite interval [−1, 1], the basic
idea of this approach is to approximate the solution of the equation by its polynomial
interpolant of the form

f(x) ≈ pn(x) =

n∑

k=1

f(xk)ℓk(x), −1 ≤ x ≤ 1, (1.1)
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where {xk}nk=1 is a set of distinct nodes and

ℓk(x) =

n∏

j=1
j 6=k

x− xj
xk − xj

, 1 ≤ k ≤ n,

are the Lagrange fundamental polynomials. The values {f(xk)}nk=1 are determined by
requiring that the interpolant pn(x) satisfies the equation exactly at the nodes {xk}nk=1.
To ensure rapid convergence of the spectral collocation method, the interpolation nodes
{xk}nk=1 with the distribution of density (1 − x2)−1/2 are preferable, and the ideal can-
didates are the zeros or extrema of classical orthogonal polynomials such as Gegenbauer
polynomials, or more generally, the Jacobi polynomials; cf. [8, 14, 18]. The interpolation
procedure described above is also known as spectral interpolation.

As is well known, the accuracy of spectral interpolation depends on the regularity of
the underlying function f(x), with exponential rate if f(x) is analytic in a neighborhood
containing the interval [−1, 1]; we refer to [13, 17, 19, 21, 22, 23, 24] for relevant results
and [20] for fast implementation. To this end, it is worthwhile to recall that the starting
point of these proofs is the so-called Hermite integral formula. More precisely, let Eρ be
the Bernstein ellipse:

Eρ =
{
z ∈ C

∣∣∣∣ z =
1

2

(
u+ u−1

)
, u = ρeiθ, ρ ≥ 1, 0 ≤ θ < 2π

}
. (1.2)

The Bernstein ellipse Eρ has the foci at ±1 with the major and minor semi-axes given
by 1

2(ρ+ ρ−1) and 1
2(ρ− ρ−1), respectively. Suppose that f(x) is analytic on and within

Eρ for some ρ > 1, it follows from the Hermite integral formula [2, Theorem 3.6.1] that

f(x)− pn(x) =
1

2πi

∮

Eρ

ωn(x)f(z)

ωn(z)(z − x)
dz, (1.3)

where
ωn(x) = dn(x− x1)(x− x2) · · · (x− xn)

with dn being a positive normalization constant. This in turn implies that

|f(x)− pn(x)| ≤
ML(Eρ)
2πd

max
x∈[−1,1]
z∈Eρ

∣∣∣∣
ωn(x)

ωn(z)

∣∣∣∣ , (1.4)

where M = maxz∈Eρ |f(z)|, L(Eρ) denotes the length of the circumference of Eρ, and d
is the distance from Eρ to the interval [−1, 1].

For polynomial interpolation at the Jacobi points, i.e., the nodes {xk}nk=1 are the

roots of n-th Jacobi polynomial P
(α,β)
n (x) (α, β > −1) and the polynomial ωn(z) in

(1.3) is taken to be P
(α,β)
n (z), the properties of P

(α,β)
n (x) on the Bernstein ellipse are

essential in the analysis of convergence rate. For the Gegenbauer polynomials Cλ
n(z)
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(corresponding to the special cases α = β = λ− 1
2 of the Jacobi polynomials), by noting

that (see [22, Lemma 3.1])

Cλ
n(z) =

n∑

k=0

gλkg
λ
n−ku

n−2k, z =
1

2

(
u+ u−1

)
, n ≥ 0, (1.5)

where

gλ0 = 1, gλk =

(
k + λ− 1

k

)
=

Γ(k + λ)

k!Γ(λ)
, 1 ≤ k ≤ n,

the following asymptotic estimate of Gegenbauer polynomials on the Bernstein ellipse is
obtained by Xie, Wang and Zhao in [22, Theorem 3.2]: there exists 0 < ε ≤ 1

2 such that
∣∣∣∣(1− u−2)−λ − Cλ

n(z)

gλnu
n

∣∣∣∣ ≤ A(ρ, λ)nε−1 +O(n−1), z ∈ Eρ, (1.6)

for ρ > 1, λ > −1
2 and λ 6= 0, where

A(ρ, λ) = |1− λ|
∣∣∣(1− ρ−2)−λ − 1

∣∣∣ .

The estimate (1.6) plays an important role in the rigorous proofs of exponential conver-
gence of Gegenbauer interpolation and spectral differentiation conducted in [22]. Later,
in a paper regarding superconvergence of Jacobi-Gauss type spectral interpolation [21],
Wang, Zhao and Zhang have made use of the following estimate of the lower bound for
Jacobi polynomial on the Bernstein ellipse:

min
z∈Eρ

∣∣∣P (α,β)
n (z)

∣∣∣ ≥ C(ρ;α, β)n− 1

2 ρn+1(1 +O(n−1)), (1.7)

where C(ρ;α, β) = min|u|=ρ |φ0(u;α, β)| is a constant independent of n, and the function
φ0(u;α, β) is regular for |u| = ρ > 1, and |u| = 1 but u 6= ±1; see [21, Equation (4.7)].
This result follows directly from the asymptotic formula of Jacobi polynomials [16, The-
orem 8.21.9]. We note that, however, except for the very special cases like α = β = −1

2 ,
the explicit form of C(ρ;α, β) is not available.

We also note that there is a close connection between polynomial interpolation and
the potential theory [18, Chapter 5]. More specifically, let us define the discrete potential
function associated with the nodes {xk}nk=1 by

En(z) =
1

n

n∑

k=1

log |z − xk|.

This function is harmonic in the complex plane except at {xk}nk=1 and can be viewed
as the potential generated by all {xk}nk=1 if each xk is interpreted as a point charge
of strength 1/n and the repulsion is inverse-linear. Clearly, we have |ωn(z)| = enEn(z).

Thus, if we choose xk to be the zeros of P
(α,β)
n (x), then the extrema of |P (α,β)

n (z)| implies
the extrema of the corresponding potential En(z) as well.

It is the aim of the present research to conduct more complete studies of Jacobi
polynomials on the Bernstein ellipse, including the explicit formula, extrema of the
absolute value and the asymptotic estimate. Our main contributions are listed below:
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• An explicit formula of P
(α,β)
n (x) is derived in the variable of parametrization, which

generalizes (1.5) valid for the Gegenbauer case.

• The extrema of
∣∣∣P (α,β)

n (z)
∣∣∣ on the Bernstein ellipse Eρ are identified under some

assumptions on the parameters. We show that the maximum value is attained at
one of the endpoints of the major axis if α + β ≥ −1. This particularly extends
[9, Theorem 4.5.1] established by Ismail, which is valid for the Gegenbauer poly-
nomials. For the minimum value, we are able to show that for a large class of
Gegenbauer polynomials, it is attained at two endpoints of the minor axis.

