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HIGHER-ORDER ADAPTIVE FINITE DIFFERENCE METHODS

FOR FULLY NONLINEAR ELLIPTIC EQUATIONS

BRITTANY D. FROESE AND TIAGO SALVADOR

Abstract. We introduce generalised finite difference methods for solving fully
nonlinear elliptic partial differential equations. Methods are based on piecewise
Cartesian meshes augmented by additional points along the boundary. This
allows for adaptive meshes and complicated geometries, while still ensuring
consistency, monotonicity, and convergence. We describe an algorithm for
efficiently computing the non-traditional finite difference stencils. We also
present a strategy for computing formally higher-order convergent methods.
Computational examples demonstrate the efficiency, accuracy, and flexibility
of the methods.

1. Introduction

In this article we design generalised finite difference methods for a large class
of fully nonlinear degenerate elliptic partial differential equations (PDEs). The
approximation schemes are almost-monotone, which allows us to exploit the Barles-
Souganidis convergence framework. A key feature of these methods is the use of
piecewise Cartesian grids, augmented by additional discretisation points along the
boundary. Because of the underlying structure of the grids, the methods we design
overcome several hurdles that exist for current numerical methods. 1) The non-
standard finite difference stencils can be constructed efficiently. 2) The monotone
approximation schemes preserve consistency near the boundary. 3) Higher-order
schemes are easily designed. 4) Complicated geometries are easily handled.

1.1. Background. Fully nonlinear elliptic partial differential equations (PDEs)
arise in numerous applications including reflector/refractor design [GO03], mete-
orology [CNP91], differential geometry [CM99], astrophysics [FMMS02], seismol-
ogy [EF14], mesh generation [BW09], computer graphics [OP03], and mathemat-
ical finance [FS06]. Realistic applications often involve complicated domains and
highly non-smooth data. Thus the development of robust numerical methods that
are compatible with adaptive mesh refinement is a priority.

In recent years, the numerical solution of these equations has received a great
deal of attention, and several new methods have been developed including finite
difference methods [BFO10, FDC08, LR05, SAK15, SWR11], finite element meth-
ods [Awa15, Böh08, BGNS11, SS14], least squares methods [DG06], and methods
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involving fourth-order regularisation terms [FN09]. However, these methods are
not designed to compute weak solutions. When the ellipticity of the equation is
degenerate or no smooth solution exists, methods become very slow, are unstable,
or converge to an incorrect solution.

Using a framework developed by Barles and Souganidis [BS91], provably conver-
gent (monotone) methods have recently been constructed for several fully nonlinear
equations using wide finite difference stencils [Obe08a]. Recently, the idea of wide
stencil schemes has been adapted to produce monotone approximations for a large
class of fully nonlinear elliptic operators posed on very general meshes or points
clouds [Fro17b]. However, constructing the necessary finite difference stencils is a

very expensive process, and the resulting approximations have only O(
√
h) accu-

racy.

1.2. Contributions of this work. The goal of this article is to design higher-
order, adaptive, convergent finite difference methods for the solution of the degen-
erate elliptic PDE

(1) F (x, u(x), D2u(x)) ≡ max
θ∈[0,2π)

Fθ(x, u(x), uθθ(x)) = 0,

where uθθ denotes the second directional derivative of u in the direction eθ =
(cos θ, sin θ) ∈ R

2. This includes a wide range of PDE operators including monotone
functions of the eigenvalues of the Hessian matrix D2u and general convex functions
of the Hessian matrix [Eva82, Proposition 5.3]. We note that the maxima can also
be taken over a subset of directions by simply setting Fθ = −1 for directions that
are not active in the PDE operator. The methods described in this article can
also be trivially adapted to include minima and other monotone functions of the
operators Fθ.

We remark that the PDE operator can also include Lipschitz continuous depen-
dence on the gradient∇u. Monotone approximation of first-order operators is fairly
well-established and does not require the wide-stencil structure that is necessary to
correctly discretise second-order operators. In this article, we omit terms involving
the gradient for the sake of compactness and clarity.

We take as a starting point the meshfree finite difference approximations devel-
oped in [Fro17b]. Given a set of discretisation points G, that work introduced a
generalised finite difference approximation of (1) of the form

(2) max
θ∈A⊂[0,2π)

Fθ



xi, u(xi),
∑

j∈N (i,θ)

ai,j,θ(u(xi)− u(xj))



 = 0, xi ∈ G.

Above, the set of neighbours N (i, θ) gives indices of several points that are near
xi and align closely with the eθ direction. In the original paper, these sets of
neighbours are computed through brute force, by finding and inspecting all nodes
lying within a distance

√
h of each other.

In this article, we describe the construction of piecewise Cartesian meshes using a
quadtree structure, which is augmented by additional discretisation points along the
boundary in order to preserve consistency. We demonstrate that the resulting set
of discretisation points satisfies the conditions required by [Fro17b, Theorem 13].
This ensures that it is possible to build monotone (convergent) approximations.
Moreover, the structure of these quadtrees allows for easy mesh adaptation, with
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refinement criteria that can either be specified a priori or determined automatically
from the quality of the solution of (2).

By exploiting the underyling structure of the quadtree meshes, we design an
efficient method for constructing the set of neighbours N (i, θ) required by our gen-
eralised finite difference stencils. This leads to a much faster numerical method for
approximating solutions of (1) that can easily handle singular solutions, compli-
cated geometries, and highly non-uniform meshes.

Finally, we describe a strategy for producing higher-order almost-monotone meth-
ods using the framework of [FO13]. This requires combining the monotone scheme
with a formally higher-order approximation. By utilising the structure and symme-
try within the quadtree mesh, we obtain a simple strategy for constructing higher-
order schemes in the interior of the domain. Near the boundary, where these sim-
ple schemes no longer exist, we propose a least-squares approach to constructing
higher-order schemes.

