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Abstract In this article, we consider exactly divergence-free H(div)-conforming finite el-
ement methods for time-dependent incompressible viscous flow problems. This is an ex-
tension of previous research concerning divergence-free H1-conforming methods. For the
linearised Oseen case, the first semi-discrete numerical analysis for time-dependent flows
is presented whereby special emphasis is put on pressure- and Reynolds-semi-robustness.
For convection-dominated problems, the proposed method relies on a velocity jump upwind
stabilisation which is not gradient-based. Complementing the theoretical results, H(div)-
FEM are applied to the simulation of full nonlinear Navier–Stokes problems. Focussing
on dynamic high Reynolds number examples with vortical structures, the proposed method
proves to be capable of reliably handling the planar lattice flow problem, Kelvin–Helmholtz
instabilities and freely decaying two-dimensional turbulence.

Keywords Incompressible flow · divergence-free H(div)-FEM · pressure/Reynolds-semi-
robust error estimates · vortex dynamics
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1 Introduction

In this paper, we consider time-dependent incompressible flows fulfilling [46,41,20]

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tuuu−ν∆uuu+(βββ ···∇)uuu+∇p = fff in (0,T ]×Ω ,

∇ ···uuu = 0 in (0,T ]×Ω ,

uuu = 000 on [0,T ]×∂Ω ,

uuu(0,xxx) = uuu0(xxx) for xxx ∈ Ω .

(1a)

(1b)

(1c)

(1d)
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For the space dimension d ∈ {2,3}, Ω ⊂ Rd denotes a bounded connected domain.
Moreover, uuu : (0,T ]×Ω → Rd represents the velocity field. For βββ = uuu, the nonlinear Navier–
Stokes equations are recovered. A linearisation of the problem, known as the Oseen prob-
lem, can be considered whenever an a priori known convective velocity βββ : (0,T ]×Ω → Rd

is taken instead. In both cases, p : (0,T ]× Ω → R is the (zero-mean) kinematic pressure,
fff : (0,T ]× Ω → Rd represents external body forces and uuu0 : Ω → Rd stands for a suitable
initial condition for the velocity. The underlying fluid is assumed to be Newtonian with con-
stant (dimensionless) kinematic viscosity 0 < ν ≪ 1.

We want to use an HHH(div)-conforming, inf-sup stable and exactly divergence-free finite
element method (FEM) for solving (1) approximately. Divergence-free FEMs enable a strict
separation between the approximation of velocity and pressure in the sense that it is possible
to obtain error estimates where the quality of the pressure approximation does not influence
the velocity error. This property is referred to as ‘pressure-robustnes’; cf. [32,35].

Moreover, using an HHH(div)-conforming FEM allows the usage of the whole machinery
known from Discontinuous Galerkin FEM (dG-FEM). Especially an upwind treatment of
the convective term can be incorporated quite naturally. In this context, whenever problems
with high Reynolds numbers Re (equivalently with small viscosity ν) are considered, it is
sensible to strive for methods for which ‘Re-semi-robustness’ can be shown—that is, meth-
ods whose error estimates, including Gronwall constants, do not explicitly depend on Re
(equivalently on ν−1); cf. [39]. The price to be paid usually are certain regularity assump-
tions for the exact solution.

Thus, this work can be seen as an advancement and extension of the authors’ previous
work [42], where divergence-free HHH1-conforming FEM have been analysed for the time-
dependent Navier–Stokes problem. For a literature overview concerning HHH1-conforming
FEM, we also refer to [42]. The present contribution is split into the following parts:

– Numerical analysis: For a semi-discrete numerical error analysis, we consider the time-
dependent Oseen equations with a known convective field βββ . The analysis of linearised
incompressible flow problems shall act as a proof of concept and a first step towards the
nonlinear Navier–Stokes problem. Moreover, due to the above mentioned possibility of
strictly separating velocity and pressure, this work exclusively focusses on the velocity
approximation.

– Application: In contrast to the theoretical part, for our numerical experiments, we apply
the HHH(div)-FEM to the full nonlinear Navier–Stokes problem with βββ = uuu. There, for
high Reynolds number problems, we assess the quality of HHH(div)-FEM in comparison
with other discretisation schemes. The considered problems all have a strong vortical
structure and vary in their behaviour from rather static to considerably dynamic.

Concerning previous research, in [49,48], HHH(div)-conforming and divergence-free FEMs
are introduced for the stationary Stokes problem; but they do not provide pressure-robust er-
ror estimates. On the other hand, in [32], a pressure-robust estimate for HHH(div)-FEM in a
discrete energy norm is given for the stationary Stokes problem; but without many details.

For the stationary Navier–Stokes equations, HHH(div)-FEM are considered in [16]. How-
ever, for the error analysis, one is referred to the Local Discontinuous Galerkin method [15]
and in this work, neither pressure- nor Re-semi-robustness plays a role. Actually, in the
context of stationary problems, the high Reynolds number case is usually excluded. For the
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time-dependent incompressible Euler equations (ν = 0), on the other hand, HHH(div)-FEM are
applied in [27]. But viscous effects do not play a role in the Euler problem. Therefore, to the
best of the authors’ knowledge, this contribution is the first one which analyses and applies
HHH(div)-FEM to time-dependent viscous incompressible flows. Additionally, we attach great
importance to the aspects of pressure- and Re-semi-robustness.

Organisation of the article: In Section 2, we introduce divergence-free HHH(div)-conforming
and inf-sup stable FEM for time-dependent incompressible flow problems. This includes
weak formulations with their corresponding function spaces, assumptions which are needed
subsequently and a brief discussion of the stability and well-posedness of the proposed
method. Then, Section 3 is concerned with the derivation of a priori, pressure- and Re-
semi-robust error estimates for the spatially discretised velocity of the linearised problem.
Finally, in Section 4, the HHH(div)-FEM is applied to the simulation of high Reynolds number
flows for the full nonlinear Navier–Stokes problem. There, we present numerical examples
for the planar lattice flow problem, Kelvin–Helmholtz instabilities and freely decaying two-
dimensional turbulence.

2 H(div)-FEM for time-dependent incompressible flows

Notation: In what follows, for K ⊆ Ω we use the standard Sobolev spaces W m,p(K) for
scalar-valued functions with associated norms ∥·∥W m,p(K) and seminorms |·|W m,p(K) for m ! 0
and p ! 1. Spaces and norms for vector- and tensor-valued functions are indicated with bold
letters. We obtain the Lebesgue space W 0,p(K) = Lp(K) and the Hilbert space W m,2(K) =
Hm(K). Additionally, the closed subspaces H1

0 (K) consisting of H1(K)-functions with van-
ishing trace on ∂K and the set L2

0(K) of L2(K)-functions with zero mean in K play an
important role. The L2(K)-inner product is denoted by (·, ·)K and, if K = Ω , we usually
omit the domain completely when no confusion can arise. Furthermore, with regard to time-
dependent problems, given a Banach space XXX and a time instance t∗, the Bochner space
Lp(0, t∗;XXX) for p ∈ [1,∞] is used. In the case t∗ = T , we frequently use the abbreviation
Lp(XXX) = Lp(0,T ;XXX).

2.1 Time-dependent Oseen problem

With VVV = HHH1
0(Ω) and Q = L2

0(Ω), we introduce the spaces for velocity and pressure as

VVV T =
{

vvv ∈ L2(0,T ;VVV ) : ∂t vvv ∈ L2(0,T ;LLL2)}, QT = L2(0,T ;Q). (2)

Note that throughout this work, we thus assume at least the mild regularity ∂tuuu ∈ L2
(
0,T ;LLL2)

for the exact velocity. Then, provided the forcing term fff is sufficiently smooth, the following
well-known variational formulation of problem (1) on the continuous level is obtained:

{
?(uuu, p) ∈ VVV T ×QT with uuu(0) = uuu0 s.t., ∀(vvv,q) ∈ VVV ×Q,

(∂tuuu,vvv)+νa(uuu,vvv)+ c(βββ ;uuu,vvv)+b(vvv, p)−b(uuu,q) = ( fff ,vvv).

(3a)

(3b)

The multilinear forms are given by

a(www,vvv) =
∫

Ω
∇www :::∇vvvdxxx, c(βββ ;www,vvv) =

∫

Ω
(βββ ···∇)www ···vvvdxxx, (4a)

b(www,q) = −
∫

Ω
q(∇ ···www)dxxx. (4b)
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In this work, βββ : (0,T ]× Ω → Rd denotes the known convective velocity. We assume that
βββ ∈ L∞(0,T ;LLL∞) with ∇ ···βββ = 0 pointwise and βββ ···nnn

∣∣
∂Ω = 0, where nnn denotes the outer unit

normal vector to ∂Ω . In applications, the field βββ can be thought of as an approximation of
uuu. We abbreviate ∥βββ∥L∞(LLL∞) = ∥βββ∥∞. Weakly divergence-free velocities belong to

VVV div = {vvv ∈ VVV : b(vvv,q) = 0, ∀q ∈ Q}. (5)

2.2 Discrete setting and assumptions

In this work, we focus on FEM which are HHH(div)-conforming, where

HHH(div;Ω) =
{

www ∈ LLL2(Ω) : ∇ ···www ∈ L2(Ω)
}
. (6)

Let Th be a shape-regular FE partition of Ω without hanging nodes and mesh size h =
maxK∈Th hK , where hK denotes the diameter of the particular element K ∈ Th. Since the
subsequent velocity approximation will not be HHH1-conforming, the broken Sobolev space

HHHm(Th) =
{

www ∈ LLL2(Ω) : www
∣∣
K ∈ HHHm(K), ∀K ∈ Th

}
(7)

is introduced. Define the broken gradient ∇h : HHH1(Th) → LLL2(Ω) by (∇hwww)
∣∣
K = ∇

(
www
∣∣
K

)
.