• We provide a more refined and computable asymptotic estimate as well as a lower
bound for the Jacobi polynomials on the Bernstein ellipse, which generalizes (1.6)
concerning the Gegenbauer polynomials.

The rest of this paper is organized as follows. We first give a brief review of Jacobi
polynomials in Section 2, which includes some basic properties that will be used later.
Section 3 is devoted to the explicit representation of Jacobi polynomials on the Bernstein
ellipse. The extrema of Jacobi polynomials on the Bernstein ellipse are discussed in
Section 4. The identification of maximum value relies on a three-term recurrence relation
for the coefficients arising in the explicit formula. For the minimum value, we first deal
with the Chebyshev polynomials of the first and second kinds and then extend the results
to Gegenbauer polynomials. The asymptotic estimate and the lower bound of Jacobi
polynomials on the Bernstein ellipse are presented in Section 5.

2 Some properties of Jacobi polynomials

In this section, we collect some basic properties of Jacobi polynomials which will be used
in the subsequent analysis. All these properties can be found in the classical book of
Szegő [16].

Let P
(α,β)
n (x) denote the Jacobi polynomial of degree n, which is defined explicitly

by

P (α,β)
n (x) = 2−n

n∑

k=0

(
n+ α

n− k

)(
n+ β

k

)
(x− 1)k(x+ 1)n−k, α, β > −1. (2.1)

The Jacobi polynomials are orthogonal over [−1, 1] with respect to the weight function
(1− x)α(1 + x)β, that is,

∫ 1

−1
(1− x)α(1 + x)βP (α,β)

n (x)P (α,β)
m (x)dx = h(α,β)n δm,n, (2.2)

where δm,n is the Kronecker delta and

h(α,β)n =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n + β + 1)

Γ(n+ α+ β + 1)n!
.
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From the explicit formula (2.1), it is easily seen that

P (α,β)
n (x) = k(α,β)n xn + · · · , (2.3)

where the leading coefficient k
(α,β)
n is given by

k(α,β)n =
1

2n

(
2n+ α+ β

n

)
=

Γ(2n+ α+ β + 1)

2nn!Γ(n+ α+ β + 1)
. (2.4)

Let q := max{α, β} with α, β > −1. The maximum of
∣∣∣P (α,β)

n (x)
∣∣∣ on the interval [−1, 1]

is given by (see [16, Theorem 7.32.1])

max
x∈[−1,1]

∣∣∣P (α,β)
n (x)

∣∣∣ =





(
n+ q

n

)
, if q ≥ −1

2 ,

|P (α,β)
n (x̃)|, if q < −1

2 ,

(2.5)

where x̃ is one of the two maximum points nearest (β − α)/(α + β + 1). Indeed, when

q ≥ −1
2 , the maximum of

∣∣∣P (α,β)
n (x)

∣∣∣ is attained at one of the endpoints {−1, 1}.
When α = β, the Jacobi polynomials are, up to some positive constants, also known

as Gegenbauer (or the ultraspherical) polynomials Cλ
n(x). More precisely, we have

Cλ
n(x) =

Γ(λ+ 1
2)

Γ(2λ)

Γ(n+ 2λ)

Γ(n+ λ+ 1
2 )

P
(λ− 1

2
,λ− 1

2
)

n (x), λ > −1

2
. (2.6)

The orthogonality of Gegenbauer polynomials reads

∫ 1

−1
Cλ
m(x)Cλ

n(x)(1 − x2)λ−1/2dx = hλnδm,n,

where hλn = 21−2λπΓ(n+2λ)
Γ2(λ)n!(n+λ)

. Since the weight function (1 − x2)λ−1/2 is an even function,

it is readily seen that following symmetry relations hold:

Cλ
n(x) = (−1)nCλ

n(−x), n ≥ 0. (2.7)

Thus, Cλ
n(x) is an even function for even n and an odd function for odd n.

The Chebyshev polynomials of the first and second kinds are

Tn(cos θ) = cos(nθ), Un(cos θ) =
sin((n + 1)θ)

sin θ
, n ≥ 0,

respectively. When z ∈ Eρ, the Chebyshev polynomials have the following simple repre-
sentations in the variable of parametrization:

Tn(z) =
1

2
(un + u−n), Un(z) =

un+1 − u−n−1

u− u−1
. (2.8)

5



They are special cases of Gegenbauer polynomials, and the relations are given by

Tn(x) = lim
λ→0

n

2

Cλ
n(x)

λ
, n ≥ 1; Un(x) = C1

n(x), n ≥ 0. (2.9)

Equivalently, one has

Tn(x) =
Γ(n+ 1)Γ(12 )

Γ(n+ 1
2)

P
(− 1

2
,− 1

2
)

n (x), Un(x) =
Γ(n+ 2)Γ(32 )

Γ(n+ 3
2)

P
( 1
2
, 1
2
)

n (x). (2.10)

Finally, let 1 > xλ1 > xλ2 > . . . > xλn > −1 be the zeros of Gegenbauer polynomials.
By [16, Theorem 6.21.1], it follows that

∂xλj
∂λ

< 0, j = 1, . . . , ⌊n/2⌋, (2.11)

where ⌊x⌋ denotes the integer part of x. Thus, the positive zeros of a Gegenbauer
polynomial Cλ

n(x) strictly decrease with respect to the parameter λ.

3 An explicit formula of Jacobi polynomials on the Bern-

stein ellipse

It is the aim of this section to prove the following theorem, which gives an explicit

representation of P
(α,β)
n (x) on the Bernstein ellipse in the variable of parametrization.

Theorem 3.1. For z ∈ Eρ, i.e.,

z =
1

2

(
u+ u−1

)
, |u| = ρ ≥ 1, (3.1)

we have

P (α,β)
n (z) =

n∑

k=−n

d|k|,nu
k, (3.2)

where the coefficients are given by

dk,n =
(n+ α+ β + 1)k(k + α+ 1)n−k

(n − k)!22kΓ(k + 1)

× 3F2

[
k − n, n+ k + α+ β + 1, k + 1

2 ;
k + α+ 1, 2k + 1;

1

]
, (3.3)

for 0 ≤ k ≤ n.

