Skip to main content
Log in

Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study and analyze Crank–Nicolson temporal discretization with high-order spatial difference schemes for time-dependent Riesz space-fractional diffusion equations with variable diffusion coefficients. To the best of our knowledge, there is no stability and convergence analysis for temporally 2nd-order or spatially jth-order (\(j\ge 3\)) difference schemes for such equations with variable coefficients. We prove under mild assumptions on diffusion coefficients and spatial discretization schemes that the resulting discretized systems are unconditionally stable and convergent with respect to discrete \(\ell ^2\)-norm. We further show that several spatial difference schemes with jth-order (\(j=1,2,3,4\)) truncation error satisfy the assumptions required in our analysis. As a result, we obtain a series of temporally 2nd-order and spatially jth-order (\(j=1,2,3,4\)) unconditionally stable difference schemes for solving time-dependent Riesz space-fractional diffusion equations with variable coefficients. Numerical results are presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrawal, O.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benson, D., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space time Caputo Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. del Castillo-Negrete, D., Carreras, B., Lynch, V.: Fractional diffusion in Plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)

    Article  Google Scholar 

  8. Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  11. Lei, S., Huang, Y.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94, 1062–1078 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Q., Liu, F., Gu, Y., Zhuang, P., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  18. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  19. Solomon, T., Weeks, E., Swinney, H.: Observation of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. 71, 3975–3979 (1993)

    Google Scholar 

  20. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., Liu, F.: Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J. Comput. Phys. 330, 863–883 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Y., Ding, H.: High-order algorithm for the two-dimension Riesz space-fractional diffusion equation. Int. J. Comput. Math. 94, 2063–2073 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Ng.

Additional information

Research supported in part by HKRGC GRF 12200317, 12306616, 12302715, 12301214.

Research supported by MYRG2016-00063-FST from University of Macau and 054/2015/A2 from FDCT of Macao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Xl., Ng, M.K. & Sun, HW. Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients. J Sci Comput 75, 1102–1127 (2018). https://doi.org/10.1007/s10915-017-0581-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0581-x

Keywords

Mathematics Subject Classification

Navigation