The skeleton Fh denotes the set of all facets with FK = {F ∈ Fh : F ⊂ ∂K} and N∂ =
maxK∈Th card(FK). Moreover, Fh = F i

h ∪F∂
h where F i

h is the subset of interior facets and
F∂

h collects all boundary facets F ⊂ ∂Ω . To any F ∈ Fh we assign a unit normal vector nnnF

where, for F ∈ F∂
h , this is the outer unit normal vector nnn. If F ∈ F i

h, there are two adjacent
elements K+ and K− sharing the facet F = ∂K+ ∩ ∂K− and nnnF points in an arbitrary but
fixed direction. Let φ be any piecewise smooth (scalar-, vector- or tensor-valued) function
with traces from within the interior of K± denoted by φ±, respectively. Then, we define the
jump !·"F and average

{{
·
}}

F operator across interior facets F ∈ F i
h by

!φ"F = φ+ −φ− and
{{

φ
}}

F =
1
2
(
φ+ +φ−). (8)

For boundary facets F ∈ F∂
h we set !φ"F =

{{
φ
}}

F = φ . These operators act component-
wise for vector- and tensor-valued functions. Frequently, the subscript indicating the facet is
omitted. It is important to have in mind the following characterisation of HHH(div)-functions.

LEMMA 2.1 (Characterisation of HHH(div;Ω))

Let www ∈ HHH1(Th). If !www" ···nnnF = 0 for all F ∈ F i
h, then www ∈ HHH(div;Ω).

PROOF : Cf., for example, [19, Lemma 1.24]. "
In the following, Pk(K) (vector-valued: PPPk(K)) denotes either the space of all polynomials
on K with degree less or equal to k (simplicial mesh) or with degree less or equal to k in
each variable (tensor-product mesh), depending on the particular situation.

Let us turn to specifying the assumptions which are needed in the remainder of this
paper. Define the following discrete FE spaces for velocity and pressure, respectively:

VVV h =
{

vvvh ∈ HHH(div;Ω) : vvvh
∣∣
K ∈ VVV k(K), ∀K ∈ Th; vvvh ···nnn

∣∣
∂Ω = 0

}
̸⊂ VVV (9a)

Qh =
{

qh ∈ L2
0(Ω) : qh

∣∣
K ∈ Pℓ(K), ∀K ∈ Th

}
⊂ Q (9b)
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Here, the local space VVV k(K) is a set of vector-valued piecewise polynomials of order k ! 1,
which, in order to keep the theory in Section 3 widely applicable, is not explicitly specified
further. Instead, we shall only introduce several required global and local properties for the
resulting FE pair. For the pressure space, ℓ ∈ {k −1,k} is assumed. Some valid and explicit
examples for VVV h/Qh are given below.

ASSUMPTION A1 : The global spaces VVV h and Qh are divergence-conforming. That is,

∇ ···VVV h ⊆ Qh. (10)

Property (10) ensures that the velocity approximation will be exactly divergence-free [32].

ASSUMPTION A2 : The global spaces VVV h and Qh form a discretely inf-sup stable FE pair. That
is, there exists β > 0, independent of the mesh size h, such that

inf
qh∈Qh\{0}

sup
vvvh∈VVV h\{000}

b(vvvh,qh)

|||vvvh|||e ∥qh∥L2
! β . (11)

Here, |||·|||e denotes a suitable energy norm. Due to the HHH(div)-conformity of VVV h, the pressure-
velocity coupling b(·, ·) does not have to be modified in the discrete setting. Note that (11)
ensures that the space of discretely divergence-free velocities VVV div

h is non-trivial, that is

VVV div
h = {vvvh ∈ VVV h : b(vvvh,qh) = 0, ∀qh ∈ Qh} ̸= {000}. (12)

ASSUMPTION A3 : The space VVV h has optimal approximation properties in the following sense.
There exists a velocity approximation operator jjjh : VVV →VVV h such that, for all www ∈ HHHr(Ω)
with r > 3/2 and ruuu = min{r,k +1},

∥www− jjjhwww∥LLL2(K) +hK ∥www− jjjhwww∥HHH1(K) # Chruuu
K |www|HHHruuu (K), ∀K ∈ Th. (13)

A direct consequence of the optimal approximation property (13), together with a continuous
trace inequality [19], is the ability to bound polynomial approximation errors on facets:

∥www− jjjhwww∥LLL2(F) +hK ∥∇(www− jjjhwww) ···nnnK∥LLL2(F) # Ch
ruuu− 1

2
K |www|HHHruuu (K), ∀F ∈ FK , K ∈ Th.

(14)

Furthermore, concerning the pressure, it is well-known that for all q ∈ Q∩Hs(Ω) with s ! 1
and rp = min{s,ℓ+1} the local orthogonal L2-projection π0 : L2(K) → Pℓ(K) fulfils

∥q−π0q∥L2(K) # Chrp
K |q|Hrp (K), ∀K ∈ Th. (15)

ASSUMPTION A4 : jjjh fulfils the following commuting diagram property:

∇ ···( jjjhwww) = π0(∇ ···www) (16)

Note that ∇ ···www = 0 pointwise implies that ∇ ···( jjjhwww) = 0 also holds in a pointwise sense.
Therefore, property (16) will ensure that our analysis yields pressure-robust error estimates
for the velocity. However, note that not every choice of velocity approximation operator
automatically leads to pressure-robust estimates.

ASSUMPTION A5 : Let 0 # m # ℓ and 1 # p,q # ∞. The local space VVV k(K) satisfies the local
inverse inequality [21, Lemma 1.138]

∀vvvh ∈ VVV k(K) : ∥vvvh∥WWW ℓ,p(K) # Cinvh
m−ℓ+d

(
1
p − 1

q

)

K ∥vvvh∥WWW m,q(K) , ∀K ∈ Th. (17)
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We will not distinguish between different applications of (17) and in the end, Cinv can be
thought of as a maximum over all occurring constants. Also on shape-regular meshes, the
following assumption is fulfilled.

ASSUMPTION A6 : The space VVV k(K) satisfies the discrete trace inequality [19, Remark 1.47]

∀vvvh ∈ VVV k(K) : ∥vvvh∥LLL2(∂K) # CtrN
1/2
∂ h−1/2

K ∥vvvh∥LLL2(K) , ∀K ∈ Th. (18)

REMARK 2.2 : Several classical examples of spaces fulfilling these properties can be found in
the monograph [7]. For ℓ = k, let us specifically mention the family of Raviart–Thomas
elements on simplicial meshes. We will use this element later for our numerical experi-
ments. For ℓ = k−1, the family of Brezzi–Douglas–Marini elements on either simplicial
or tensor-product meshes is also applicable. Note that both type of elements come with
an interpolation operator fulfilling Assumptions 3 and 4. More recent developments in
the direction of creating new HHH(div) elements can be found, for example, in [49]. $

2.3 FEM and well-posedness

Our discrete space-time velocity and pressure spaces are

VVV T
h =

{
vvvh ∈ L2(0,T ;VVV h) : ∂t vvvh ∈ L2(0,T ;VVV h)

}
, QT

h = L2(0,T ;Qh). (19)

The space-semidiscrete variational formulation of (3) reads as follows:
{

?(uuuh, ph) ∈ VVV T
h ×QT

h with uuuh(0) = uuu0h s.t., ∀(vvvh,qh) ∈ VVV h ×Qh,

(∂tuuuh,vvvh)+νah(uuuh,vvvh)+ ch(βββ ;uuuh,vvvh)+b(vvvh, ph)−b(uuuh,qh) = ( fff ,vvvh).

(20a)

(20b)

Here, uuu0h denotes an approximation of uuu0 belonging to VVV h and the occurring forms are
defined below. First note that due to (10), discretely divergence-free functions are even
divergence-free pointwise; that is,

VVV div
h = {vvvh ∈ VVV h : ∇ ···vvvh(xxx) = 0, ∀xxx ∈ Ω}. (21)

The solution uuuh of (20) is by construction a pointwise divergence-free approximation to uuu.

REMARK 2.3 : In the context of div-free, HHH1-conforming FEM, we know that the correspond-
ing set of discretely divergence-free functions is also exactly divergence-free and thus
contained in VVV div. Here, VVV h ̸⊂ VVV and therefore one has to be careful: even though dis-
cretely div-free functions are div-free pointwise, we have VVV div

h ̸⊂ VVV div. $
The below appearance of certain traces of velocity facet values and normal derivatives
thereof dictates that the involved velocities at least belong to HHH

3
2 +ε(Th) for some ε > 0;

cf. [38, Section 2.1.3]. Thus, for ε > 0, define the compound space

VVV (h) = VVV h ⊕
[
VVV ∩HHH

3
2 +ε(Th)

]
. (22)

For the discretisation of the diffusion term, we employ the standard symmetric interior
penalty (SIP) form ah : VVV (h)×VVV h → R; cf. [38,19]. For σ > 0, this form is given by

ah(www,vvvh) =
∫

Ω
∇hwww :::∇hvvvh dxxx− ∑

F∈Fh

∮

F

{{
∇www
}}

nnnF ···!vvvh"dsss (23a)

− ∑
F∈Fh

∮

F
!www" ···

{{
∇vvvh

}}
nnnF dsss+ ∑

F∈Fh

∮

F

σ
hF

!www" ···!vvvh"dsss, (23b)
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where [∇www]i j = ∂wi
∂x j

denotes the entries of the Jacobian. Furthermore, hF represents an ap-
propriate length scale for the facet F . It is well-known that the jump penalty parameter σ > 0
has to be chosen sufficiently large such that coercivity on the discrete level is guaranteed.

REMARK 2.4 : The solution uuuh to (20) is automatically normal continuous since uuuh(t) ∈VVV h ⊂
HHH(div;Ω) for a.e. t ∈ (0,T ). If τττF denotes one tangential vector to F ∈ Fh, we obtain

vvvh = (vvvh ···nnnF)nnnF +(vvvh ···τττF)τττF ⇒ !vvvh"F = !(vvvh ···τττF)"τττF , ∀vvvh ∈ VVV h. (24)

In fact, the jumps in (23) only act on tangential components of discrete velocities. $

REMARK 2.5 : Concerning Dirichlet (no-slip) boundary conditions, note that the normal com-
ponent is prescribed in VVV h to fulfil uuuh ···nnn

∣∣
∂Ω = 0—the no-penetration condition. Thus,

the boundary facet contribution for F∂
h ⊂ Fh in (23) only acts on tangential components.