To show Theorem 3.1, we note that Chebyshev polynomials of the first kind Tn(x) has
a simple explicit formula (2.8) on the Bernstein ellipse, the strategy is then to expand
Jacobi polynomials in terms of Tn(x). The connection formula between two different
families of Jacobi polynomials are stated in the following lemma (see [1, Theorem 7.1.1]).
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Lemma 3.2. Assume that

P (α,β)
n (x) =

n∑

k=0

cn,kP
(γ,δ)
k (x). (3.4)

Then the connection coefficients are given by

cn,k =
(n+ α+ β + 1)k(k + α+ 1)n−k(2k + γ + δ + 1)Γ(k + γ + δ + 1)

(n− k)!Γ(2k + γ + δ + 2)

× 3F2

[
k − n, n+ k + α+ β + 1, k + γ + 1;

k + α+ 1, 2k + γ + δ + 2;
1

]
, (3.5)

where

(a)0 = 1, (a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · (a+ k − 1), k ≥ 1, (3.6)

is the Pochhammer symbol and

3F2

[
a1, a2, a3;
b1, b2;

z

]
=

∞∑

k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

zk

k!
(3.7)

is the generalized hypergeometric function.

With the aid of Lemma 3.2, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 By taking γ = δ = −1
2 in Lemma 3.2, it follows that

P (α,β)
n (x) =

n∑

k=0

′ (n+ α+ β + 1)k(k + α+ 1)n−k2Γ(k + 1)

(n− k)!Γ(2k + 1)

× 3F2

[
k − n, n+ k + α+ β + 1, k + 1

2 ;
k + α+ 1, 2k + 1;

1

]
P

(− 1

2
,− 1

2
)

k (x), (3.8)

where the prime indicates that the first term of the sum should be halved. This, together
with the identity (2.10), gives

P (α,β)
n (x) =

n∑

k=0

′ (n+ α+ β + 1)k(k + α+ 1)n−k2Γ(k + 1)

(n− k)!Γ(2k + 1)

× 3F2

[
k − n, n+ k + α+ β + 1, k + 1

2 ;
k + α+ 1, 2k + 1;

1

]
Γ(k + 1

2)

Γ(k + 1)Γ(12 )
Tk(x)

=

n∑

k=0

′ (n+ α+ β + 1)k(k + α+ 1)n−k

(n− k)!22k−1Γ(k + 1)

× 3F2

[
k − n, n+ k + α+ β + 1, k + 1

2 ;
k + α+ 1, 2k + 1;

1

]
Tk(x), (3.9)
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where we have made use of the the duplication formula (cf. [12, Formula 5.5.5])

Γ(2z) = π−1/222z−1 Γ(z) Γ
(
z + 1

2

)
, 2z 6= 0,−1,−2, . . . , (3.10)

in the second step.
Note that Tk(z) has a simple expression 1

2(u+u−n) on Eρ. Substituting this formula
into the last equation of (3.9) gives us the desired result.

This completes the proof of Theorem 3.1.

Remark 3.3. Suppose that u = eiθ (i.e., ρ = 1), we obtain from (3.2) the following
trigonometric representations of Jacobi polynomials

P (α,β)
n (cos θ) = d0,n + 2

n∑

k=1

dk,n cos(kθ). (3.11)

The above formula seems to be new, except for the special case α = β (cf. [16, Formula
(4.9.19)]).

Remark 3.4. When α = β, the coefficients dk,n can be further simplified with the help
of the properties of hypergeometric function 3F2. Indeed, on account of the fact (see [1,
Theorem 3.5.5]) that

3F2

[
a, b, c;

(a+ b+ 1)/2, 2c;
1

]
=

Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
a+b+1

2

)
Γ
(
c− a+b−1

2

)

Γ
(
a+1
2

)
Γ
(
b+1
2

)
Γ
(
c− a−1

2

)
Γ
(
c− b−1

2

) , (3.12)

it follows from (3.3) and straightforward calculations that

dk,n =





22αΓ(n+ α+ 1)Γ(k+n+1
2 + α)Γ(n−k+1

2 + α)
√
πΓ(n+ 2α+ 1)Γ(k+n

2 + 1)Γ(n−k
2 + 1)Γ(α + 1

2)
, if n− k is even,

0, if n− k is odd.

(3.13)

This particularly implies that

P (α,α)
n (z) =

n∑

k=0

d|n−2k|,nu
n−2k.

Up to some constant factors, this recovers (1.5) which was derived via the three-term
recurrence relation of Gegenbauer polynomials in [22]. The approach used therein, how-
ever, seems difficult to be generalized to handle the Jacobi case.

4 Extrema of Jacobi polynomials on the Bernstein ellipse

In this section, we will consider the extrema of Jacobi polynomials on the Bernstein
ellipse. The maximum value and the minimum value will be discussed in subsections 4.1
and 4.2, respectively.
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4.1 Maximum value

By [9, Theorem 4.5.1], it is known that for the Gegenbauer polynomials Cλ
n(x), max

∣∣Cλ
n(z)

∣∣,
z ∈ Eρ with λ ≥ 0 is attained at the right endpoint of the major axis. It comes out that

similar property holds for the Jacobi polynomials P
(α,β)
n with α+ β ≥ −1, which is our

main result of this section.

Theorem 4.1. For ρ ≥ 1 and n ≥ 1, we have

(i) If α > β and α + β ≥ −1, then the maximum value of

∣∣∣P (α,β)
n (z)

∣∣∣ is attained

uniquely at the right endpoint of the major axis, i.e.,

max
z∈Eρ

∣∣∣P (α,β)
n (z)

∣∣∣ = P (α,β)
n

(
1
2

(
ρ+ ρ−1

))
. (4.1)

(ii) If α < β and α + β ≥ −1, then the maximum value of

∣∣∣P (α,β)
n (z)

∣∣∣ is attained

uniquely at the left endpoint of the major axis, i.e.,

max
z∈Eρ

∣∣∣P (α,β)
n (z)

∣∣∣ =
∣∣∣P (α,β)

n

(
−1

2

(
ρ+ ρ−1

))∣∣∣ . (4.2)

(iii) If α = β ≥ −1/2, then the maximum value of
∣∣∣P (α,β)

n (z)
∣∣∣ is attained at two end-

points of the major axis, i.e.,

max
z∈Eρ

∣∣∣P (α,β)
n (z)

∣∣∣ =
∣∣∣P (α,β)

n

(
±1

2

(
ρ+ ρ−1

))∣∣∣ . (4.3)

Moreover, the maximum value can only be attained at these two real points ±1
2

(
ρ+ ρ−1

)

if α = β > −1/2.

The assertion in item (iii) corresponds to the case of Gegenbauer polynomials men-
tioned at the very beginning. Moreover, the condition α+β ≥ −1 implies that max{α, β} ≥
−1

2 . By setting ρ = 1 in the above theorem, we recover the result concerning maximum

of
∣∣∣P (α,β)

n (x)
∣∣∣ over the orthogonal interval [−1, 1], as explained after (2.5).