1.3. Contents. In section 2, we review the theory of generalised finite difference
approximations for fully nonlinear elliptic equations. In section 3, we describe our
strategy for constructing meshes and finite difference stencils. In section 4, we
describe a higher-order implementation of these methods. In section 5, we present
several computational examples. Finally, in section 6, we provide conclusions and
perspectives.

2. Generalised Finite Difference Schemes

In this section we review existing results on the construction and convergence of
numerical methods for fully nonlinear elliptic equations.

2.1. Weak solutions. One of the challenges associated with the approximation of
fully nonlinear PDEs is the fact that classical (smooth) solutions may not exist. It
thus becomes necessary to interpret PDEs using some notion of weak solution, and
the numerical methods that are used need to respect this notion of weak solution.
The most common concept of weak solution for this class of PDEs is the viscosity
solution, which involves transferring derivatives onto smooth test functions via a
maximum principle argument [CIL92].

The PDEs we consider in this work belong to the class of degenerate elliptic
equations,

(3) F (x, u(x), D2u(x)) = 0, x ∈ Ω̄ ⊂ R
2.

Definition 2.1 (Degenerate elliptic). The operator F : Ω̄× R × S2 → R is degen-
erate elliptic if

F (x, u,X) ≤ F (x, v, Y )

whenever u ≤ v and X ≥ Y .

We note that the operator is also defined on the boundary ∂Ω of the domain,
which allows both the PDE and the boundary conditions to be contained within
equation (3). For example, if Dirichlet data u(x) = g(x) is given on the boundary,
the elliptic operator at the boundary will be defined by

F (x, u(x), D2u(x)) = u(x)− g(x), x ∈ ∂Ω.
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The PDE operators (1) that we consider in this work are degenerate elliptic if
they are non-decreasing functions of their second argument (u) and non-increasing
functions of all subsequent arguments (which involve second directional derivatives).

Since degenerate elliptic equations need not have classical solutions, solutions
need to be interpreted in a weak sense. The numerical methods developed in this
article are guided by the very powerful concept of the viscosity solution [CIL92].
Checking the definition of the viscosity solution requires checking the value of the
PDE operator for smooth test functions lying above or below the semi-continuous
envelopes of the candidate solution.

Definition 2.2 (Upper and Lower Semi-Continuous Envelopes). The upper and
lower semi-continuous envelopes of a function u(x) are defined, respectively, by

u∗(x) = lim sup
y→x

u(y),

u∗(x) = lim inf
y→x

u(y).

Definition 2.3 (Viscosity subsolution (supersolution)). An upper (lower) semi-
continuous function u is a viscosity subsolution (supersolution) of (1) if for every
φ ∈ C2(Ω̄), whenever u− φ has a local maximum (minimum) at x ∈ Ω̄, then

F
(∗)
∗ (x, u(x), D2φ(x)) ≤ (≥)0.

Definition 2.4 (Viscosity solution). A function u is a viscosity solution of (1) if
u∗ is a subsolution and u∗ a supersolution.

An important property of many elliptic equations is the comparison principle,
which immediately implies uniqueness of the solution.

Definition 2.5 (Comparison principle). A PDE has a comparison principle if
whenever u is an upper semi-continuous subsolution and v a lower semi-continuous
supersolution of the equation, then u ≤ v on Ω̄.

2.2. Convergence of elliptic schemes. In order to construct convergent approx-
imations of elliptic operators, we will rely on the framework provided by Barles and
Souganidis [BS91] and further developed by Oberman [Obe06].

We consider finite difference schemes that have the form

(4) F ǫ(x, u(x), u(x) − u(·)) = 0

where ǫ is a small parameter.
The convergence framework requires notions of consistency and monotonicity,

which we define below.

Definition 2.6 (Consistency). The scheme (4) is consistent with the equation (1)
if for any smooth function φ and x ∈ Ω̄,

lim sup
ǫ→0+,y→x,ξ→0

F ǫ(y, φ(y) + ξ, φ(y)− φ(·)) ≤ F ∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
ǫ→0+,y→x,ξ→0

F ǫ(y, φ(y) + ξ, φ(y)− φ(·)) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 2.7 (Monotonicity). The scheme (4) is monotone if F ǫ is a non-
decreasing function of its final two arguments.
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Schemes that satisfy these two properties respect the notion of the viscosity
solution at the discrete level. In particular, these schemes preserve the maximum
principle and are guaranteed to converge to the solution of the underlying PDE.

Theorem 2.8 (Convergence [Obe06]). Let u be the unique viscosity solution of the
PDE (1), where F is a degenerate elliptic operator with a comparison principle.
Let the finite difference approximation F ǫ be consistent and monotone and let uǫ be
any solution of the scheme (4), with bounds independent of ǫ. Then uǫ converges
uniformly to u as ǫ → 0.

The above theorem assumes existence of a bounded solution to the approxima-
tion scheme. This is typically straightforward to show for a consistent, monotone
approximation of a well-posed PDE, though the precise details can vary slightly
and rely on available well-posedness theory for the PDE in question.

Theorem 2.9 (Existence and Stability [Fro17a, Lemmas 35-36]). Let F ǫ be a
consistent, monotone scheme that is Lipschitz in its last two arguments. Suppose
also that there exist strict classical sub- and super-solutions to the PDE (3). Then
for small enough ǫ > 0, the scheme (4) has a solution uǫ. Moreover, there exists a
constant M > 0 such that ‖uǫ‖∞ ≤ M for sufficiently small ǫ > 0.

In many cases, simple quadratic functions will serve as the sub- and super-
solutions required by Theorem 2.9. For more complicated PDE operators, particu-
larly those with a non-trivial dependence on the gradient ∇u, the theory of classical
solutions of the equation can often be used to show the existence of these sub- and
super-solutions.