This weak imposition of the no-slip condition is therefore consistent with the limiting
case of ν → 0. Even more, for high Reynolds numbers, imposing Dirichlet boundary
conditions by means of a Nitsche penalty method can be considered as an implicit wall
model [23]. To this end, the parameter σ can also be designed using Spalding’s law of
the wall [4]. Thus, in certain situations, it may be advantageous to assign a different
value of σ to no-slip facets F ∈ F∂

h than to interior facets F ∈ F i
h. $

In conjunction with the viscous term ah, the following expressions are used:

∀www ∈ VVV (h) : |||www|||2e = ∥∇hwww∥2
LLL2 + ∑

F∈Fh

σ
hF

∥!www"∥2
LLL2(F)

(25a)

|||www|||2e,♯ = |||www|||2e + ∑
K∈Th

hK ∥∇www ···nnnK∥2
LLL2(∂K)

(25b)

Here, |||·|||e denotes a discrete energy norm and the index ♯ indicates a stronger norm.

The pressure-velocity coupling b : VVV (h)×Q → R remains unchanged:

b(www,q) = −
∫

Ω
q(∇ ···www)dxxx (26)

For the (linearised) inertia term, we choose a convection term ch : VVV (h)×VVV h → R with
optional upwinding controlled by the parameter γ ! 0:

ch(βββ ;www,vvvh) =
∫

Ω
(βββ ···∇h)www ···vvvh dxxx− ∑

F∈F i
h

∮

F
(βββ ···nnnF)!www" ···

{{
vvvh
}}

dsss (27a)

+ ∑
F∈F i

h

∮

F

γ
2
|βββ ···nnnF |!www" ···!vvvh"dsss (27b)

Note that due to the strong imposition of the no-penetration condition βββ ···nnn
∣∣
∂Ω = 0 in VVV h, the

convective form ch does not contain any surface integrals over boundary facets. Therefore,
as long as there is no in- or outflow across ∂Ω , the weak imposition of tangential boundary
conditions is handled exclusively by ah. Moreover, a modification of ch which ensures skew-
symmetry is redundant since ∇ ···βββ = 0 has been assumed.
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REMARK 2.6 : Let us comment on the upwind stabilisation in (27). This kind of convec-
tion stabilisation, as opposed to dissipative viscous stabilisation, does not explicitly in-
clude gradient-based terms. However, as can be seen in [19, Section 2.3] for the sta-
tionary transport problem, upwind stabilisation gives additional control over the stream-
line derivative—much like classical SUPG stabilisation. Unfortunately, we are not (yet)
aware of how to show (if at all) an analogous result can be obtained for incompressible
flow problems either in the full dG-FEM setting, or in the HHH(div)-FEM case. $

In conjunction with the convection term ch, the following expressions are used:

∀www ∈ VVV (h) : |||www|||2βββ = ∥www∥2
LLL2 + |www|2βββ ,upw, |www|2βββ ,upw = ∑

F∈F i
h

∮

F

γ
2
|βββ ···nnnF ||!www"|2 dsss (28a)

|||www|||2βββ ,♯ = |||www|||2βββ +∥βββ∥2
∞ ∑

K∈Th

h−2
K ∥www∥2

LLL2(K)
+∥βββ∥∞ ∑

K∈Th

∥www∥2
LLL2(∂K)

(28b)

Here, |||·|||βββ measures terms due to convection and again, the index ♯ indicates a stronger
norm since non-zero terms are added. Moreover, |·|βββ ,upw denotes the upwind seminorm,
which represents additional control over βββ -scaled velocity jumps.

REMARK 2.7 : Concerning the appearing forms in (20), one could alternatively take any other
inf-sup stable dG-FEM formulation (cf., for example, [38,8]), and adapt it by neglecting
all terms with vvvh ···nnn

∣∣
∂Ω and !vvvh" ···nnnF for F ∈ F i

h. In our setting, these terms vanish auto-
matically due to the strong imposition of the no-penetration condition and the continuity
of normal components of functions in HHH(div;Ω). $

REMARK 2.8 : Until now we only considered no-slip conditions. However, the definitions
of ah and ch can be extended directly to the case of weakly imposed periodic boundary
conditions (BCs). To this end, instead of perceiving the set of periodic facets as boundary
facets, it is very natural to treat them analogously to interior facets. In order to keep
the HHH(div)-conformity intact, only the normal continuity across the periodic boundary
has to be ensured in a strong sense. Thus, the subsequent analysis holds true verbatim
for problems involving periodic BCs. We refer to [47] where periodic BCs for scalar
diffusion-reaction problem are considered in the dG-FEM context. $

In the following, the Galerkin orthogonality property of (20) is stated.

COROLLARY 2.9 (Galerkin orthogonality)

Let uuuh ∈ VVV T
h solve (20), and assume that the solution uuu ∈ VVV T of (3) satisfies the mini-

mum regularity uuu ∈ L2
(

0,T ;HHH
3
2 +ε(Th)

)
for ε > 0. Then, for all vvvh ∈ VVV div

h :

(∂t [uuu−uuuh],vvvh)+νah(uuu−uuuh,vvvh)+ ch(βββ ;uuu−uuuh,vvvh) = 0, for a.e. t ∈ (0,T ) (29)

PROOF : The most important ingredient is the consistency of both SIP formulation of the
viscous term and upwind formulation of the convective term. We will not prove this
here, but instead refer to [38,19]. Having the consistency property in mind, subtracting
(20) from (3) and using arbitrary (vvvh,qh) ∈ VVV h ×Qh as test functions leads to

(∂t [uuu−uuuh],vvvh)+νah(uuu−uuuh,vvvh)+ ch(βββ ;uuu−uuuh,vvvh) (30a)

+b(vvvh, p− ph)−b(uuu−uuuh,qh) = 0. (30b)
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Restricting the velocity test functions to discretely divergence-free ones, that is vvvh ∈
VVV div

h , we can use ∇ ···vvvh = 0 to remove the first mixed term; see (21). The second mixed
term vanishes by construction because both uuu and uuuh are in VVV div

h and Qh ⊂ Q. "

In order to obtain stability estimates for (20), the following results have to be established.

LEMMA 2.10 (Discrete coercivity of ah and ch)
Assume that σ > 0 is sufficiently large. Then, the SIP bilinear form ah is coercive on

VVV h w.r.t. the energy norm |||·|||e. Moreover, the convective form ch is coercive on VVV h w.r.t.
the upwind seminorm |·|βββ ,upw. That is, there exists Cσ > 0, independent of h, such that,

∀vvvh ∈ VVV h : ah(vvvh,vvvh) ! Cσ |||vvvh|||2e and ch(βββ ;vvvh,vvvh) = |vvvh|2βββ ,upw. (31)

PROOF : Cf., for example, [38, Lemma 6.6] or [19, Section 6.1.2.1] for the discrete coerciv-
ity of ah. The non-negativity of ch is shown, for example, in [19, Lemma 6.39]. "

As already said, we want to decouple velocity and pressure and treat them both separately.
For this separation to work it is essential to work in VVV div

h which, due to (11), is non-trivial.

LEMMA 2.11 (Well-posedness and velocity energy estimate)

Let fff ∈ L1
(
LLL2) and uuu0h ∈ LLL2. Then, there exists a solution uuuh ∈ VVV T

h to (20) with

1
2

∥uuuh∥L∞(LLL2) +
∫ T

0

[
νCσ |||uuuh|||2e + |uuuh|2βββ ,upw

]
dτ # ∥uuu0h∥2

LLL2 +
3
2

∥ fff ∥2
L1(LLL2) . (32)

Provided fff is even Lipschitz in time, the solution uuuh is unique.

PROOF : Testing (20) with (uuuh(t),0) ∈ VVV div
h ×Qh, using the discrete coercivity properties in

Lemma 2.10 on the left-hand side and Cauchy–Schwarz on the right-hand side leads to

1
2

d
dt

∥uuuh(t)∥2
LLL2 +νCσ |||uuuh(t)|||2e + |uuuh(t)|2βββ ,upw # ∥ fff (t)∥LLL2 ∥uuuh(t)∥LLL2 , (33)

since (∂tuuuh,uuuh) = 1
2

d
dt ∥uuuh∥2

LLL2 . Now, we directly follow [17], where the estimate

∥uuuh(t)∥LLL2 # ∥uuu0h∥LLL2 +∥ fff ∥L1(LLL2) (34)

plays a key role. Inserting (34) in (33), applying Young’s inequality and integrating over
(0,T ) shows the estimate. Applying the theorem of Carathéodory (cf. [31, Theorem
A.50]) ensures existence and, if fff is additionally Lipschitz in time, uniqueness. "

REMARK 2.12 : Alternative results can be obtained by estimating the right-hand side of (33)
differently. Firstly, one could use Young’s and Poincare’s inequality with the goal of
bounding ∥uuuh∥LLL2 in an appropriately scaled energy norm |||uuuh|||e. This inevitably leads
to a ν−1 factor. Secondly, also after Young’s inequality, the Gronwall lemma could be
applied. A factor exp(T ) appears on the right-hand side. $
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3 Pressure- and Re-semi-robust analysis for the linearised problem

From now on, C > 0 denotes a generic constant independent of h and ν . The first subsection
deals with optimal-order, pressure- and Re-semi-robust estimates for the discrete, stationary
Stokes projection in the HHH(div) context. This is an important step, since, for the analysis
of the Oseen problem in the second subsection, the stationary Stokes projection is used for
the error splitting. In this way, the approximation properties of the projection operator in the
Oseen problem can be derived from error estimates for the stationary Stokes problem.

3.1 Stationary Stokes projection

In this section we basically consider the stationary Stokes problem. With a sufficiently
smooth forcing term ggg, the well-known continuous weak formulation reads

{
?(uuus, ps) ∈ VVV ×Q s.t., ∀(vvv,q) ∈ VVV ×Q,

νa(uuus,vvv)+b(vvv, ps)−b(uuus,q) = (ggg,vvv).

(35a)

(35b)

In order to obtain optimal LLL2-estimates for the velocity, we make the following assumption
which is called ‘elliptic regularity’, ‘Cattabriga’s regularity’ or ‘smoothing property’.

ASSUMPTION A7 : Assume that Ω is either a convex polygon for d = 2 or of class C1,1 for d ∈
{2,3}. Then, for all ggg ∈ LLL2, the solution (uuus, ps) ∈ VVV ×Q of (35) additionally fulfils the
regularity property (uuus, ps) ∈ HHH2 ×H1 and the a priori estimate

√
ν ∥uuus∥HHH2 +∥ps∥H1 #

C∥ggg∥LLL2 ; cf. [9, Theorem IV.5.8].