The proof of Theorem 4.1 relies on the explicit formula of P
(α,β)
n (z) on the Bernstein

ellipse established in Theorem 3.1. The essential issue here is to determine the signs of
the coefficients dk,n appearing in (3.2) under various conditions on the parameters α and
β; see Proposition 4.4 below. To proceed, we start with the following proposition which
reveals a recurrence relation for the coefficients {dk,n}nk=0 and plays a fundamental role
in the sequel.

Proposition 4.2. With dk,n defined in (3.3), we have, for each k ≥ 0 and k + 2 ≤ n,

dk,n =
2(α − β)(k + 1)

n(n+ α+ β + 1) − k2 − (α+ β + 1)k
dk+1,n

+
n(n+ α+ β + 1)− (k + 2)2 + (α+ β + 1)(k + 2)

n(n+ α+ β + 1)− k2 − (α+ β + 1)k
dk+2,n, (4.4)

9



with initial conditions

dn,n =
Γ(2n + α+ β + 1)

22nΓ(n+ α+ β + 1)Γ(n + 1)
, dn−1,n =

(α− β)Γ(2n + α+ β)

22n−1Γ(n+ α+ β + 1)Γ(n)
. (4.5)

Proof. In view of (3.9), it is readily seen that

P (α,β)
n (x) = d0,n + 2

n∑

k=1

dk,nTk(x). (4.6)

We recall from [16, Theorem 4.2.1] that the Jacobi polynomial P
(α,β)
n (x) satisfies the

following linear differential equation

(1− x2)y′′(x) + [β − α− (α+ β + 2)x]y′(x) + n(n+ α+ β + 1)y(x) = 0.

Substituting (4.6) into the above equation gives

2

n∑

k=1

dk,n
{
(1− x2)T

′′

k (x) + [β − α− (α+ β + 2)x]T ′
k(x)

+ n(n+ α+ β + 1)Tk(x)
}
+ n(n+ α+ β + 1)d0,n = 0. (4.7)

Our strategy now is to rewrite the left hand side of (4.7) in terms of the Chebyshev
polynomial of the second kind Uk(x). To this end, note that Tk(x) satisfies

(1− x2)T ′′
k (x)− xT ′

k(x) + k2Tk(x) = 0,

we then obtain from (4.7) that

2

n∑

k=1

dk,n
{
[β − α− (α+ β + 1)x]T ′

k(x)

+ [n(n+ α+ β + 1)− k2]Tk(x)
}
+ n(n+ α+ β + 1)d0,n = 0.

This, together with the facts (cf. [12, §18.9]) that

T ′
k(x) = kUk−1(x),

2xUk(x) = Uk+1(x) + Uk−1(x), k ≥ 1,

2Tk(x) = Uk(x)− Uk−2(x), k ≥ 1 with U−1(x) = 0,

implies

n∑

k=1

dk,n
{
[n(n+ α+ β + 1)− k2 − k(α+ β + 1)]Uk(x) + 2(β − α)kUk−1(x)

− [n(n+ α+ β + 1)− k2 + k(α+ β + 1)]Uk−2(x)
}
+ n(n+ α+ β + 1)d0,n = 0.

By setting the coefficients of Uk(x), 1 ≤ k ≤ n− 2 and the constant term to be zero, the
recurrence relation (4.4) is immediate.

This completes the proof of Proposition 4.2.
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Remark 4.3. From (4.4), it is readily seen that if α = β, the three-term recurrence
relation can be simplified as

dk,n =
n(n+ 2α+ 1)− (k + 2)2 + (2α + 1)(k + 2)

n(n+ 2α + 1)− k2 − (2α + 1)k
dk+2,n. (4.8)

In addition, note that the coefficients dk,n in (3.3) involve the hypergeometric function

3F2, it would be helpful to use the recurrence relation (4.4) in actual computations.

As a consequence of Proposition 4.2, we are able to determine the signs of the coef-
ficients {dk,n}nk=0 in the following proposition.

Proposition 4.4. For 0 ≤ k ≤ n, we have

(i) If α > β and α+ β ≥ −1, then dk,n > 0.

(ii) If α < β and α+ β ≥ −1, then (−1)n−kdk,n > 0.

(iii) If α = β > −1
2 , then

dk,n

{
> 0, if n− k is even,

= 0, if n− k is odd.
(4.9)

If α = β = −1
2 , then

dk,n

{
> 0, if k = n,

= 0, if k = 1, 2, . . . , n− 1.
(4.10)

Proof. If α > β and α+ β ≥ −1, it is easily seen that

2(α − β)(k + 1)

n(n+ α+ β + 1)− k2 − (α+ β + 1)k
=

2(α − β)(k + 1)

n2 − k2 + (α+ β + 1)(n− k)
> 0,

and

n(n+ α+ β + 1)− (k + 2)2 + (α+ β + 1)(k + 2)

n(n+ α+ β + 1)− k2 − (α+ β + 1)k

=
n2 − (k + 2)2 + (α+ β + 1)(n + k + 2)

n2 − k2 + (α+ β + 1)(n − k)
> 0, (4.11)

for 0 ≤ k ≤ n − 2. These, together with the recurrence relation (4.4) and the fact that
both of the initial values dn−1,n and dn,n are positive (see (4.5)), imply the assertion in
item (i).

Similarly, if α < β and α+ β ≥ −1, we have

2(α− β)(k + 1)

n(n+ α+ β + 1)− k2 − (α+ β + 1)k
< 0,

11



and
n(n+ α+ β + 1)− (k + 2)2 + (α+ β + 1)(k + 2)

n(n+ α+ β + 1)− k2 − (α+ β + 1)k
> 0,

for 0 ≤ k ≤ n−2. Since dn−1,n < 0 and dn,n > 0 in this case, we again obtain from (4.4)
that {dk,n}nk=0 is an alternating sequence, as required.

Finally, if α = β ≥ −1
2 , the assertion in item (iii) follows immediately from (3.13).

This completes the proof of Proposition 4.4.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 If α > β and α+β ≥ −1, we recall from item (i) in Proposition
4.4 that dk,n > 0 for 0 ≤ k ≤ n. On account of (3.1) and (3.2), it is straightforward to
see that

∣∣∣P (α,β)
n (z)

∣∣∣ =
∣∣∣∣∣

n∑

k=−n

d|k|,nu
k

∣∣∣∣∣ ≤
n∑

k=−n

d|k|,nρ
k = P (α,β)

n

(
1
2

(
ρ+ ρ−1

))
.