2.3. Meshfree finite difference approximations. In [Fro17b], a new gener-
alised finite difference method was introduced for approximating fully nonlinear
second order elliptic operators on point clouds. We review the key results of that
work, which will be foundational to the higher-order adaptive methods that will be
developed in the remainder of this article.

Definition 2.10 (Notation).

(N1) Ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂Ω.

(N2) G ⊂ Ω̄ is a point cloud consisting of the points xi, i = 1, . . . , N .
(N3) h = sup

x∈Ω
min
y∈G

|x−y| is the spatial resolution of the point cloud. In particular,

every ball of radius h contained in Ω̄ contains at least one discretisation
point xi.

(N4) hB = sup
x∈∂Ω

min
y∈G∩∂Ω

|x− y| is the resolution of the point cloud on the bound-

ary. In particular, every ball of radius hB centred at a boundary point
x ∈ ∂Ω contains at least one discretisation point xi ∈ G∩∂Ω on the bound-
ary.

(N5) δ = min
x∈Ω∩G

inf
y∈∂Ω

|x − y| is the distance between the set of interior discreti-

sation points and the boundary. In particular, if xi ∈ G ∩ Ω and xj ∈ ∂Ω,
then the distance between xi and xj is at least δ.

(N6) dφ is the angular resolution used to approximate the second directional
derivatives uθθ.

(N7) dθ is the angular resolution used to approximate the nonlinear operator.
(N8) ǫ is the search radius associated with the point cloud.
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Discretising the PDE requires approximating second directional derivatives uθθ

at each interior discretisation point xi ∈ G. To accomplish this, we consider all
points xj ∈ G ∩ B(xi, ǫ) within a search neighbourhood of radius ǫ centred at
xi. Discretisation points within this neighbourhood can be written in polar co-
ordinates (r, φ) with respect to the axes defined by the lines x0 + t(cos θ, sin θ),
x0 + t(− sin θ, cos θ). We seek one neighbouring discretisation point in each quad-
rant described by these axes, with each neighbour aligning as closely as possible
with the line x0 + tν, where ν = (cos θ, sin θ). That is, we select the neighbours

(5) xj ∈ argmin
{

sin2 φ | (r, φ) ∈ Gh ∩B(x0, ǫ) is in the jth quadrant
}

for j = 1, . . . , 4. See Figure 1. We say that a stencil with angular resolution
dφ exists for the point cloud G if for all interior discretisation points, the four
discretisation points xj ∈ G defined by (5) exist and satisfy dφ = max{φj}.

Because of the “wide-stencil” nature of these approximations (since the search
radius ǫ ≫ h), care must be taken near the boundary. In order to preserve consis-
tency up to the boundary, it is necessary that the boundary be more highly resolved
than the interior (hB ≪ h). In particular, this means that a simple Cartesian mesh
(or piecewise Cartesian mesh) is not sufficient for producing consistent schemes up
to the boundary.

θ

x1

x3

x2

x4

x0

(a)

∂Ω

x2

x3

x4

x1

x0 θ

(b)

Figure 1. A finite difference stencil chosen from a point cloud
(a) in the interior and (b) near the boundary.

Then a consistent, monotone approximation of uθθ is

Dh
θθu(x0) =

4
∑

j=1

aj(u(xj)− u(x0))

where we use the polar coordinate characterisation of the neighbours to define

Sj = rj sinφj , Cj = rj cosφj
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and the coefficients are given by

a1 =
2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a2 =
2S3(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a3 =
−2S2(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a4 =
−2S1(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
.

In general, the PDE requires evaluating second directional derivatives in all pos-
sible directions. Instead, we consider a finite subset A =

{

jdθ | j = 0, . . . , ⌊2πdθ ⌋
}

⊂
[0, 2π) with a resolution dθ.

Then we can substitute these coefficients into (2) to obtain the scheme:

(6) Fi[u] ≡ max
θ∈A

Fθ



xi, u(xi),
∑

j∈N (i,θ)

ai,j,θ(u(xi)− u(xj))



 = 0, xi ∈ G.

We recall the convergence result from [Fro17b, Theorem 18].

Theorem 2.11 (Convergence). Let F be a degenerate elliptic operator with a com-
parison principle that is Lipschitz continuous in uθθ for each θ ∈ [0, 2π) and let u
be the unique viscosity solution of the PDE (1). Suppose also that (1) has a strict
classical sub- and super-solution. Consider a sequence of point clouds Gn, with
parameters defined as in Definition 2.10, which satisfy the following conditions.

• The spatial resolution hn → 0 as n → ∞.
• The boundary resolution satisfies hn

B/δ
n → 0 as n → ∞.

• The search radius satisfies both ǫn → 0 and hn/ǫn → 0 as n → ∞.
• The angular resolution dθn → 0 as hn → 0.

Then for sufficiently large n, the approximation scheme (6) admits a solution un

and un converges uniformly to u as n → ∞.

We note that the angular resolution that emerges from the scheme satisfies dφ =
O(max{h/ǫ, hB/δ}) (Figure 2). For a uniform grid, a natural choice of parameters

is ǫ = O(
√
h), hB = O(h3/2), δ = O(h), dθ = O(

√
h). This leads to a formally

optimal discretisation error of O(
√
h).

We remark also that these parameters can be defined locally instead of globally
in order to accommodate highly non-uniform meshes.