Extending [21,31] to the HHH(div)-conforming case, we give the following definition. Note
that the definition is stated directly in VVV div

h because this suffices for our considerations.

DEFINITION 3.1 (Stationary Stokes projection)

Let www ∈ HHH
3
2 +ε(Th) for ε > 0 fulfil ∇ ···www = 0 pointwise. Then, we define the stationary

Stokes projection πππswww ∈ VVV div
h of www to be the unique FE solution to the problem

ah(πππswww,vvvh) = ah(www,vvvh), ∀vvvh ∈ VVV div
h . (36)

Analogously to divergence-free HHH1-conforming FEM, the stationary Stokes projection co-
incides with a vector-valued elliptic (or Ritz) projection on VVV div

h ; cf. [42]. Very conveniently,
the approximation properties of the projection operator πππs can thus be derived from error
estimates for the stationary Stokes problem.

Additionally to coercivity of ah (Lemma 2.10) the following continuity result is required.

LEMMA 3.2 (Boundedness of diffusion term ah)
There exists a Mdif > 0, independent of h, such that

∀(www,vvvh) ∈ VVV (h)×VVV h : ah(www,vvvh) # Mdif|||www|||e,♯|||vvvh|||e. (37)

PROOF : Cf., for example, [19, Section 4.2.3] for a scalar-valued analogue. Up to positive
factors independent of h, the claim follows from a componentwise application. "
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THEOREM 3.3 (Stokes projection error estimate)
Let πππswww be the Stokes projection of www and assume elliptic regularity A7. Then,

∥www−πππswww∥LLL2 +h|||www−πππswww|||e,♯ # Csh inf
wwwh∈VVV div

h

|||www−wwwh|||e,♯. (38)

PROOF : (i) We begin with a pressure-robust estimate in the |||·|||e,♯-norm. Let wwwh ∈ VVV div
h be

arbitrary and define www0
h = πππswww − wwwh ∈ VVV div

h . The Galerkin orthogonality being inherent
in Definition 3.1 yields

ah
(
www0

h,vvvh
)

= ah(πππswww−wwwh,vvvh) = ah(www−wwwh,vvvh), ∀vvvh ∈ VVV div
h . (39)

Now, choose vvvh = www0
h ∈VVV div

h , use discrete coercivity of ah (Lemma 2.10) on the left-hand
side and Lemma 3.2 and Young’s inequality (ε > 0) on the right-hand side to obtain

Cσ
∣∣∣∣∣∣www0

h

∣∣∣∣∣∣2
e # Mdif|||www−wwwh|||e,♯

∣∣∣∣∣∣www0
h

∣∣∣∣∣∣
e # 1

2ε
Mdif|||www−wwwh|||2e,♯ +

ε
2

Mdif
∣∣∣∣∣∣www0

h

∣∣∣∣∣∣2
e . (40)

Choosing ε = Cσ M−1
dif , multiplication by 2 and reordering leads to

Cσ |||πππswww−wwwh|||2e # M2
dif

Cσ
|||uuu−wwwh|||2e,♯. (41)

Because wwwh ∈ VVV div
h is arbitrary, the triangle inequality and |||·|||e # |||·|||e,♯ yield

|||www−πππswww|||2e # 2
[
|||www−wwwh|||2e + |||πππswww−wwwh|||2e

]
# C inf

wwwh∈VVV div
h

|||www−wwwh|||2e,♯. (42)

The final step is to acknowledge that the |||·|||e- and |||·|||e,♯-norm are uniformly equivalent
on VVV h, that is, there exists a C > 0 such that C|||·|||e,♯ # |||·|||e; cf. [19]. Thus,

|||www−πππswww|||2e,♯ # C inf
wwwh∈VVV div

h

|||www−wwwh|||2e,♯. (43)

Note that we did not include the viscosity in the definition (36) of the Stokes projection.
Hence, the constant C in the last estimate is not corrupted by negative powers of ν .

(ii) Secondly, in order to obtain an estimate also for the kinetic energy, the elliptic regu-
larity condition is essential. For brevity, we omit to give full details at this point. How-
ever, a careful inspection of [19, Theorem 6.25] reveals that in our case, it is possible to
obtain the following pressure-robust estimate:

∥www−πππswww∥2
LLL2 # Ch2|||www−πππswww|||2e,♯ # Ch2 inf

wwwh∈VVV div
h

|||www−wwwh|||2e,♯ (44)

At this point, it is important that we are dealing with a divergence-free method; cf. [22,
Theorem 6.4.2] for an HHH1-conforming exposition. Otherwise, the LLL2-estimate would not
readily be pressure-robust. "
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3.2 Velocity error estimates for the Oseen problem

In the previous subsection, we provided estimates for the viscous Stokes term. Now, we
present an estimate for the Oseen convection term which allows for Re-semi-robust esti-
mates.

LEMMA 3.4 (Boundedness of convection term ch)

Let Mcnv = max
{

1,C2
inv,γ

−1
}

and ε1,ε2 > 0. Then, for all (www,vvvh) ∈ VVV (h)×VVV h,

|ch(βββ ;www,vvvh)| # Mcnv

(
1

2ε1
+

1
ε2

)
|||www|||2βββ ,♯ +

ε1

2
∥vvvh∥2

LLL2 + ε2|vvvh|2βββ ,upw. (45)

PROOF : We begin with the following integration by parts variant:

∑
F∈Fh

∮

F
(βββ ···nnnF)

[
!www" ···

{{
vvvh
}}

+ !vvvh" ···
{{

www
}}]

dsss (46a)

= ∑
K∈Th

∮

∂K
(βββ ···nnnK)www ···vvvh dsss = ∑

K∈Th

∫

K

[
(βββ ···∇)www ···vvvh +(βββ ···∇)vvvh ···www

]
dxxx (46b)

The first equality is a result of !www ···vvvh" = !www" ···
{{

vvvh
}}

+ !vvvh" ···
{{

www
}}

and the second equal-
ity can be shown using elementwise integration by parts with ∇ ···βββ = 0 and the product
rule for the gradient. Inserting this into the convective form (27) leads to

ch(βββ ;www,vvvh) = − ∑
K∈Th

∫

K
(βββ ···∇)vvvh ···wwwdxxx+ ∑

F∈F i
h

∮

F
(βββ ···nnnF)!vvvh" ···

{{
www
}}

dsss (47a)

+ ∑
F∈F i

h

∮

F

γ
2
|βββ ···nnnF |!vvvh" ···!www"dsss = T1 +T2 +T3. (47b)

For the first term, using the generalised Hölder inequality, the local inverse inequality,
Cauchy–Schwarz and Young’s inequality with ε1 > 0, we infer

|T1| # ∑
K∈Th

∥βββ∥LLL∞(K) ∥∇vvvh∥LLL2(K) ∥www∥LLL2(K) (48a)

# ∑
K∈Th

Cinvh−1
K ∥βββ∥LLL∞(K) ∥vvvh∥LLL2(K) ∥www∥LLL2(K) (48b)

#
(

∑
K∈Th

∥vvvh∥2
LLL2(K)

)1/2

Cinv

(
∑

K∈Th

h−2
K ∥βββ∥2

LLL∞(K) ∥www∥2
LLL2(K)

)1/2

(48c)

# ∥vvvh∥LLL2 Cinv|||www|||βββ ,♯ # ε1

2
∥vvvh∥2

LLL2 +
1

2ε1
C2

inv|||www|||2βββ ,♯. (48d)
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For the first facet term, we use the definition of the absolute value, Cauchy–Schwarz and
Young’s inequality (ε2 > 0) to obtain

T2 # ∑
F∈F i

h

∮

F

[( γ
2
|βββ ···nnnF |

)1/2
!vvvh" ···

(
2
γ
|βββ ···nnnF |

)1/2{{
www
}}
]

dsss (49a)

# |vvvh|βββ ,upw

⎛
⎝ ∑

F∈F i
h

∮

F

2
γ
|βββ ···nnnF |

∣∣{{www
}}∣∣2 dsss

⎞
⎠

1/2

(49b)

# |vvvh|βββ ,upw

(
1
γ ∑

K∈Th

∥βββ∥LLL∞(K) ∥www∥2
LLL2(∂K)

)1/2

(49c)

# |vvvh|βββ ,upwγ−1/2|||www|||βββ ,♯ # ε2

2
|vvvh|2βββ ,upw +

1
2ε2

γ−1|||www|||2βββ ,♯, (49d)

where the third step uses the bound (a+b)2 # 2
(
a2 +b2

)
for a,b ∈ R which yields

∑
F∈F i

h

∮

F
2
∣∣{{www

}}∣∣2 dsss # ∑
F∈F i

h

[∥∥www+
∥∥2

LLL2(F)
+
∥∥www−∥∥2

LLL2(F)

]
# ∑

K∈Th

∥www∥2
LLL2(∂K)

. (50)

With Young’s inequality (ε2 > 0), the upwind term can be bounded trivially by

T3 # |vvvh|βββ ,upw|www|βββ ,upw # |vvvh|βββ ,upw|||www|||βββ ,♯ # ε2

2
|vvvh|2βββ ,upw +

1
2ε2

|||www|||βββ ,♯. (51)

Collecting the above estimates concludes the proof. "

REMARK 3.5 : Note that in [27], HHH(div)-FEM for the incompressible Euler equations (ν = 0)
have been considered. There, one can find an estimate for the corresponding difference
of convective terms in the nonlinear case βββ = uuu. However, it has to be mentioned that the
analysis in [27] heavily relies on the regularity assumption ûuu ∈ WWW 1,∞([0,T ]×Ω) for the
solution ûuu of the incompressible Euler problem; see [27, Theorem 2.2]. This assumption
is very restrictive in the case of ν = 0 as there exists no inherent smoothing mechanism
from the incompressible Euler operator in the crosswind direction(s). $

Now, we can use the Stokes projection to introduce an error splitting:

uuu−uuuh = [uuu−πππsuuu]− [uuuh −πππsuuu] = ηηη − eeeh (52)

THEOREM 3.6 (Velocity discretisation error estimate)

Let uuu ∈ VVV T solve (3) and uuuh ∈ VVV T
h solve (20). If additionally uuu ∈ L2