Thus, maxz∈Eρ

∣∣∣P (α,β)
n (z)

∣∣∣ can be achieved if and only if u = ρ, which is (4.1).

Similarly, if α < β and α+β ≥ −1, a combination of item (ii) in Proposition 4.4 and
(3.2) implies that

∣∣∣P (α,β)
n (z)

∣∣∣ =
∣∣∣∣∣

n∑

k=−n

d|k|,nu
k

∣∣∣∣∣ ≤
n∑

k=−n

(−1)n−|k|d|k|,nρ
k

= (−1)nP (α,β)
n

(
−1

2

(
ρ+ ρ−1

))
=
∣∣∣P (α,β)

n

(
−1

2

(
ρ+ ρ−1

))∣∣∣ .

Hence, the maximum value can be achieved if and only if u = −ρ, as shown in (4.2).
To show (4.3), we see from Remark 3.4, (4.9) and (4.10) that

∣∣∣P (α,β)
n (z)

∣∣∣ =
∣∣∣∣∣

n∑

k=0

d|n−2k|,nu
n−2k

∣∣∣∣∣ ≤
n∑

k=0

d|n−2k|,nρ
n−2k.

Thus, the maximum value can be achieved when u = ±ρ and (4.3) follows. Moreover, if
α = β > −1

2 , since d|n−2k|,n is strictly positive (see (4.9)) for 0 ≤ k ≤ n, the maximum
value can only be achieved at two endpoints of the major axis.

This completes the proof of Theorem 4.1.

Remark 4.5. For the very special case α = β = −1
2 , the Jacobi polynomials (up to

a normalization constant) are the Chebyshev polynomials of the first kind Tn(x); see
(2.10). In this case, we obtain from (2.8) that for z ∈ Eρ,

|Tn(z)| =
1

2

√
ρ2n + ρ−2n + 2cos(2nθ)

≤ 1

2

√
ρ2n + ρ−2n + 2 =

1

2
(ρn + ρ−n). (4.12)
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It is then clear that maxz∈Eρ |Tn(z)| is attained if and only if cos(2nθ) = 1, i.e., at 2n
points

ẑn,k =
1

2

(
ρei

kπ
n +

(
ρei

kπ
n

)−1
)
, k = 0, . . . , 2n− 1. (4.13)

4.2 Minimum value

The identification of minimum value of
∣∣∣P (α,β)

n (z)
∣∣∣ on the Bernstein ellipse Eρ is, in

general, much more involved than that of its maximum value. Since the minimum value
will be zero when ρ = 1, we will restrict our attention to ρ > 1 and focus on the
ultraspherical case α = β in this section. In view of the relations (2.6) and (2.10), the
results will be presented in terms of Tn(x), Un(x) and Cλ

n(x).
To provide some intuition about the location where Gegenbauer polynomials attain

the minimum value, we perform some numerical experiments of
∣∣Cλ

n(z)
∣∣ with z ∈ Eρ;

see Figures 1–3 for different choices of the parameters λ, n and ρ. Note that we omit
the numerical results for −1

2 < λ < 0 and even n ≥ 2, since they are similar to those
shown in Figure 3. The numerical studies imply that the minimum value depends on
the parameters λ, n, ρ, and further suggest the following conjecture concerning the
observations.

Conjecture 4.1. It is conjectured that

(i) If λ > 0 and n ≥ 1 is odd, minz∈Eρ
∣∣Cλ

n(z)
∣∣ is attained at ± i

2(ρ − ρ−1) for ρ > 1,
i.e., at two endpoints of the minor axis.

(ii) If λ > 0 and n ≥ 2 is even, there exists a critical value ̺(n, λ) depending on

the parameters n and λ such that minz∈Eρ
∣∣Cλ

n(z)
∣∣ is attained at ± i

2(ρ − ρ−1) for

ρ ≥ ̺(n, λ).

(iii) If −1
2 < λ < 0 and n ≥ 2, there exists a critical value ˜̺(n, λ) depending on

the parameters n and λ such that minz∈Eρ
∣∣Cλ

n(z)
∣∣ is attained at ±1

2(ρ + ρ−1) for

ρ ≥ ˜̺(n, λ), i.e., at two endpoints of the major axis.

In what follows, we shall prove items (i) and (ii) of the above conjecture under the
assumptions that ρ ≥ 1

2(
√
2 +

√
6) ≈ 1.932 and λ ≥ 1 (for item (ii)).

We first deal with the Chebyshev polynomials of the first and second kinds. The
relevant results, on one hand, will provide important insights for the general case, on
the other hand they are crucial in further analysis.

Theorem 4.6 (Minimum value of Chebyshev polynomials of the first kind Tn(z)). For

ρ > 1 and n ≥ 1, we have

min
z∈Eρ

|Tn(z)| =
1

2

(
ρn − ρ−n

)
, (4.14)

and the minimum value is attained at 2n points

žn,k =
1

2

(
ρei

2k+1

2n
π +

(
ρei

2k+1

2n
π
)−1

)
, k = 0, . . . , 2n − 1. (4.15)
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Figure 1: Plot of
∣∣∣C1/4

5 (z)
∣∣∣ with z = 1

2 (ρe
iθ + ρ−1e−iθ) ∈ Eρ for ρ = 1.05 (left), ρ = 1.25

(middle) and ρ = 2 (right). Here θ ranges from 0 to 2π.

Figure 2: Plot of
∣∣∣C1/3

8 (z)
∣∣∣ with z = 1

2(ρe
iθ + ρ−1e−iθ) ∈ Eρ for ρ = 1.1 (left), ρ = 1.2

(middle) and ρ = 2 (right). Here θ ranges from 0 to 2π.

Proof. From (4.12) it is readily seen that |Tn(z)| attains its minimum value if and only
if

cos(2nθ) = −1,

i.e., for θ = 2k+1
2n π with k = 0, . . . , 2n − 1. The desired results follow immediately.

Remark 4.7. From (4.15), it follows that, for odd n, the minimum value of Tn(z) can be
attained at ± i

2(ρ− ρ−1).

We next proceed to the Chebyshev polynomial of the second kind Un(z). The fol-
lowing lower bound can be found in [11, formula (1.53)]:

|Un(z)| ≥
ρn+1 − ρ−n−1

ρ+ ρ−1
, z ∈ Eρ with ρ > 1. (4.16)

Our next theorem shows that this lower bound is attainable only when n is odd. If n is
even, a new and attainable lower bound will be presented under some conditions on ρ.
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Figure 3: Plot of
∣∣∣C−1/3

7 (z)
∣∣∣ with z = 1

2(ρe
iθ + ρ−1e−iθ) ∈ Eρ for ρ = 1.1 (left), ρ = 1.2

(middle) and ρ = 2 (right). Here θ ranges from 0 to 2π.