3. Construction of Meshes and Stencils

In this section, we explain how we use augmented quadtrees [dBCvKO08, Chap-
ter 14] to build piecewise Cartesian meshes with additional discretisation points
on the boundary. We organise this section as follows. In subsection 3.1, we recall
the basic structure of a quadtree. In subsection 3.2 we explain how we augment
the quadtree to deal with the boundary. In subsection 3.4, we explain how the
quadtrees are used to efficiently find the stencils. Finally, in subsection 3.3 we
discuss mesh adaptation.
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dφ
θ

x0

x1

h

ǫ

dφ = O
(

h
ǫ

)

(a)

hB

dφ/2

δ

θ
x0

∂Ω

x1

dφ = 2 tan
−1

(

hB

2δ

)

(b)

Figure 2. The angular resolution of a generalised finite difference
stencil.

3.1. Quadtrees. Quadtrees are based on a simple idea: a square can be divided
into four smaller squares which correspond to the four quadrants of the square. A
quadtree is then a rooted tree in which every internal node has four children and
every node in the tree corresponds to a square. A square with no children is called
a leaf square. See Figure 3.

1

2

6 7

14 15 16 17

8 9

3 4 5

10 11 12 13

3

4

6

8 9

10 11

12 13

14 15

16 17

Figure 3. A quadtree and the corresponding subdivision. The
internal nodes are represented with circles and the leaves with
squares.

Quadtrees can then easily be used to build uniform and non-uniform meshes:
the squares’ vertices are the mesh points. This structure is appealing because it is
general enough to allow for local mesh adaptation, while still maintaining enough
structure to efficiently build the finite difference stencils. Indeed, as we will see in
subsection 3.4, the quadtree structure allow us to significantly reduce the number
of mesh points inspected when constructing our stencils. However, the quadtree in
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and of itself is not ideal for handling complicated geometries as the mesh points
are restricted to be vertices of the squares. We observe that the global spatial
resolution h of a quadtree corresponds to the length-scale of the largest leaf square.
However, the quadtree can be highly non-uniform and the local spatial resolution
near a particular point may be much less than h.

3.2. Meshing the boundary. Quadtrees alone are not enough for the schemes
proposed here: the boundary requires additional treatment. As discussed in section 2,
the boundary must be more highly resolved than the interior to maintain consis-
tency of the numerical method. As a result, we cannot restrict the mesh points to
be the vertices of the squares in the quadtree.

To overcome this, we build augmented quadtrees: each leaf square that intersects
the boundary is marked as such and additional mesh points that lie on the boundary
are added and associated with this boundary leaf square. The immediate advantage
of this approach is that mesh points may lie exactly on the boundary, which allows
us to handle complicated geometries with ease. In addition, by keeping track of
which boundary leaf square the mesh points belong to, we preserve one of the key
properties of the quadtree: knowledge of the relative position of the mesh points.
This allows for efficient construction of the finite difference stencils.

We make the following general assumption: each edge of a leaf square intersects
the boundary at most once. This is a reasonable assumption that simply entails
that our quadtree must be sufficiently refined near the boundary. See Figure 4,
where each edge of the grey squares intersects the boundary at most once.

The only question left to address is exactly how many additional boundary mesh
points one must add to guarantee the existence of a consistent stencil. This is
addressed in Theorem 2.11, which requires that the boundary resolution go to zero
more quickly than the resolution of the “standard” quadtree, hB = o(h), and more
quickly than the gap between the boundary and the interior nodes, hB = o(δ).
Note that these conditions need only be satisfied locally rather than globally.

We define a simple algorithm that enlarges a given point cloud so that the
condition hB ≤ 2δ tan(dθ/2) is satisfied locally (see Algorithm 1). This ensures
that the angular resolution of the finite difference approximations is commensurate
with the angular resolution used to approximate the nonlinear operator: dφ .

2 tan−1

(

hB

2δ

)

≤ dθ (Figure 2).

Algorithm 1 Building augmented quadtrees

1: for each boundary leaf square S do

2: Add the points in ∂S ∩ ∂Ω to the point cloud G.
3: Compute X = Ω ∩ G ∩ S.
4: Compute δ = minx∈X miny∈∂Ω∩S |x− y|.
5: Compute the arc length, l, of the curve ∂Ω ∩ S.
6: Compute the desired boundary resolution hB = 4δ tan(dθ/2).
7: Select ⌈l/hB⌉ points lying on the curve ∂Ω ∩ S.
8: Add these points to the point cloud G.
9: end for
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In Figure 4, the meshes obtained by applying Algorithm 1 to the point cloud
obtained from a quadtree of depth 4 are displayed. The fan-shaped domain illus-
trates the advantages of the local criteria: the boundary is only highly resolved
when there are interior mesh points nearby.

These augmented quadtrees enable us to construct convergent (consistent and
monotone) finite difference approximations.

Lemma 3.1 (Approximation with augmented quadtrees). Consider a sequence of
augmented quadtrees Gn constructed via Algorithm 1 with spatial resolution hn → 0.
Consider also a sequence of search radii ǫn = O(

√
hn) and angular resolutions

dθn = O(
√
hn). Then Gn satisfies the hypotheses of Theorem 2.11.

Proof. We need only verify that hn
B/δ

n → 0; the remaining conditions of Theo-
rem 2.11 are trivially satisfied.

We recall that both hn
B and δn can be defined locally. Indeed, for each boundary

leaf square S we can let

hn
B,S = sup

x∈∂Ω∩S
min

y∈Gn∩∂Ω∩S
|x− y|, δnS = min

x∈Ω∩Gn

inf
y∈∂Ω∩S

|x− y|.

By construction, Algorithm 1 ensures that hn
B,S/δ

n
S = O(dθnS) → 0.

Moreover, it is sufficient to verify these conditions at boundary leaf squares; other
interior squares will produce larger values of δnS and smaller values of hn

B,S/δ
n
S . �

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(b)

Figure 4. Black squares are part of the quadtree but not used
since they are not inside the domain. Grey squares intersect the
boundary. White squares are inside the domain.