(
HHH

3
2 +ε(Th)

)
for

ε > 0, βββ ∈ L∞(LLL∞) and uuuh(0) = πππsuuu0, for arbitrary α > 0, we obtain:

∥eeeh∥2
L∞(LLL2) +

∫ T

0

[
νCσ |||eeeh(τ)|||2e + |eeeh(τ)|2βββ ,upw

]
dτ (53a)

# Cα−1eαT
∫ T

0

[
∥∂tηηη(τ)∥2

LLL2 + |||ηηη(τ)|||2βββ ,♯

]
dτ (53b)
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PROOF : Galerkin orthogonality (Corollary 2.9) with vvvh = eeeh(t) ∈ VVV div
h and (52) yields

(∂t eeeh,eeeh)+νah(eeeh,eeeh)+ ch(βββ ;eeeh,eeeh) = (∂tηηη ,eeeh)+νah(ηηη ,eeeh)+ ch(βββ ;ηηη ,eeeh). (54)

We use (∂t eeeh,eeeh) = 1
2

d
dt ∥eeeh∥2

LLL2 and discrete coercivity of ah and ch (Lemma 2.10) on the
left-hand side. On the right-hand side, we apply Cauchy–Schwarz plus Young (ε3 > 0)
and the definition for the stationary Stokes projection (Definition 3.1). Then, bounded-
ness of the convective term (Lemma 3.4) leads to

1
2

d
dt

∥eeeh∥2
LLL2 +νCσ |||eeeh|||2e + |eeeh|2βββ ,upw # 1

2ε3
∥∂tηηη∥2

LLL2 +
ε3

2
∥eeeh∥2

LLL2 (55a)

+Mcnv

(
1

2ε1
+

1
ε2

)
|||ηηη |||2βββ ,♯ +

ε1

2
∥eeeh∥2

LLL2 + ε2|eeeh|2βββ ,upw. (55b)

Choosing ε1 = ε3 = α
2 > 0, ε2 = 1

2 , and multiplication by 2 yields, for a.e. t ∈ (0,T ),

d
dt

∥eeeh(t)∥2
LLL2 +νCσ |||eeeh(t)|||2e + |eeeh(t)|2βββ ,upw (56a)

# 2α−1 ∥∂tηηη∥2
LLL2 +α ∥eeeh∥2

LLL2 +Mcnv
(
2α−1 +4

)
|||ηηη(t)|||2βββ ,♯. (56b)

Gronwall’s lemma [21, Lemma 6.9] and uuuh(0) = πππsuuu0 conclude the proof. "

REMARK 3.7 : In Theorem 3.6, one can choose α = T −1 and thereby transform the expo-
nential factor Cα−1eαT in the end-of-simulation time T into the linear one CT . Note
that such a weaker linear dependence is generally not possible to obtain in the nonlinear
Navier–Stokes case; cf. Subsection 4.1. Alternatively to our approach, it is also possible
to use a change of variables of (uuu, p) on the continuous level to obtain a transformed
Oseen problem with an additional positive zeroth order reaction term; cf. [24]. $

REMARK 3.8 : Instead of using the discrete stationary Stokes projection πππs in the error split-
ting (52), one could also use the discrete Helmholtz projection; cf. [35,3]. As a conse-
quence, in Theorem 3.6, the term involving the time derivative would vanish. However,
the disadvantage is that the approximation properties of the Helmholtz projection in
HHH(div) would have to be quantified. $

COROLLARY 3.9 (Velocity convergence rate)
Under the assumptions of the previous theorem, assume a smooth solution according to

uuu ∈ L∞(0,T ;HHHr), ∂tuuu ∈ L2(0,T ;HHHr), r >
3
2
. (57)

Then, with ruuu = min{r,k +1} and a constant C independent of h and ν−1, we obtain the
following convergence rate:

∥uuu−uuuh∥2
L∞(LLL2) +

∫ T

0

[
νCσ |||(uuu−uuuh)(τ)|||2e + |(uuu−uuuh)(τ)|2βββ ,upw

]
dτ (58a)

# CT h2(ruuu−1) ×
[
h2
(
∥∂tuuu∥2

L2(HHHruuu ) +∥uuu∥2
L∞(HHHruuu )

)
(58b)

+h∥βββ∥∞ (γ +1)∥uuu∥2
L2(HHHruuu ) +∥βββ∥∞ ∥uuu∥2

L2(HHHruuu )

]
(58c)
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PROOF : The aim is to estimate the terms on the right-hand side of Theorem 3.6. Thus,
the approximation properties of the stationary Stokes projection have to be assessed.
If www = ηηη and www = ∂tηηη is inserted in Theorem 3.3, respectively, we can directly bound
LLL2-errors. Indeed, using that ∂t and πππs commute, the optimal approximation properties
together with the commuting diagram property (Assumptions 3 and 4) yield

∥∂tηηη(τ)∥2
LLL2 # Csh2 inf

vvvh∈VVV div
h

|||∂tuuu− vvvh|||2e,♯ # Ch2ruuu |∂tuuu|2HHHruuu . (59)

Details are omitted since this is a fairly standard result; cf. [19]. Proceeding, recall the
|||·|||βββ ,♯-norm from (28):

|||ηηη |||2βββ ,♯ = ∥ηηη∥2
LLL2 + ∑

F∈F i
h

∮

F

γ
2
|βββ ···nnnF ||!ηηη"|2 dsss (60a)

+∥βββ∥2
∞ ∑

K∈Th

h−2
K ∥ηηη∥2

LLL2(K)
+∥βββ∥∞ ∑

K∈Th

∥ηηη∥2
LLL2(∂K)

(60b)

The first term can be bound analogously to the time derivative, thus ∥ηηη∥2
LLL2 #Ch2ruuu |uuu|2HHHruuu .

Due to the presence of a negative power of h, the third term is the one which actually
reduces the overall convergence order of the method. We obtain

∥βββ∥2
∞ ∑

K∈Th

h−2
K ∥ηηη∥2

LLL2(K)
# C∥βββ∥2

∞ h2(ruuu−1)|uuu|2HHHruuu . (61)

For the remaining two terms, we have to use the discrete trace inequality (18). As an
example we present the estimate for the first one explicitly:

∑
F∈F i

h

∮

F

γ
2
|βββ ···nnnF ||!ηηη"|2 dsss # ∑

F∈F i
h

∮

F
γ|βββ ···nnnF |

[∣∣ηηη+
∣∣2 +

∣∣ηηη−∣∣2
]

dsss (62a)

# ∥βββ∥∞ ∑
K∈Th

γ ∥ηηη∥2
LLL2(∂K)

# ∥βββ∥∞ ∑
K∈Th

γC2
trN∂ h−1

K ∥ηηη∥2
LLL2(K)

(62b)

# Cγ ∥βββ∥∞ h2ruuu−1|uuu|2HHHruuu (62c)

After applying a similar argument to the last remaining term, we obtain

∥βββ∥∞ ∑
K∈Th

∥ηηη∥2
LLL2(∂K)

# C∥βββ∥∞ h2ruuu−1|uuu|2HHHruuu . (63)

Thus,

∥eeeh∥2
L∞(LLL2) +

∫ T

0

[
νCσ |||eeeh(τ)|||2e + |eeeh(τ)|2βββ ,upw

]
dτ (64a)

# Cα−1eαT h2(ruuu−1) ×
[
h2
(
∥∂tuuu∥2

L2(HHHruuu ) +∥uuu∥2
L2(HHHruuu )

)
(64b)

+h∥βββ∥∞ (γ +1)∥uuu∥2
L2(HHHruuu ) +∥βββ∥∞ ∥uuu∥2

L2(HHHruuu )

]
. (64c)

To finish the proof, choose α = T −1 (see Remark 3.7) and use the triangle inequality to
extend this estimate to the full error. At this point, the regularity assumption of uuu being
in L∞ in time is needed. "
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REMARK 3.10 : Provided uuu is sufficiently smooth, Corollary 3.9 implies that the error in the
kinetic energy, the error in the energy dissipation rate and scaled jumps of the discrete
velocity uuuh all converge with order k to zero. Thus, our HHH(div)-FEM has the same
asymptotical behaviour as h → 0 as the analysis in [17,24] proves for other inf-sup stable
FEM. For equal-order FEM, [13] shows that one can even get half an order more. Also,
(58) reveals that the limiting factor, which reduces the overall convergence to order k,
originates from the convective term. Therefore, with βββ ≡ 000, an order k +1 convergence
of the LLL2-error for the time-dependent Stokes problem can be concluded directly. $

4 High Reynolds number numerical experiments

Our numerical experiments are conducted for the fully nonlinear Navier–Stokes equations in
the high Reynolds number regime. We take advantage of the FEM package COMSOL Mul-
tiphysics 5.1. The time discretisation is performed with a fully coupled adaptive BDF(2)-
scheme. In order to solve nonlinear systems, a modified Newton method with out-of-date
Jacobians is used. An iteration is considered converged if its relative residual is below 10−6.
Linear system are solved with the direct solver PARDISO.

All subsequent examples are two-dimensional problems with vortical structures. We
always employ unstructured triangular Delaunay meshes to solve them. In order to assess the
performance of HHH(div)-conforming FEM, we compare our results with different FE-based
numerical schemes which also make use of the following spaces (corresponding vector-
valued spaces are written in bold):

Pk =
{

vh ∈ C
(
Ω
)

: vh
∣∣
K ∈ Pk(K), ∀K ∈ Th

}
(65a)

Pdc
k =

{
vh ∈ L2(Ω) : vh

∣∣
K ∈ Pk(K), ∀K ∈ Th

}
(65b)

Then, for an HHH(div)-FEM we use the Raviart–Thomas element [7]

RTRTRTk =
{

vvvh ∈ HHH(div;Ω) : vvvh
∣∣
K ∈ PPPk(K)⊕ xxxPk(K), ∀K ∈ Th

}
. (66)

The resulting inf-sup stable FE pair is thus given by RTRTRTk/Pdc
k , which is abbreviated as

‘RTk’. Due to the fact that ∇ ···RTRTRTk ⊆ Pdc
k (cf. [7, Proposition 2.3.3]), Assumption A1 is

fulfilled and we obtain an exactly divergence-free method. For the jump penalisation param-
eter, σ = 6 (k+1)(k+d)

d is chosen in all examples. Here, we follow the asymptotic behaviour
w.r.t. the polynomial degree k ! 1 suggested by [28]. However, we found that the results are
rather insensitive towards this parameter as long as it is large enough to guarantee discrete
coercivity.