Theorem 4.8 (Minimum value of Chebyshev polynomials of the second kind Un(z)).
For n ≥ 1, we have

min
z∈Eρ

|Un(z)| =





ρn+1 − ρ−n−1

ρ+ ρ−1
, if n is odd and ρ > 1,

ρn+1 + ρ−n−1

ρ+ ρ−1
, if n is even and ρ ≥ ρ∗n,

(4.17)

where ρ∗n > 1 is the unique root of the equation

an+1(ρ)− (n+ 1)a1(ρ) = 0, (4.18)

and where

ak(ρ) =
1

2

(
ρk + ρ−k

)
, k ≥ 0. (4.19)

Moreover, in both cases the the minimum value is attained if and only if z = ± i
2

(
ρ− ρ−1

)
,

i.e., at two endpoints of the minor axis.

The above theorem can actually be seen from a remarkable connection between Un(z)
and the kernel Kn(z) arising in the contour integral representation of the remainder term
of an n-point Gauss quadrature for the Chebyshev weight function of the second kind.
More precisely, let f be an analytic function on and within the Bernstein ellipse Eρ. The
Gaussian quadrature rule for the Chebyshev weight function of the second kind reads

∫ 1

−1
f(t)(1− t2)1/2dt =

n∑

k=1

λ
(n)
k f

(
τ
(n)
k

)
+Rn(f), (4.20)

where τ
(n)
k = cos(kπ/(n + 1)) are the zeros of the Chebyshev polynomial of the second

kind Un(z), and λ
(n)
k are the corresponding Christoffel numbers. The remainder term
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Rn(f) admits the following contour representation:

Rn(f) =
1

2πi

∮

Eρ

Kn(z)f(z)dz, (4.21)

where the kernel Kn(z) is given by

Kn(z) =
qn(z)

Un(z)
=

π

un+1Un(z)
, z =

1

2

(
u+ u−1

)
, |u| = ρ,

where qn(z) =
∫ 1
−1

Un(t)(1−t2)1/2

z−t dt and the second equality follows from [7, Equation

3.613.3]. The above formula particularly implies that |Un(z)|2 is proportional to the
reciprocal of |Kn(z)|2 if z ∈ Eρ. Since the maximum value of |Kn(z)| over Eρ has been
studied in the context of estimating the remainder term Rn in [6, 5], Theorem 4.8 follows
directly from [6, Theorem 5.2] and [5, Theorem 1]. For completeness, we include a more
direct proof in what follows.

Proof of Theorem 4.8 By (2.8), it is readily seen that

|Un(z)|2 =
a2n+2(ρ)− cos((2n + 2)θ)

a2(ρ)− cos(2θ)
, z =

1

2

(
ρeiθ + ρ−1e−iθ

)
∈ Eρ. (4.22)

Denote by ϕn(θ) the function appearing on the right hand side of (4.22). It is then
equivalent to consider the minimum of ϕn(θ) for θ ∈ [0, 2π].

We start with the easy case that n is odd. By (4.22), it is clear that

ϕn(θ) ≥
a2n+2(ρ)− 1

a2(ρ) + 1
=

(
ρn+1 − ρ−n−1

ρ+ ρ−1

)2

,

and the lower bound on the right hand side is attained if and only if cos((2n+ 2)θ) = 1
and cos(2θ) = −1, which gives θ = π

2 or 3
2π. Thus, the minimum can only be attained

at two endpoints of the minor axis, i.e., at the points z = ± i
2(ρ− ρ−1), as desired.

If n is even, a straightforward calculation shows that

ϕn(θ)− ϕn

(π
2

)
=

a2n+2(ρ)− cos((2n + 2)θ)

a2(ρ)− cos(2θ)
− a2n+2(ρ) + 1

a2(ρ) + 1

=
2(cos θ)2

a2(ρ)− cos(2θ)

[
a2n+2(ρ) + 1

a2(ρ) + 1
−
(
cos((n+ 1)θ)

cos θ

)2
]

=
2(cos θ)2

a2(ρ)− cos(2θ)

[(
an+1(ρ)

a1(ρ)

)2

−
(
cos((n+ 1)θ)

cos θ

)2
]
. (4.23)

To this end, we note that, on one hand,
∣∣∣∣
cos(n+ 1)θ

cos θ

∣∣∣∣ =
∣∣∣∣
sin(n+ 1)(π2 − θ)

sin(π2 − θ)

∣∣∣∣ = |Un (t) |,
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where t = cos
(
π
2 − θ

)
. It then follows from the property of Un(z) that

max
θ∈[0,2π]

∣∣∣∣
cos(n+ 1)θ

cos θ

∣∣∣∣ = n+ 1, (4.24)

and the upper bound can be attained if and only if θ = π
2 or 3π

2 . On the other hand, it
is easily seen that the function an+1(ρ)/a1(ρ) is strictly increasing for ρ ∈ [1,∞) and n
fixed. Hence, if ρ ≥ ρ∗n, we see from (4.23) and (4.24) that

ϕn(θ)− ϕn

(π
2

)
≥ 0.

In addition, since

ϕn

(π
2

)
= ϕn

(
3π

2

)
=

a2n+2(ρ) + 1

a2(ρ) + 1
=

(
ρn+1 + ρ−n−1

ρ+ ρ−1

)2

,

the second case in (4.17) follows. It is also easy to see that the minimum is attained if
and only if θ = π

2 or 3π
2 .

This completes the proof of Theorem 4.8.

Remark 4.9. For even n and 1 < ρ < ρ∗n, one can conclude from [5, Theorem 1] that
the minimum value of |Un(z)| is attained at some z∗ = 1

2(ρe
iθ∗ + ρ−1e−iθ∗) with θ∗ ∈

( n
n+1

π
2 ,

π
2 ), which is slightly off the imaginary axis. Moreover, from [5, Theorem 2] we

know that {ρ∗n}∞n=1 is a strictly decreasing sequence and ρ∗n → 1 as n → ∞; see Figure
4 for an illustration.

Figure 4: Plot of the sequence {ρ∗n} for n = 2, 4, . . . , 100.

We finally come to the Gegenbauer polynomials Cλ
n(x). Besides the trivial case§

n = 1, we have the following theorem.