3.3. Refinement, adaptivity and balance. The use of quadtrees also provides
a natural means of doing mesh adaptation. A refinement criteria can either be
specified a priori or determined automatically from the quality of the solution.

In Figure 5, we provide an example of a priori refinement: the mesh is refined
near the corners of the domain.

Simply refining the quadtree can lead to a very unbalanced quadtree when large
squares adjoin several smaller squares. This is an undesirable property for our
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meshes as it makes the construction of high-order schemes significantly more dif-
ficult. Therefore, we always maintain a balanced quadtree: any two neighbouring
squares differ by at most a factor of two in length scale (see Figure 5). Balancing a
quadtree can be done efficiently; we refer to [dBCvKO08, Theorem 14.4] for details.

(a) (b)

Figure 5. A priori refinement near the corners of the domain:
(a) unbalanced quadtree and (b) its balanced version.

3.4. Generating the stencil. We explain how quadtrees are used to efficiently
find the neighbours for each interior mesh point. The main idea is the following:
given the quadtree structure we know the relative position of the mesh points and
can significantly restrict the number of nodes we examine.

Consider a direction ν = (cos θ, sin θ) and the line x0 + tν. Without loss of
generality, assume the line has positive slope as in Figure 6. We describe the
procedure for finding the required neighbours of x0 lying in the first and fourth
quadrants.

From the list of potential neighbours in each quadrant, the precise neighbours
used in the stencil are determined via (5). See Figure 6, for a close-up of the
neighbours search in a uniform (left) and non-uniform (right) mesh.

Referring to Figure 6 (a), we provide a rough estimate on the improvement
this algorithm yields for a uniform N × N grid with grid spacing h = O(1/N).
Recall that the search region is a disc of radius ǫ. The brute force algorithm
used in [Fro17b] examines O((ǫ/h)2) neighbours, while the algorithm proposed
above using quadtrees examines only O(ǫ/h) neighbours. Given the typical choice

ǫ = O(
√
h), the cost of constructing the stencil at each point is reduced from O(N)

to O(
√
N). A similar speed-up is seen for the piecewise Cartesian meshes produced

by the quadtree.

4. Higher-Order Methods

We also introduce a technique for building formally higher-order approximations
on highly non-uniform/unstructured grids. We focus on second-order schemes,
which is typically sufficient for applications, but the same ideas can be easily be
extended to higher-order schemes.
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Algorithm 2 Finding the neighbours of x0 ∈ G in the first and fourth quadrant.

1: Identify the leaf square that has x0 as its southwest vertex. This can be done
efficiently since, when constructing the quadtree, a record is maintained of the
(four) leaf squares that have each interior x0 as a vertex.

2: Identify which edge(s) of this square intersect the line x0 + tν, selecting the
edge that yields the smaller value of t, tmin (i.e. the first edge to intersect this
ray).

3: Identify the neighbouring leaf squares that share this edge, selecting the one
that intersects the line x0 + tν at t = tmin.

4: Identify the edge of this square that intersects the line x0 + tν at t = tmin.
5: Consider the two endpoints y1, y2 of this edge as potential neighbours, one lying

in the first quadrant and one in the fourth quadrant.
6: Repeat steps 2-5, continually adding nodes to the list of potential neighbours,

until the ray x0+ tν exits the search region (t > ǫ) or we encounter a boundary
leaf square.

7: If the procedure terminates at a boundary leaf square, add to the list of potential
neighbours all boundary nodes associated with this square.

(a) (b)

Figure 6. Potential neighbours of x0 ∈ G (black x-mark) as a
result of Algorithm 2 are marked with a circle, with the selected
neighbours in black. All remaining mesh points are marked with an
x-mark. The grey squares are the ones considered in Algorithm 2.

4.1. Filtered schemes. The meshfree finite difference approximation discussed in
section 2 is low accuracy; formally it is at best O(

√
h). However it can be used

as the foundation for higher-order convergent filtered schemes as in [FO13]. The
main idea is to blend a monotone convergent scheme with a non-monotone accurate
scheme and retain the advantages of both: stability and convergence of the former,
and higher accuracy of the latter.

To accomplish this, we let FA[u] be any higher-order scheme and FM [u] be a
monotone approximation scheme, both defined on the same mesh. The filtered
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scheme is then defined as

FF [u] = FM [u] + hαS

(

FA[u]− FM [u]

hα

)

,

where the filter S is given by

S(x) =



















x, |x| ≤ 1,

0, |x| ≥ 2,

−x+ 2, 1 ≤ x ≤ 2,

−x− 2, −2 ≤ x ≤ −1.

As long as α > 0, this approximation converges to the viscosity solution of the
PDE under the same conditions as the monotone scheme converges. The underlying
reason is that this scheme is a small perturbation of a monotone scheme and the
proof of the Barles-Souganidis theorem is easily modified to accommodate this.
Moreover, if hα is larger than the discretisation error of the monotone scheme, the
formal accuracy of the filtered scheme is the same as the formal accuracy of the
non-monotone scheme.

4.2. Higher-order schemes in interior. We discuss how to build high-order
schemes for the non-uniform meshes proposed in section 3. In this section, we
focus on interior mesh points away from the boundary.

Defining higher-order schemes for (1) reduces to defining higher-order approxi-
mations to uxx, uyy and uxy. We will focus on building second order approxima-
tions, although the ideas are easily generalised. For a uniform Cartesian grid, such
as in Figure 7, these are widely known and are given by

uxx ≈ uW + uE − 2u

h2
,

uyy ≈ uN + uS − 2u

h2
,

uxy ≈ uNE + uSW − uNW − uSE

4h2
.

uSW uS uSE

uW u uE

uNW uN uNE

Figure 7. A regular node and respective stencil for a uniform
Cartesian grid.
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In a uniform cartesian grid, all the nodes are regular nodes; i.e., each node is
the vertex of four different squares like the one depicted in Figure 7. However, the
meshes proposed here are non-uniform and in general not all nodes will be regular
nodes. We need also consider dangling nodes, which occur midway along the shared
edge of two equally-sized squares, one of which is subdivided. Thus additional work
is required to define the higher-order schemes.

