Skip to main content
Log in

Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  4. Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Codina, R., Blasco, J.: Stabilized nite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Eng. 182, 277–300 (2000)

    Article  MATH  Google Scholar 

  8. Daly, B.J., Harlow, F.H., Shannon, J.P., Welch, J.E.: The MAC Method, Technical Report LA-3425, Los Alamos Scientific Laboratory, University of California (1965)

  9. Girault, V., Lopez, H.: Finite-element error estimates for the MAC scheme. IMA J. Numer. Anal. 16, 347–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  11. Goda, K.: A multistep technique with implicit divergerence schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76–95 (1979)

    Article  MATH  Google Scholar 

  12. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gustafsson, B., Nilsson, J.: Boundary conditions and estimates for the steady Stokes equations on staggered grids. J. Sci. Comput. 15, 29–59 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, H., Wu, X.: A new mixed finite element formulation and the MAC method for the Stokes equations. SIAM J. Numer. Anal. 35, 560–571 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Heister, T., Olshanskii, M.A., Rebholz, L.G.: Unconditional long-time stability of a velocity-vorticity method for the 2D Navier–Stokes equations. Numer. Math. 135, 143–167 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal. 23, 750–777 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanschat, G.: Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int. J. Numer. Methods Fluids 56, 941–950 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Layton, W., Manica, C.C., Neda, M., Olshanskii, M., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier–Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lebedev, V.L.: Difference analogues of orthogonal decompositions, fundamental differential operators and certain boundary-value problems of mathematical physics. Z. Vycisl. Mat. i Mat. Fiz. 4, 449–465 (1964)

    MathSciNet  Google Scholar 

  26. Li, J., Sun, S.: The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes. J. Sci. Comput. 65, 341–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, M., Tang, T., Fornberg, B.: A compact fourth-order finite difference scheme for the steady incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 20, 1137–1151 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, J.-G., Liu, J., Pego, R.: Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate. Commun. Pure Appl. Math. 60, 1443–1487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. McKee, S., Tomé, M.F., Ferreira, V.G., Cuminato, J.A., Castelo, A., Sousa, F.S., Mangiavacchi, N.: The MAC method. Comput. Fluids 37, 907–930 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Minev, P.: Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem. Int. J. Numer. Methods Fluids 58, 307–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nicolaides, R.A., Wu, X.: Analysis and convergence of the MAC scheme II. Navier–Stokes equations. Math. Comput. 65, 29–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rannacher, R.: On chorin’s projection method for the incompressible navier-stokes equations. In: Heywood J.G., Masuda K., Rautmann R., Solonnikov V.A. (eds.) The Navier-Stokes Equations II—Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin, Heidelberg (1992)

  35. Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55, 1135–1158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth-order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J.: On a new pseudo-compressibility method for the incompressible Navier-Stokes equations. Appl. Numer. Math. 21, 71–90 (1996)

    Article  MathSciNet  Google Scholar 

  40. Shen, J.: On error estimates of projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. In: Bao W., Du Q. (eds.) Multiscale Modeling and Analysis for Materials Simulation. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 22, pp. 147–195. World Scientific Publishing, Hackensack (2012)

  42. Simo, J., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comput. Methods Appl. Mech. Eng. 111, 111–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stephen, A.B.: A finite difference Galerkin formulation for the incompressible Navier–Stokes equations. J. Comput. Phys. 53, 152–172 (1984)

    Article  MathSciNet  Google Scholar 

  44. Sun, S., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: Une méthode d’approximation des solutions des équations de Navier–Stokes. Bull. Soc. Math. France 98, 115–152 (1968)

    Article  MATH  Google Scholar 

  46. Timmermans, L.J.P., Minev, P.D., Van De Vosse, F.N.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22, 673–688 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tone, F.: On the long-time stability of the Crank–Nicolson scheme for the 2D Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 23, 1235–1248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44, 29–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7, 870–891 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, C., Liu, J.-G.: Convergence of gauge method for incompressible flow. Math. Comput. 69, 1385–1407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Weinan, E., Liu, J.-G.: Projection method I: convergence and numerical boundary layers. SIAM J. Numer. Anal. 32, 1017–1057 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Weinan, E., Liu, J.-G.: Projection method II: Godunov–Ryabenki analysis. SIAM J. Numer. Anal. 33, 1597–1621 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  54. Weinan, E., Liu, J.-G.: Projection method III: spatial discretization on the staggered grid. Math. Comput. 71, 27–47 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Weinan, E., Liu, J.-G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1, 317–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyu Sun.

Additional information

The work of Huangxin Chen was supported by the NSF of China (Grant Nos. 11771363, 91630204, 51661135011) and Program for Prominent Young Talents in Fujian Province University. Shuyu Sun acknowledges that this work is supported by the KAUST research fund awarded to the Computational Transport Phenomena Laboratory at KAUST through the Grant BAS/1/1351-01-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, S. & Zhang, T. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids. J Sci Comput 75, 427–456 (2018). https://doi.org/10.1007/s10915-017-0543-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0543-3

Keywords

Mathematics Subject Classification

Navigation