Moreover, as a divergence-free HHH1-conforming method, we employ the Scott–Vogelius
element [43] with velocity/pressure space PPPk/Pdc

k−1. Inf-sup stability is guaranteed by using
barycentre-refined meshes. This method is denoted ‘SVk’; for more information, we refer to
the authors’ previous work [42].

As a representative of inf-sup stable HHH1-conforming methods which are not exactly
divergence-free, we take the well-known Taylor–Hood method of order k with velocity/pressure
pair PPPk/Pk−1. The nonlinear term is treated with the EMAC formulation [14]. Therein, as
well as in the authors’ work [42], it is shown that the EMAC formulation holds several
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theoretical and practical advantages over more common formulations as, for example, the
convective or skew-symmetric formulation. This method is abbreviated as ‘eTHk’. Never-
theless, we also tried the convective and skew-symmetric formulations. However, the EMAC
formulation is never inferior to them (mostly, it yields significantly better results) and there-
fore, we restrict ourselves to showing results exclusively for the EMAC formulation.

Furthermore, we want to consider an HHH1-conforming equal-order method (not exactly
divergence-free), and thus choose the FE pair PPPk/Pk. For the convective part, as is probably
most common, a skew-symmetric formulation is applied and we dub the resulting method
‘EOk’. Note that, in order to obtain a stable method with equal-order interpolation, the pres-
sure always has to be stabilised; cf. [12]. In accordance with [11], we choose the parameter
γPS = 0.01 and, for all applications of EOk, add the term

γPS ∑
F∈F i

h

∮

F
h2

F!∇ph" ···!∇qh"dsss. (67)

For all above introduced FE schemes, additionally to the corresponding ‘Galerkin’ for-
mulations (those formulations which guarantee stability), we also consider the possibility
of adding suitable stabilisation terms. For non-divergence-free methods, the divergence of
discrete velocities is stabilised using a grad-div term (GD) with parameter γGD ! 0 [31]

γGD ∑
K∈Th

∫

K
(∇ ···uuuh)(∇ ···vvvh)dxxx. (68)

Whenever we add grad-div stabilisation the parameter γGD = 0.01 is chosen. Choosing γGD
as a constant is of course not necessary. For a more elaborate discussion on the choice of
the grad-div parameter and associated difficulties and specialities we refer to [29,1] where
stationary incompressible flow problems are considered. For divergence-free methods, grad-
div stabilisation is of course superfluous. However, it might be advantageous to explicitly
include some (additional) kind of convection stabilisation in the numerical schemes. Note
that in the HHH(div)-FEM, the natural upwind stabilisation is already included as a form of
convection stabilisation. From the plethora of available stabilisations we choose the gradient
jump stabilisation which is usually considered in the context of continuous interior penalty
(CIP) methods with parameter γCIP ! 0; cf., for example, [12]:

γCIP ∑
F∈F i

h

∮

F
h2

F |uuuh ···nnnF |2!∇uuuh" :::!∇vvvh"dsss (69)

CIP stabilisation can be added to eTHk, EOk, SVk and RTk since all methods yield globally
discontinuous discrete velocity gradients. Whenever we add it, γCIP = 0.1 is chosen.

Results are often compared in terms of kinetic energy K and enstrophy E . For a 2D
velocity www = (w1,w2)

†, we agree on ω = ∇×www = ∂x1 w2 −∂x2 w1 and use the following:

K(www, t) =
1
2

∥www(t)∥2
LLL2 =

1
2

∫

Ω
|www(t,xxx)|2 dxxx (70a)

E(www, t) =
1
2

∥∇h ×www(t)∥2
L2 =

1
2

∫

Ω
|∇h ×www(t,xxx)|2 dxxx (70b)

In the remainder of this section, our approach is as follows. We concentrate on 2D prob-
lems exclusively because we believe that it is important to first understand how a numerical
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method performs in this situation. If it does not work for 2D, there is no real possibility (or
hope) that it will work satisfactorily in 3D. Our first example is the planar lattice flow for
which an exact solution is known. For this problem we compare the above introduced meth-
ods and try to single out something like the ‘best’ HHH(div) method for this problem. Then,
we consider the Kelvin–Helmholtz instabilities triggered by a mixing layer. Here, we only
consider one HHH(div)-FEM but show how sensitive the solution is towards mesh refinement.
Finally, we apply this method on one fixed mesh to the simulation of freely decaying 2D
turbulence. We include aspects of energy and enstrophy, but also of the self-organisation
into large-scale structures involving energy spectra.

4.1 Planar lattice flow

In this section we consider the evolution of an initial velocity, which solves the stationary
incompressible Euler equation, in a viscous incompressible Navier–Stokes flow. This ex-
ample has also been investigated in detail in [42] and is called ‘planar lattice flow’ [5]. For
xxx ∈ Ω = (0,1)2, both the initial condition uuu0 and the corresponding known exact veloc-
ity/pressure pair (uuu, p) for ν ! 0 are given as follows:

uuu0(xxx) =

[
sin(2πx1)sin(2πx2)
cos(2πx1)cos(2πx2)

]
, uuu(t,xxx) = uuu0(xxx)e−8π2νt (71a)

p(t,xxx) =
1
4
[

cos(4πx1)− cos(4πx2)
]
e−16π2νt (71b)

Here, the initial velocity uuu0 induces a flow structure which, due to its saddle point char-
acter, is ‘dynamically unstable so that small perturbations result in a very chaotic motion’
[36]. We impose periodic boundary conditions on the vertical and horizontal walls of ∂Ω ,
respectively, and the integral zero-mean condition is imposed on the pressure. There is no
external forcing in this problem, that is, fff = 000, and ν = 4×10−6 is fixed. For a more qual-
itative approach to this problem, we refer to [42], where one can get a better feeling for the
appearance and behaviour of this particular flow problem.

In Table 1, an overview of the meshes and DOFs for this problem is given. Especially, the
number of DOFs is split based on how many are used for the velocity and pressure discreti-
sation, respectively. Note that for SVk, unstructured barycentre-refined Delaunay meshes
are used while eTHk, EOk and RTk are based on unstructured Delaunay triangulations. The
use of unstructured meshes introduces an additional difficulty because it makes it harder for
any numerical method to preserve the symmetric nature of the flow. The meshes are chosen
in such a way that the total number of DOFs for all methods approximately coincides. It is
interesting to acknowledge the different distribution of DOFs for velocity and pressure for
the different schemes. Especially, the SVk methods spend a lot for the pressure, which can
be considered as a disadvantage in problems where the pressure is not of primary interest.

Let us begin with the comparison of results for second-order FE pairs. In Figure 1, the
evolution of errors w.r.t. kinetic energy K and enstrophy E can be seen for the particular
‘Galerkin’ formulations and for some suitably stabilised variants thereof. The first apparent
conclusion is that, for each method, the stabilised variant significantly outperforms its basic,
stable counterpart. For the ‘Galerkin’ methods, eTH2 yields worse results than SV2 which,
in turn, is inferior to EO2, which is not as good as RT2. After adding suitable stabilisa-
tion, however, eTH2 and SV2 now yield comparable results. The potential advantage of a
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Table 1 Overview of meshes and DOFs for all methods which are compared for the planar lattice flow.
Abbreviations of different methods: Non-div-free HHH1 EMAC Taylor–Hood (eTHk) and equal-order (EOk),
div-free HHH1 Scott–Vogelius (SVk) and div-free HHH(div) Raviart–Thomas (RTk).

Method maxK∈Th hK minK∈Th hK #{triangles} #{uuuDOFs} #{pDOFs} #{DOFs}
RT2 0.0267 0.0104 8414 88617 50484 139101
SV2 0.0292 0.0087 20574 82618 61722 144340
eTH2 0.0134 0.0048 35204 141546 17785 159331
EO2 0.0158 0.0058 25400 102218 51109 153327

RT3 0.0583 0.0247 1680 30400 16800 47200
SV3 0.0667 0.0221 3930 35588 23580 59168
eTH3 0.0319 0.0140 5586 50720 11321 62041
EO3 0.0368 0.0136 4080 37094 18547 55641
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Fig. 1 Evolution of errors w.r.t. kinetic energy K and enstrophy E for 2nd order methods with ν = 4×10−6.
The mesh data and DOFs are displayed in Table 1. γ is the upwind parameter and PS denotes pressure
stabilisation. For the other parameters, γCIP = 0.1 and γGD = 0.01 are chosen. ‘Galerkin’ denotes the stable
basic variant of each method, respectively.

div-free HHH1-conforming method is thus relativised if the EMAC method is equipped with
sufficient additional stabilisation. Furthermore, we observe that after adding CIP and grad-
div stabilisation to the HHH1-conforming EO2 method, RT2 and EO2 now yield comparable
results. Here, the HHH(div)-conforming RT2 method benefits from the possibility to include
upwinding. At this point, we want to mention that equal-order methods EOk turned out to
be relatively sensible towards the stabilisation parameters (especially the pressure gradient
jump penalisation parameter γPS), which is not very attractive from the application-oriented
perspective. The main conclusion from Figure 1 is that we can discard the pure ‘Galerkin’
methods and instead exclusively concentrate on suitably stabilised schemes.