As explained in section 3, the meshes are generated using quadtrees that are
kept balanced (the lengths of neighbouring squares differ by at most a factor of
two). Thus each interior mesh point can be associated to one of five different con-
figurations. These are depicted in Figures 7, 8, and 9. The generic element chosen
to represent each configuration is one where each square is a leaf square. In general,
one or more of the smaller squares may have children in the quadtree; i.e., they may
be subdivided into smaller squares. We consider these to be redundant when con-
structing the high-order schemes. Considering all possible different configurations
would only increase the complexity of the schemes with no additional benefits as
the schemes would remain asymptotically second order; only the asymptotic error
constant could be improved.

For the configurations in Figure 8, we use the following approximations

uxx ≈ −2uN − 2uS + uNW + uNE + uSE + uSW

2h2
,

uyy ≈ 4
uN + uS − 2u

h2
,

uxy ≈ uNE + uSW − uNW − uSE

2h2
.

As for the configurations in Figure 9, we have

uxx ≈ 4
uW + uE − 2u

h2
,

uyy ≈ −2uW − 2uE + uNW + uNE + uSE + uSW

2h2
,

uxy ≈ uNE + uSW − uNW − uSE

2h2
.

The standard Taylor expansion argument shows that the above expressions are
second order accurate.

Finally, we explain how one can efficiently determine the configuration of each
interior mesh point. As mentioned in subsection 3.4, for each interior mesh point a
record is kept of the four leaf squares that the interior mesh point as a vertex. Thus
the configuration is easily determined by determining the depth of the neighbouring
squares and respective parent squares in the quadtree.

4.3. Least-squares constructions near boundary. In this section, we discuss
how to construct second order schemes at interior points near the boundary. When
near the boundary, the construction of the schemes cannot reduce to the cases
considered in the previous section: in general, not all the neighbouring mesh points
will be the vertices of squares and some will lie on the boundary, which we allow
to have a complicated geometry. Thus additional care is needed. Here we describe
a general strategy for building high-order schemes.
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uSW uS uSE

u

uNW uN uNE

uSW uS uSE

u

uNW uN uNE

Figure 8. A dangling node in the x
variable and respective stencil for the
higher-order scheme.

uSW uSE

uW u uE

uNW uNE

uSW uSE

uW u uE

uNW uNE

Figure 9. A dangling node in the y
variable and respective stencil for the
higher-order scheme.

Let {xi}Ni=1 denote neighbouring mesh points to the interior mesh point x0 with
‖xi − x0‖∞ = O(h). Using Taylor expansion we obtain, for each i = 1, . . . , N ,

u(xi)− u(x0) =
∑

0<|α|≤3

(xi − x0)
α

α!
(∂αu)(x0) +O(h4),

where we are using the multi-index notation. Hence

N
∑

i=1

ai(u(xi)− u(x0)) = ∂βu(x0) +O(h2)

if the {ai}Ni=1 solve the linear system

N
∑

i=1

(xi − x0)
α

α!
ai = 1{α=β}

for 0 < |α| ≤ 3.
To approximate second derivatives to second order, we expect to require N = 9

neighbours.
Designing second order schemes is now reduced to determining the neighbouring

mesh points and solving the respective linear system. However, since we are par-
ticularly interested in the case where some of the neighbouring mesh points lie on
the boundary, which may have a complicated geometry, it is hard to make any a
priori claim regarding the invertability and conditioning of the linear system. It is
important to point out that we are interested in obtaining any particular solution.
As we saw in the previous section, depending on the derivative being approximated
and the location of the neighbouring mesh points, the number of neighbouring mesh
points required changes.

We are now ready to describe the strategy implemented to construct the higher-
order schemes. First, we determine which configuration we are in. If all the vertices
of squares neighbouring x0 are mesh points, we use the approximations described
in the previous section. Otherwise, we build the linear system above using all mesh
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points xi that lie within squares adjoining x0 (some will lie on the boundary of the
domain and will not be vertices of the squares). In general, we will have N ≥ 9, but
the linear system may still have no solution or be ill-conditioned. If that is the case,
we consider additional neighbouring mesh points by adding the mesh points that
belong to neighbouring squares. In general, we end up with an under-determined
system and we select the least squares solution. In practice, adding additional
neighbouring mesh points was not always required, and it was never required more
than once. Thus the high-order scheme has stencil width O(h) and preserves the
formal discretisation error of O(h2).

5. Computational Examples

5.1. Monge-Ampère equation. We consider the Monge-Ampère equation










− det(D2u) + f = 0, x ∈ Ω

u = g, x ∈ ∂Ω

u is convex.

The PDE is only elliptic in the space of convex functions. However, as in [Fro12],
we can use the globally elliptic extension

− min
θ∈[0,π/2)

{

max

{

∂2u

∂e2θ
, 0

}

max

{

∂2u

∂e2θ+π/2

, 0

}

+min

{

∂2u

∂e2θ
, 0

}

+max

{

∂2u

∂e2θ+π/2

, 0

}}

+f = 0.

We will consider four different domains given by Ω = {(x, y) ∈ R
2 | φ(x, y) < 0}

where φ is given by

(a) (circle) φ(x, y) = x2 + y2 − 1,

(b) (ellipse) φ(x, y) = x2 + 2y2 − 1,

(c) (diamond) φ(x, y) = |x|+ |y| − 1,

(d) (diamond stretched) φ(x, y) = |x|+ |2y| − 1.