§If n = 1, Cλ
1 (x) = 2λx. Thus, the minimum value of |Cλ

1 (z)| can only be attained at two endpoints
of the minor axis ± i

2
(ρ− ρ−1).
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Theorem 4.10 (Minimum value of Gegenbauer polynomials Cλ
n(z)). Let ρ∗2 = 1

2 (
√
2 +√

6) ≈ 1.932 be the unique root of (4.18) with n = 2. For ρ ≥ ρ∗2 and n ≥ 2, the

minimum value of
∣∣Cλ

n(z)
∣∣ is attained at two endpoints of the minor axis, i.e.,

min
z∈Eρ

∣∣∣Cλ
n(z)

∣∣∣ =
∣∣∣Cλ

n

(
± i

2(ρ− ρ−1)
)∣∣∣ , (4.25)

provided λ > 1, or 0 < λ < 1 and n is odd.

We precede the proof of Theorem 4.10 with the following lemma.

Lemma 4.11. Let z ∈ Eρ and define

R(z) =
z2 − s2

z2 − t2
,

where s, t ∈ (0, 1). Then, for s > t and ρ ≥ ρ∗2,

max
z∈Eρ

|R(z)| =
∣∣R
(
± i

2(ρ− ρ−1)
)∣∣ . (4.26)

Proof. See [15, Lemma 4.1].

Proof of Theorem 4.10 Let {xλj }nj=1 be the zeros of Cλ
n(x) arranged in decreasing

order. The symmetry relation (2.7) implies that

Cλ
n(z) = kλn

n∏

k=1

(z − xλk) = kλnz
n−2⌊n/2⌋

⌊n/2⌋∏

k=1

(z2 − (xλk)
2), (4.27)

where kλn is the leading coefficient of Cλ
n(x). Moreover, we see that xλk > 0 for k =

1, . . . , ⌊n/2⌋.
Let 0 < y⌊n/2⌋ < · · · < y1 < 1 be the positive zeros of the Chebyshev polynomials of

the second kind Un(z). Again, we could rewrite Un(z) as

Un(z) = 2nzn−2⌊n/2⌋

⌊n/2⌋∏

k=1

(z2 − y2k). (4.28)

By (2.11), it follows that
0 < xλk < yk < 1, (4.29)

for k = 1, . . . , ⌊n/2⌋.
To find minz∈Eρ

∣∣Cλ
n(z)

∣∣ is equivalent to find maxz∈Eρ

∣∣∣ 1
Cλ

n(z)

∣∣∣. A combination of (4.27)

and (4.28) gives

∣∣∣∣
1

Cλ
n(z)

∣∣∣∣ =
2n

kλn

⌊n/2⌋∏

k=1

∣∣∣∣
z2 − y2k

z2 − (xλk)
2

∣∣∣∣×
∣∣∣∣

1

Un(z)

∣∣∣∣ . (4.30)
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In view of (4.29), Lemma 4.11, Theorem 4.8 and the monotonicity of ρ∗n aforementioned
in Remark 4.9, we conclude that all the terms on the right hand side of (4.30) attain
their maximum values at z = ± i

2(ρ − ρ−1) for ρ ≥ ρ∗2. Therefore, |Cλ
n(z)| attains its

minimum at two endpoints of the minor axis provided λ > 1.
The case for 0 < λ < 1 and odd n can be proved in a similar manner. We only need

to replace Un(z) in (4.30) by the Chebyshev polynomials of the first kind Tn(z), and to
make use of Remark 4.7 instead. The details are left to the interested readers.

This completes the proof of Theorem 4.10.

5 Asymptotic estimate of Jacobi polynomials on the Bern-

stein ellipse

From the explicit formula (1.5) of Gegenbauer polynomials on the Bernstein ellipse, the
authors in [22] derive an asymptotic estimate of Cλ

n(z) as shown in (1.6). Due to the
complexity of the coefficients dk,n given in (3.3), it is difficult to apply the same approach
to obtain the asymptotic estimate of Jacobi polynomials on the Bernstein ellipse.

To this end, we note that a more computable form has been given in [10], where
the authors actually consider asymptotics of polynomials orthogonal with respect to a
modified Jacobi weight function

w(x) = (1− x)α(1 + x)βh(x), (5.1)

with α, β > −1 and h(x) being real analytic and strictly positive on [−1, 1]. Based on
the Riemann-Hilbert (RH) approach [4], various asymptotics of the monic/orthonomal
polynomials in the complex plane have been derived in [10], which in particular includes
a full asymptotic expansion for the monic polynomials outside [−1, 1].

To state the relevant results, we need the function

ϕ(z) = z +
√

z2 − 1, z ∈ C \ [−1, 1], (5.2)

where
√
z2 − 1 is analytic in C \ [−1, 1] and behaves like z as z → ∞. This function is

a conforming mapping from C \ [−1, 1] onto the exterior of the unit circle. Thus,

|ϕ(z)| > 1, z ∈ C \ [−1, 1].

As in [10], we also define the Szegő function of a weight w by

D(z) = D(z;w) = exp

(
(z2 − 1)1/2

2π

∫ 1

−1

logw(x)√
1− x2

dx

z − x

)
, z ∈ C \ [−1, 1], (5.3)

and

D∞ = lim
z→∞

D(z) = exp

(
1

2π

∫ 1

−1

w(x)√
1− x2

dx

)
. (5.4)

The function D(z) is analytic for z ∈ C \ [−1, 1].
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Let πn(x) denote the monic orthogonal polynomial of degree n associated with (5.1).
It is shown in [10, Theorem 1.4] that πn(z) has an asymptotic expansion of the form

πn(z) ∼
D∞

D(z)

ϕ(z)n+
1

2

2n+
1

2 (z2 − 1)
1

4

[
1 +

∞∑

k=1

Πk(z)

nk

]
, n → ∞, (5.5)

uniformly valid for z in any compact subsets of C \ [−1, 1]. The functions Πk(z), which
are analytic on z ∈ C \ [−1, 1], are rational in ϕ. They are explicitly computable via the
RH approach but with more complicated form as k increases. The first two terms are

Π1(z) = − 4α2 − 1

8(ϕ(z) − 1)
+

4β2 − 1

8(ϕ(z) + 1)
, (5.6)

and

Π2(z) =
(4α2 − 1)(α + β)

16(ϕ(z) − 1)
− (4β2 − 1)(α + β)

16(ϕ(z) + 1)
− (4α2 − 1)(4β2 − 1)

128(z2 − 1)

+
2α2 + 2β2 − 5

64

[
4α2 − 1

(ϕ(z) − 1)2
+

4β2 − 1

8(ϕ(z) + 1)2

]
. (5.7)

For an efficient numerical calculations of the higher-order terms Πk(z), we refer to recent
work [3].