In Figure 2, results for third-order FE pairs are shown. In view of Table 1, it should
be noted that even though the 3rd order methods use considerably less DOFs compared to
the 2nd order methods, for the inf-sup stable methods, the total errors are still significantly
smaller. This is a strong argument for using higher-order methods. Only for the equal-order
methods, going from second to third-order, while coarsening the mesh, does not yield a
considerable improvement. Returning to Figure 2, we observe that the overall tendency ob-
served for the second-order methods can be updated: RT3 yields the best results, followed
closely by EO3, and SV3 and eTH3 are roughly on par with each other. Next, the possibility
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Enstrophy error: 3rd order methods
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Fig. 2 Evolution of errors w.r.t. kinetic energy K and enstrophy E for 3rd order methods with ν = 4×10−6.
The mesh data and DOFs are displayed in Table 1. γ is the upwind parameter, PS denotes pressure stabilisation
and γCIP = 0.1, γGD = 0.01.

of changing the convection stabilisation for RT3 is explored. To begin with, we add the same
CIP gradient jump penalisation term to RT3 which improves all HHH1-conforming methods.
The solid blue line indicates that this kind of stabilisation corrupts the HHH(div)-conforming
method significantly. Another possibility is to adjust the upwind parameter γ . However, the
dotted and dashed blue lines show that neither increasing nor decreasing γ away from the
standard value γ = 1.5 seems to be promising. Thus, RT3 with γ = 1.5 yields very convinc-
ing results for the planar lattice flow problem which are better than the ones obtained by
comparable schemes. In addition, the effort of fine-tuning stabilisation parameters can be
minimised with such a method—upwinding represents a natural stabilisation which, very
importantly, is not gradient-based. Moreover, numerical experiments revealed that in prac-
tice, an upwind parameter between 1 and 2 always leads to good results.

Lastly, we want to take a closer look at the quality of the pressure approximation for each
particular method. As can be seen in Table 1, the amount of DOFs spend for the pressure
varies widely. The Scott–Vogelius methods have the most pressure DOFs, followed by the
equal-order and Raviart–Thomas methods. A discretisation based on Taylor–Hood elements
is rather inexpensive in terms of pressure DOFs. However, whilst eTHk and SVk use piece-
wise polynomials of order k−1, the corresponding pressure spaces for RTk and EOk consist
of piecewise k-th order polynomials. In Figure 3, the evolution of the pressure errors for all
considered methods is shown. We conclude that for 2nd order methods, EO2 and RT2 are
again comparable. However, RT3 (γ = 1.5) yields the best pressure approximation for the
third-order methods. Thus, even though SVk always uses much more DOFs, this additional
cost does not seem to pay off in terms of accuracy.

Intermediate summary: The application of different methods for the planar lattice flow re-
vealed the following insights. Independent of which method is chosen, a suitable stabili-
sation always improves the method compared with the particular stable basic (‘Galerkin’)
variant. Gradient-based CIP convection stabilisation corrupts HHH(div)-conforming methods,
whereas all HHH1-conforming discretisations benefit from it. Going to higher-order approxi-
mations is always worthwhile because, all in all, more accurate results can be achieved with
less DOFs. For the equal-order methods, this improvement is not as pronounced as for the
inherently inf-sup stable ones. Third-order div-free HHH(div)-FEMs with upwinding yield the
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Fig. 3 Evolution of pressure errors for second- and third-order methods with ν = 4×10−6.

best results. Stabilised equal-order FEM (HHH1, non-div-free) are generally only slightly infe-
rior. Considerably inferior are stabilised Scott–Vogelius (HHH1, div-free) and stabilised EMAC
Taylor–Hood (HHH1, non-div-free) methods, which, in turn, are roughly of equal value. Re-
markably, all above shown error plots clearly show an exp(Ct) behaviour (see the black
asymptotes) for the Navier–Stokes problem. This is in contrast to the Oseen problem, where
it is possible to prove a linear in t growth of the error; cf. Remark 3.7.

4.2 2D Kelvin–Helmholtz instability

From the point of view of practical applications, we now turn to a more relevant example.
Two-dimensional Kelvin–Helmholtz instabilities of plane mixing layers are important test
cases in fluid dynamics. Even though this kind of flow does not lead to what is typically
called ‘turbulence’, it is extremely sensitive towards initial conditions and shows an energy
spectrum E(κ) of slope between κ−3 and κ−4 [34].

Based on [25,11,2], we briefly summarise the setting of the problem. On Ω = (0,1)2,
periodic boundary conditions for x1 ∈ {0,1} and free-slip boundary conditions at x2 ∈ {0,1}
are imposed. There is no external forcing, that is, fff = 000. Similarly to the planar lattice flow,
the whole problem is determined by an initial condition which evolves in a viscous incom-
pressible flow. However, the behaviour of the flow will be more dynamic. Let δ0 = 1/28

denote the initial vorticity thickness, u∞ = 1 be a reference velocity, cn = 10−3 define a scal-
ing factor and choose the viscosity according to ν−1 = 28×104. Thus, the Reynolds number
associated with this problem is Re = u∞δ0ν−1 = 104. Introducing the stream function

ψ(x1,x2) = cnu∞ exp

(
− (x2 −0.5)2

δ 2
0

)
[

cos(8πx1)+ cos(20πx1)
]
, (72)

the initial velocity field for our simulation is given as follows:

uuu0(xxx) =

[
u∞ tanh

(
2x2−1

δ0

)

0

]
+

[
∂x2 ψ

−∂x1 ψ

]
(73)
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Table 2 Overview of meshes and DOFs for the 2D Kelvin–Helmholtz instability.

Name maxK∈Th hK #{triangles} #{uuuDOFs} #{pDOFs}
RT3-a 2.425×10−2 10602 191236 106020
RT3-b 1.159×10−2 47646 858476 476460
RT3-c 7.487×10−3 119602 2154172 1196020
RT3-d 4.924×10−3 268762 4839716 2687620

For the evaluation, the scaled time unit t = δ0/u∞ is introduced. All simulations are com-
puted up until T = 7.1429 = 200t. Moreover, in the context of this mixing layer problem, it
is an established procedure to consider the following vorticity thickness δ (t):

δ (t) =
2u∞

ωmax(t)
, ωmax(t) = sup

x2∈[0,1]

|⟨ω⟩(t,x2)| = sup
x2∈[0,1]

∣∣∣∣
∫ 1

0
ω(t,xxx)dx1

∣∣∣∣ (74)

In practice, however, the spatial supremum in ωmax is always approximated by taking the
maximum absolute value of the integral over 64 equidistantly spaced lines parallel to the
x1-axis. Note that these evaluation lines do not coincide with mesh lines since unstructured
Delaunay triangulations are used. Moreover, in our experience, using more than 64 lines
does not noticeably change the resulting vorticity thickness. In time, δ (t) is evaluated 200
times for t ∈ {1, . . . ,200}× t which yields a sufficiently resolved evolution.

In Section 4.1 we compared various different FEM for a problem with an analyti-
cal solution. As a conclusion, we singled out that the third-order HHH(div)-conforming and
divergence-free FEM RT3 with upwind stabilisation (γ = 1.5) gives very convincing results.
Thus, we exclusively use this method for the simulation of the 2D Kelvin–Helmholtz insta-
bility. However, we compare different levels of resolution by employing RT3 on a sequence
of meshes which represent under-resolved to reasonably well-resolved situations; see Ta-
ble 2. Note that all methods in [25,11,2] are 2nd order. Moreover, the particular number of
velocity DOFs in those references is always about 100000 and thus comparable at most to
our coarsest mesh. Better resolving simulations can be found, for example, in [30] where a
second-order method is used also on a mesh with h ≈ 5×10−3 (note that the problem con-
sidered in [30] is not comparable quantitatively since it considers a larger initial vorticity
thickness of 1/14). However, to the best of our knowledge, with our third-order simulations
this work presents the most resolved results for this 2D Kelvin–Helmholtz instability in the
literature.

Prior to a more quantitative analysis, let us first understand the general behaviour of the
flow and compare our results to [25,11,2]. To this end, the evolution of the vorticity ∇×uuuh,
obtained with RT3-d, can be seen in Figure 4. We draw the following conclusions:

– Four primary vortices and their pairing: In agreement with the other references, 4 pri-
mary vortices develop between 10 and 20 time units t. These vortices merge at about
35t which is also observed in [25,2]. In [11] this pairing takes place later.

– Pairing of two secondary vortices: The two secondary vortices are standing for a cer-
tain amount of time. However, the instance in time where the second pairing begins is
strongly dependent on which method and resolution is used. For example, considering
t = 100t, our two primary vortices in Figure 4 are still clearly separated and are aligned
on a line parallel to the x1-axis. In contrast, the two vortices in [25,2] are already moving
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Fig. 4 Vorticity ∇ × uuuh(t) for 2D Kelvin–Helmholtz instability at (from left to right and top to bottom)
t ∈ {10,20,30,40,100,155,165,180,200}× t. Obtained with div-free HHH(div)-FEM RT3-d; cf. Table 2.

towards each other near the periodic boundary. In [11], the pairing has already begun but
the last vortex seems to be located in the center of the domain.

– Position of last rotating vortex: Independent of when the last pairing occurs, there is no
consensus concerning the location of the last vortex. Our results here, as well as the ones
presented in [11], support the claim that the last vortex should rotate in the centre of the
domain. In [25,2], the last rotation takes place across the periodic boundary.

Moreover, we want to draw attention to the fact that between the main vortices, fine-scale
flow structures can be observed very well. Such structures are not dissipated numerically by
the HHH(div)-FEM. For a more detailed description of the mechanisms behind vortex merging,
we refer to [37].

Furthermore, the evolution of both kinetic energy K and enstrophy E can be seen in
Figure 5. Roughly independent of the mesh size, the kinetic energy decays only very slowly
in our simulations (decay in energy is about 0.3 % ). This is in agreement with [11] but in
contrast to [25] (about 1 % energy loss) and [2] (about 5 % energy loss). We interpret this
observation as an indicator that HHH(div)-FEM do have a much less dissipative nature (even
on coarse meshes) compared to other methods. We conjecture that the main reason for this
behaviour lies in the minimum amount of stabilisation (only upwinding) which is needed
for HHH(div)-conforming FEM. Regarding the evolution of enstrophy we observe that a more
accurate method with a higher resolution leads to a later decrease in enstrophy. Actually,
the stages of the enstrophy are directly connected to the pairing of vortices in the simula-
tion. Especially the occurrence of the last pairing is very clearly observable by the sudden
decrease in enstrophy towards the end of the simulations.
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Fig. 5 Evolution of kinetic energy K (left) and enstrophy E (right); cf. (70).
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Fig. 6 Evolution of scaled vorticity thickness δ (t)/δ0; cf. (74).