Example 5.1. We consider first the following C2 solution of the Monge-Ampère
equation

u(x, y) = e
x
2+y

2

2 , f(x, y) = (1 + x2 + y2)ex
2+y2

.

Results are displayed in Table 1. On each domain, the filtered implementation
recovers the desired second-order accuracy even though the boundary nodes do not
belong to the structured piecewise Cartesian mesh.

Example 5.2. We consider also a C1 solution of the Monge-Ampère equation, for
which the ellipticity is degenerate in an open set.

u(x, y) =
1

2
max{

√

x.2 + y.2 − 0.2, 0}2, f(x, y) = max{1− 0.2
√

x2 + y2)
, 0}.

This solution is singular, and there is thus no realistic hope of attaining the formal
second-order discretisation error obtained from Taylor’s Theorem. Nevertheless, the
method converges and we observe roughly first-order accuracy (Table 2).
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Errors and order, Example 5.1 (circle)

N h Monotone Filtered

101 2.500 × 10−1 1.739× 10−2 - 7.008× 10−3 -

349 1.250 × 10−1 5.690× 10−3 1.61 2.219× 10−3 1.66

1137 6.250 × 10−2 2.780× 10−3 1.03 6.184× 10−4 1.84

4289 3.125 × 10−2 1.876× 10−3 0.57 1.708× 10−4 1.86

15685 1.562 × 10−2 1.630× 10−3 0.20 4.320× 10−5 1.98

58449 7.812 × 10−3 1.567× 10−3 0.06 1.082× 10−5 2.00

Errors and order, Example 5.1 (ellipse)

N h Monotone Filtered

79 2.500 × 10−1 9.467× 10−3 - 8.884× 10−3 -

257 1.250 × 10−1 3.026× 10−3 1.65 1.233× 10−3 2.85

893 6.250 × 10−2 1.262× 10−3 1.26 3.628× 10−4 1.76

3143 3.125 × 10−2 8.277× 10−4 0.61 1.012× 10−4 1.84

11257 1.562 × 10−2 7.443× 10−4 0.15 2.602× 10−5 1.96

42863 7.812 × 10−3 7.238× 10−4 0.04 6.512× 10−6 2.00

Errors and order, Example 5.1 (diamond)

N h Monotone Filtered

57 2.500 × 10−1 6.162× 10−3 - 7.244× 10−3 -

177 1.250 × 10−1 2.332× 10−3 1.40 1.478× 10−3 2.29

673 6.250 × 10−2 9.716× 10−4 1.26 3.561× 10−4 2.05

2369 3.125 × 10−2 3.413× 10−4 1.51 8.881× 10−5 2.00

9089 1.562 × 10−2 2.771× 10−4 0.30 2.218× 10−5 2.00

35073 7.812 × 10−3 1.878× 10−4 0.56 5.544× 10−6 2.00

Errors and order, Example 5.1 (diamond stretched)

N h Monotone Filtered

61 2.500 × 10−1 2.535× 10−3 - 1.888× 10−3 -

153 1.250 × 10−1 7.891× 10−4 1.68 5.212× 10−4 1.86

497 6.250 × 10−2 2.802× 10−4 1.49 1.356× 10−4 1.94

1633 3.125 × 10−2 1.516× 10−4 0.89 3.428× 10−5 1.98

5569 1.562 × 10−2 7.684× 10−5 0.98 8.597× 10−6 2.00

20353 7.812 × 10−3 2.357× 10−5 1.70 2.151× 10−6 2.00

Table 1. Convergence results for the C2 solution of the Monge-
Ampère equation.

5.2. Computation time. One of the reasons to use quadtrees to build non-uniform
meshes was to efficiently find the neighbours for the finite difference schemes. Here
we compare the implementation with quadtrees, discussed in depth in section 3,
with the simple but inefficient brute force approach of [Fro17b]. Reduced CPU
time is the ultimate goal, but not necessarily a robust measure of efficiency as it
depends on both hardware and software implementations. Here both implementa-
tions were vectorised whenever possible in order to optimise the code for MATLAB.
Although it is still possible to further optimise the code, the CPU time should be
a fair indication of the improvement gained by using quadtrees.

In Figure 10, we compare the number of mesh points versus the CPU time
required to generate the mesh and find the stencil. We let the domain Ω be the
ellipse given by Ω = {(x, y) ∈ R

2 | x2 + 2y2 < 1}. The results indicate that
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Errors and order, Example 5.2 (circle)

N h Monotone Filtered

101 2.500× 10−1 1.606 × 10−2 - 4.142× 10−3 -

349 1.250× 10−1 9.106 × 10−3 0.82 2.384× 10−3 0.80

1137 6.250× 10−2 5.706 × 10−3 0.67 1.763× 10−3 0.44

4289 3.125× 10−2 4.827 × 10−3 0.24 7.871× 10−4 1.16

15685 1.562× 10−2 4.330 × 10−3 0.16 3.674× 10−4 1.10

58449 7.812× 10−3 4.300 × 10−3 0.01 1.839× 10−4 1.00

Errors and order, Example 5.2 (ellipse)

N h Monotone Filtered

79 2.500× 10−1 1.193 × 10−2 - 4.276× 10−3 -

257 1.250× 10−1 7.126 × 10−3 0.74 3.201× 10−3 0.42

893 6.250× 10−2 4.569 × 10−3 0.64 1.579× 10−3 1.02

3143 3.125× 10−2 3.924 × 10−3 0.22 8.118× 10−4 0.96

11257 1.562× 10−2 3.519 × 10−3 0.16 3.764× 10−4 1.11

42863 7.812× 10−3 3.497 × 10−3 0.01 2.224× 10−4 0.76

Errors and order, Example 5.2 (diamond)