Obviously, the classical Jacobi polynomials correspond to the case h(x) = 1 in (5.1).
We then have the following asymptotic estimate of Jacobi polynomials on the Bernstein
ellipse in the variable of parametrization.

Proposition 5.1. For z ∈ Eρ, i.e.,

z =
1

2

(
u+ u−1

)
, u = ρeiθ, ρ > 1, 0 ≤ θ ≤ 2π, (5.8)

we have, for large n,

∣∣∣∣
(
1− u−1

)−α− 1

2
(
1 + u−1

)−β− 1

2 −
√
πn

2α+βun
P (α,β)
n (z)

∣∣∣∣ ≤ Λ(ρ, α, β)n−1 +O(n−2). (5.9)

where

Λ(ρ, α, β) = max
|u|=ρ

∣∣∣∣∣
4Π̂1(u)− (α+ β)2 − (α+ β)− 1

2

4(1 − u−1)α+
1

2 (1 + u−1)β+
1

2

∣∣∣∣∣ . (5.10)

and

Π̂1(u) =
4β2 − 1

8(u+ 1)
− 4α2 − 1

8(u− 1)
. (5.11)

Furthermore, the error is uniformly bounded for z ∈ Eρ with ρ > 1.
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Proof. We first derive the uniform asymptotics of P
(α,β)
n (z) for z ∈ C \ [−1, 1]. In view

of the facts that

D(z; (1 − x)α(1 + x)β) =
(z − 1)α/2(z + 1)β/2

ϕ(z)(α+β)/2

and
D∞ = lim

z→∞
D(z; (1 − x)α(1 + x)β) = 2−(α+β)/2,

it then follows from (2.3) and (5.5) that

P
(α,β)
n (z)

k
(α,β)
n

∼ ϕ(z)n+
α+β+1

2

2n+
α+β+1

2 (z − 1)
α
2
+ 1

4 (z + 1)
β
2
+ 1

4

[
1 +

∞∑

k=1

Πk(z)

nk

]
, n → ∞, (5.12)

uniformly valid for z in any compact subsets of C \ [−1, 1], where k
(α,β)
n is defined as

in (2.4). Using asymptotic formulas for the Gamma functions (see [12, Formulas 5.11.3
and 5.11.13]), we deduce that

k(α,β)n =
2n+α+β

√
πn

[
1− (α+ β)2 + (α+ β) + 1

2

4n
+O

(
1

n2

)]
.

This, together with (5.12), implies that

P (α,β)
n (z) =

2
α+β
2 ϕ(z)n+

α+β+1

2

√
2πn(z − 1)

α
2
+ 1

4 (z + 1)
β
2
+ 1

4

×
[
1 +

4Π1(z)− (α+ β)2 − (α+ β)− 1
2

4n
+O

(
1

n2

)]
, n → ∞, (5.13)

where Π1(z) is given in (5.11).
If z ∈ Eρ ⊂ C\ [−1, 1], which can be parameterized through the argument u as shown

in (3.1), it is straightforward to check that

ϕ(z) = z +
√

z2 − 1 = u,

(z − 1)
α
2
+ 1

4 (z + 1)
β
2
+ 1

4 =
(u− 1)α+

1

2 (u+ 1)β+
1

2

(2u)
α+β+1

2

.

A combination of the above two formulas and (5.13) gives

P (α,β)
n (z) =

2α+βun√
πn

(1− u−1)−α− 1

2 (1 + u−1)−β− 1

2

×
[
1 +

4Π̂1(u)− (α+ β)2 − (α+ β)− 1
2

4n
+O

(
1

n2

)]
, (5.14)

where Π̂1(u) is defined as in (5.11) and the asymptotics is valid uniformly for z ∈ Eρ
with ρ > 1. By using the above uniform asymptotic, it is straightforward to derive the
desired result (5.9) and this completes the proof of Proposition 5.1.
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Remark 5.2. One should compare the asymptotic estimate (5.9) with (1.6). It is worth-
while to point out that the error in (5.9) is of order O(1/n). Indeed, a full asymptotic

expansion of P
(α,β)
n (z) in terms of powers of 1/n on the Bernstein ellipse Eρ can be

derived by combining (5.12) and a full asymptotic expansion of the leading coefficient

k
(α,β)
n . We note that this form of asymptotic expansion has been mentioned in [16,

Theorem 8.21.9], but without explicit formulas for the coefficients.

Remark 5.3. As a direct consequence of Proposition 5.1, we have

lim
n→∞

P
(α,β)
n (z)

√
nπ

2α+βun
=
(
1− u−1

)−α− 1

2
(
1 + u−1

)−β− 1

2 , (5.15)

where z = 1
2 (u+ u−1) and |u| = ρ > 1.

A further application of Proposition 5.1 is that we are able to derive the following
lower bound for the Jacobi polynomial on the Bernstein ellipse, which particularly implies
a more explicit expression of the constant C(ρ;α, β) appearing in (1.7).

Corollary 5.4. For z = 1
2(u+ u−1) ∈ Eρ, we have

min
z∈Eρ

|P (α,β)
n (z)| ≥ Cn(α, β)2

α+βπ− 1

2ρn

max
|u|=ρ

∣∣∣(1− u−1)α+
1

2 (1 + u−1)β+
1

2

∣∣∣
√
n
, (5.16)

where Cn(α, β) is a positive constant and Cn(α, β) ∼ 1 for large n. Moreover,

max
|u|=ρ

∣∣∣(1− u−1)α+
1

2 (1 + u−1)β+
1

2

∣∣∣ =





(1 + ρ−2)α+
1

2 , if α = β ≥ −1
2 ,

(1− ρ−2)α+
1

2 , if −1 < α = β < −1
2 .

(5.17)

Proof. The lower bound follows immediately from Proposition 5.1 and the elementary
inequality ||z1| − |z2|| ≤ |z1 − z2|. To show (5.17), by setting u = ρeiθ, ρ > 1 and
0 ≤ θ < 2π, it is easily seen that

1− ρ−2 ≤ |1− u−2| =
√
1− 2ρ−2 cos(2θ) + ρ−4 ≤ 1 + ρ−2. (5.18)

Hence, if |u| = ρ, |1− u−2| attains its maximum value at ±ρi and its minimum value at
±ρ, which gives us (5.17).

6 Concluding remarks

In this paper, we have investigated several basic properties of Jacobi polynomials on
the Bernstein ellipse, which include the explicit formula, extrema of the absolute values
as well as a refined asymptotic estimate. These results provide some further insight
into Jacobi polynomials and can be adaptable to some practical applications such as
establishing an explicit error bound of the spectral interpolation at the Jacobi nodes.
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