In Figure 6, the scaled vorticity thickness is shown. Mainly, this plot illustrates in more
detail when the pairing processes occur in time. The general tendency that a well-resolved
simulation tends to preserve multiple vortices as long as possible is again clearly reflected.
Particularly the last pairing process, where two vortices merge to become one, is very sen-
sible with respect to how accurate the simulation is. Despite a temporal shift of the last
pairing compared to [25], however, the total values and the general behaviour of our scaled
vorticity thickness agrees quite well. Whilst our simulations indicate a maximum over time
of δ (t)/δ0 of about 10, the results in [2] show a higher maximum value of about 12.

A likely reason for the mentioned time lag of the last pairing is the above discussed
difference w.r.t. diffusivity (or dissipativity) of a numerical method. It is much easier for
a more diffusive numerical method to show behaviour resembling mesh convergence since
the fine scales of the flow, which would normally need a higher resolution to be resolved
properly, are smoothed out by means of numerical diffusion. Therefore, our simulations of
the 2D Kelvin–Helmholtz instability problem can be understood as another example which
emphasises the importance of approximation schemes with as little as possible numerical
smearing.

4.3 Freely decaying 2D turbulence

In this section we combine both the planar lattice flow problem and the 2D Kelvin–Helmholtz
instability and extend them to obtain an even more difficult situation. The original idea in
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Section 4.1 was to place four oppositely rotating vortices into a periodic square domain at
t = 0 and study their evolution in absence of external forcing and boundary conditions. In
doing so, the main question was to assess the ability of numerical schemes to preserve the
structure of the flow, given by means of the initial condition—a good numerical method
gives four standing vortices which decay in a stable manner over time. In Section 4.2, on
the other hand, an inherently dynamic problem arises due to an initially imposed shear layer
and merging of co-rotating vortices (like-signed vorticity regions) can be observed.

In this new example, however, the initial velocity uuu0 = (∂x2 ψ,−∂x1 ψ)† shall represent
n2

v = 322 = 1024 pairwise oppositely rotating vortices resulting from the stream function

ψ(xxx) = 10−2
nv

∑
k, j=1

(−1)k+ j exp

(
−104

[(
x1 − k

nv +1

)2

+

(
x2 − j

nv +1

)2
])

. (75)

Here, uuu0 evolves unimpeded; thus fff = 000 and therefore we have a freely decaying problem.
The domain is Ω = (0,1)2 and periodic boundary conditions are imposed on the vertical
and horizontal walls of ∂Ω , respectively. Thus, the integral zero-mean condition is required
for the pressure. Fully intentionally, we do not distribute the vortices equidistantly—the dis-
tance of vortices across the periodic boundaries is greater than in the ‘interior’ of the domain.

A flow with such an initial condition, especially for high Reynolds numbers, is very
unstable and tends to evolve into a rather chaotic motion. This phenomenon is known as
two-dimensional turbulence; we refer to [44,6] for more information. 2D turbulence follows
the Kraichnan–Batchelor–Leith (KBL) theory [18] and typical properties of freely decaying
flows are the energy spectrum E(κ) ∼ κ−3 and, in stark contrast to 3D turbulence, the self-
organisation of small-scale features of the flow into constantly growing large-scale coherent
vortices; cf. [26]. The last aspect is connected to the presence of an additional inverse cas-
cade in 2D turbulence. Studying such problems is not novel; see, for example, [10] where
freely decaying 2D turbulence has been studied in the vorticity-stream function formulation.
Also, we would like to mention [40] where a comparison of different numerical schemes (no
FEM, though) for the DNS of freely decaying 2D turbulence in ω/ψ-formulation has been
presented. Also, in the context of atmospheric flows, the transfer of energy and enstrophy
between scales is very important and a comparable flow configuration for the study of freely
decaying 2D turbulence can be found in [45] (also in ω/ψ-formulation).

However, to the best of the authors’ knowledge, in the literature, there are no compara-
ble studies available for the original velocity-pressure formulation. Thus, we want to fill this
gap by showing that our HHH(div)-FEM is able to produce trustworthy simulations for freely
decaying 2D turbulence. To this end, let us consider simulations with the three different
viscosities ν ∈

{
5×10−5,10−5,4×10−6

}
. Concerning the mesh resolution, the Kelvin–

Helmholtz instability in Section 4.2 already revealed that it is extremely expensive to obtain
mesh-converged solutions. Therefore, for this example, we restrict ourselves to exclusively
one unstructured Delaunay mesh consisting of 119602 triangles. With our favourite RT3
method (γ = 1.5), this leads to 2154172 velocity and 1196020 pressure DOFs.

First of all, Figure 7 shows the evolution of the kinetic energy and enstrophy for the
three different viscosities. We observe the expected behaviour that with smaller ν , K decays
much more slowly. More interesting is the behaviour of the enstrophy. Especially for the two
smaller viscosities, one can observe a small initial range up to t ≈ 0.75 where the enstrophy
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Fig. 7 Evolution of kinetic energy K (left) and enstrophy E (right) for ν ∈
{

5×10−5,10−5,4×10−6}.

decays only slowly. In accordance with [18, Chapter 10] this describes a transition zone in
which 2D turbulence develops out of the ordered initial condition. After that, a stronger de-
cay in E can be observed which corresponds to fully developed 2D turbulence.

In Figure 8, snapshots of the vorticity can be seen for the different viscosities (columns)
at certain time instances. At first, it becomes clear how viscous forces attack the initial vor-
ticity field, consisting of 1024 clearly separated vortices, and therefore, depending on which
ν is considered, a more or less chaotic motion can be observed. Here, a smaller viscosity
leads to a more small-scale structure of the flow. As time proceeds, one can directly observe
that while the multitude of vortices moves trough the domain, like-signed vortices merge
and oppositely rotating vortices repel each other. One can see clearly that over time, more
and more large-scale structures develop and the flow tends to self-organise itself into large-
scale structures; cf. [26].

A more quantitative comparison of the distribution of small- and large-scale structures
can be obtained by considering the energy spectra; see Figure 9. A mutual characteristic
of all simulations is that kinetic energy, which is initially concentrated in high wave num-
bers (small eddies), with time, is transferred to smaller wave numbers (large eddies). For
small wave numbers, and in agreement with the literature [33], one can observe a behaviour
E(κ) ∼ κ3 which is connected to spectral backscatter. After attaining a maximum energy,
the spectra show a decaying behaviour from which, with decreasing viscosity (increasing
Reynolds number), the classical E(κ) ∼ κ−3 slope can be determined. However, the slope
is sometimes slightly steeper and thus shows more a κ−4 behaviour at some later time in-
stances. As mentioned in Section 4.2, a similar phenomenon of a slope between κ−3 and
κ−4 has also been observed for the Kelvin–Helmholtz instability.

Returning to Figure 8, the last observation we want to make concerns the decaying
nature of the flow. A smaller viscosity implies less molecular diffusion and, therefore, the
colour bars show that the maximum and minimum values of the vorticity are considerably
higher than for larger viscosities. In this context, Figure 7 shows the evolution of the kinetic
energy and enstrophy over time for all three different simulations.

5 Summary and conclusions

In this work, we have considered inf-sup stable, exactly divergence-free HHH(div)-conforming
FEM for time-dependent incompressible flow problems. To the authors’ knowledge, this
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Fig. 8 Vorticity ∇ × uuuh(t) for freely decaying 2D turbulence. From left to right: t ∈ {2,4,8}. From top to
bottom: ν ∈

{
5×10−5,10−5,4×10−6}. Results are obtained by div-free HHH(div)-FEM RT3 with γ = 1.5

upwinding. Black triangles denote the maximum and minimum value attained over Ω .

represents the first contribution which examines HHH(div)-FEM for time-dependent viscous
incompressible flows. Our considerations can be split into a theoretical analysis part and an
application-oriented numerical examples part.

For the continuous-in-time Oseen problem, a numerical error analysis has been carried
out with a special focus on obtaining pressure- and Re-semi-robustness. Because divergence-
free methods allow for a separation of the velocity and pressure approximation, we only con-
sidered the velocity approximation in this work and, provided the exact solution is smooth
enough, our derived estimates are of order O

(
hk
)
. A very important part of the analysis has

been the usage of the discrete, stationary Stokes projection for the error splitting. For the Os-
een problem it has been possible to show that the growth of the error w.r.t. time is only linear.

In the future, keeping pressure- and Re-semi-robustness in mind, we clearly intend to
analyse the nonlinear Navier–Stokes problem, as well. In doing so, the discrete Helmholtz
projection might be applied to fine-tune the error estimates. Furthermore, taking a closer
look at the pressure approximation and discovering if divergence-free HHH(div)-FEM also
hold advantages for the pressure could be interesting.
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Fig. 9 Energy spectrum E(κ) and wave number κ for ν ∈ ×
{

5×10−5,10−5,4×10−6} at particular time
instances. Spectra are computed with the MATLAB-based post-processing toolbox AnaFlame [50].

For the applications part, on the other hand, we have considered the nonlinear Navier–
Stokes equations with a particular emphasis on two-dimensional high Reynolds number
problems, which possess profound vortical structures. The first example, the planar lattice
flow, has revealed that higher-order HHH(div)-FEM do have advantages over more common
finite element schemes. Especially the incorporation of a non-dissipative velocity jump up-
wind stabilisation for dominant convection seems to be very attractive and efficient. Con-
trary to the theory for the Oseen problem, this example has also shown that the error of the
Navier–Stokes problem increases exponentially in time. Furthermore, HHH(div)-FEM have
been applied to the simulation of 2D Kelvin–Helmholtz instabilities, triggered by a plane
mixing layer. We have shown that the problem is extremely sensitive in the sense that even
though a very highly resolved method (3rd order FEM with nearly 5 million velocity DOFs)
has been applied, such a thing as mesh convergence for the enstrophy is still not achieved
and thus would be extremely expensive. However, the evolution of the kinetic energy is in-
variant with respect to mesh refinement. Lastly, the HHH(div)-FEM have been applied to the
simulation of freely decaying 2D turbulence. Our results are in agreement with theoretical
considerations—both the behaviour of kinetic energy and enstrophy and the velocity spectra
are consistent with previous research in this direction.

In the future, we intend to extend our numerical examples towards problems with no-slip
conditions (in this work, we only considered periodic boundary conditions for the applica-
tions) and, therefore, problems involving boundary layers, separation and reattachment. In
this context, also an extension to three-dimensional problems is planned where one has to
deal with the aspect of efficient solvers. With regard to 3D problems, the question of suitable
turbulence modelling also arises.
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