N h Monotone Filtered

57 2.500× 10−1 8.503 × 10−3 - 6.576× 10−3 -

177 1.250× 10−1 6.670 × 10−3 0.35 2.155× 10−3 1.61

673 6.250× 10−2 4.265 × 10−3 0.65 1.555× 10−3 0.47

2369 3.125× 10−2 3.442 × 10−3 0.31 7.661× 10−4 1.02

9089 1.562× 10−2 2.303 × 10−3 0.58 3.597× 10−4 1.09

35073 7.812× 10−3 1.109 × 10−3 1.05 2.142× 10−4 0.75

Errors and order, Example 5.2 (diamond stretched)

N h Monotone Filtered

61 2.500× 10−1 2.653 × 10−3 - 4.060× 10−3 -

153 1.250× 10−1 3.780 × 10−3 -0.51 3.026× 10−3 0.42

497 6.250× 10−2 2.426 × 10−3 0.64 1.213× 10−3 1.32

1633 3.125× 10−2 1.820 × 10−3 0.41 1.228× 10−3 -0.02

5569 1.562× 10−2 1.203 × 10−3 0.60 3.726× 10−4 1.72

20353 7.812× 10−3 6.089 × 10−4 0.98 2.015× 10−4 0.89

Table 2. Convergence results for the C1 solution of the Monge-
Ampère equation.

our new approach is optimal, with the computation time required to construct the
stencils being roughly proportional to the number of mesh points. This represents
an improvement of roughly one order over the original brute force approach. In
practice, we can generate a mesh and find the stencil based on a uniform 256× 256
grid in roughly 50 seconds with the use of quadtrees, instead of over 6 minutes with
the previous brute force approach.

5.3. Adaptivity. In our next example, we demonstrate the improvements possible
with adaptivity using our generalised finite difference approximations.
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Figure 10. Number of mesh points vs CPU time in seconds to
generate a mesh and find the respective stencil for an ellipsoidal
domain.

Example 5.3. We consider the fully nonlinear convex envelope equation
{

max
{

−λ−(D
2u), u− g

}

= 0, x ∈ Ω

u = 0.5, x ∈ ∂Ω,

where

λ−(D
2u) = min

θ∈[0,2π]

∂2u

∂e2θ
.

The equation is posed on an ellipse with semi-major axis equal to one and semi-
minor axis equal to one-half, which is rotated through an angle of φ = π/6. The
obstacle g consists of two cones,

g1(x, y) = (x cosφ+ y sinφ+ 0.5)2 + (−x sinφ+ y cosφ)2

g2(x, y) = (x cosφ+ y sinφ− 0.5)2 + (−x sinφ+ y cosφ)2

g(x, y) = min {g1(x, y), g2(x, y), 0.5}
and the exact solution is

u(x, y) =

{

min {g1(x, y), g2(x, y)} , |x cosφ+ y sinφ| ≥ 0.5

| − x sinφ+ y cosφ|, |x cosφ+ y sinφ| < 0.5.

We note that this solution is only Lipschitz continuous, and the equation must be
understood in a weak sense.

We defined the following refinement strategy. Given a solution a solution uh,

(1) Compute numerically
∥

∥D2u
∥

∥ =
√

u2
xx + 2u2

xy + u2
yy.

(2) Refine twice every square with a vertex such that h
∥

∥D2u
∥

∥ > 0.5.

This refinement strategy is inspired by the hybrid scheme proposed in [Obe08b].
A convergence plot is displayed in Figure 11. We observe an improvement in ac-

curacy from roughlyO(N−0.38) to O(N−0.64). Moreover, the use of adaptivity leads
to a clear qualitative improvement in the computed solutions. This is evident in
Figure 12, which shows that the solution obtained with the uniform mesh is visibly
non-convex along the singularity, which does not align with the grid. By resolving
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this singularity, the adaptive method produces a solution that has a dramatically
better quality.

Number of mesh points (N)
103 104 105

E
rr
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10-3

10-2

10-1 slope ≈-0.38

slope ≈-0.64

Non adaptive
Adaptive

Figure 11. Number of mesh points vs error for Example 5.3.

0

0.1

1

0.2

0.3

0.4

0.5

0.6

0

10.50-1 -0.5-1
(a)

0

0.1

1

0.2

0.3

0.4

0.5

0.6

0

10.50-1 -0.5-1
(b)

Figure 12. Solutions of the convex envelope equation computed
with the non-adaptive (left) and adaptive approaches (right).

6. Conclusions

In this article, we described generalised finite difference methods for solving a
large class of fully nonlinear elliptic partial differential equations. These methods
were inspired by the meshfree methods described in [Fro17b], which are flexible and
convergent, but very expensive to implement.

Our meshes used a modified quadtree structure that used piecewise Cartesian
grids in the interior of the domain, augmented by a set of points lying exactly on the
boundary. The inclusion of the additional boundary points was needed to ensure
convergence of the numerical methods. This type of mesh also allows us to deal
easily with complicated boundary geometries.

By relying on the underlying quadtree structure, we developed an algorithm for
efficiently constructing the mesh and finite difference stencils. This led to a dramatic
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improvement in computational efficiency as compared to the original brute force
approach.

We also described a strategy for constructing higher-order approximations, which
still fit within the convergence framework. In the interior of the domain, the
quadtree structure allows us to explicitly write out the higher-order finite difference
schemes. This strategy fails near the boundary, which can have a very complicated
geometry. At these points, we employed a least-squares approach to construct
higher-order schemes.

We also used these methods to perform automatic mesh adaptation, which refines
the mesh near singularities in the computed solutions. This led to a dramatic
qualitative and quantitative improvement in computed solutions.
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