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Abstract

We propose a fast algorithm for evaluating the moments of Bingham distribution.
The calculation is done by piecewise rational approximation, where interpolation and
Gaussian integrals are utilized. Numerical test shows that the algorithm reaches the
maximal absolute error less than 5 × 10−8 remarkably faster than adaptive numerical
quadrature. We apply the algorithm to a model for liquid crystals with the Bingham
distribution to examine the defect patterns of rod-like molecules confined in a sphere,
and find a different pattern from the Landau-de Gennes theory.

Keywords: Bingham distribution, directional data, piecewise rational approxima-
tion, liquid crystals.

1 Introduction

The Bingham distribution is an important antipodally symmetric distribution on the unit
sphere S2. Although introduced from a statistical perspective [4], it has found applications
in liquid crystals [7, 6, 3, 8], palaeomagnetism [18, 12, 11], and various other fields involving
data on the sphere [5, 1, 15, 17, 21].

The density function of the Bingham distribution is given by

f(x|B) = exp

 3∑
i,j=1

Bijxixj

/∫
S2

exp

 3∑
i,j=1

Bijxixj

 dx , x ∈ S2, (1)

where B is a 3× 3 symmetric matrix. A fundamental problem in computation involving the
Bingham distribution is evaluating the moments

〈xn1
1 xn2

2 xn3
3 〉 =

∫
S2
f(x|B)xn1

1 xn2
2 xn3

3 dx. (2)

Denote

Zn1n2n3(B) =

∫
S2
xn1

1 xn2
2 xn3

3 exp

 3∑
i,j=1

Bijxixj

 dx. (3)
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Then the moments can be expressed as 〈xn1
1 xn2

2 xn3
3 〉 = Zn1n2n3(B)/Z000(B).

Even when solving a single problem, the evaluation of moments (2) may need to be done
repeatedly. This is a typical case in the simulations of liquid crystals. In each iteration
or time step, (2) is computed at each grid point. Generally speaking, the number of space
discretization is O(N3). If we calculate (2) by direct numerical quadrature, it costs O(N2)
operations for every single calculations, leading to a total cost of O(N5). On the other
hand, it should be noted that the density function (1) is determined only by B, not relevant
to parameters (and domains, etc.) specified by the problem to be solved. Therefore, it is
desirable to have a fast algorithm for the evaluation of (2).

The existing approximations of (2) are designed only for special cases, and are not accu-
rate enough to meet the demand of simulations in many problems. Kent [10] proposed simple
expansions for the zeroth and second moments. The relative error is about 0.1%. Kume and
Wood [14, 13] developed a method to compute the Z000(B) by using saddle-point approx-
imation. It is accurate for the final estimation result when applying this method in doing
maximum likelihood estimation, but not accurate enough for evaluating Z000(B). Moreover,
the approximation cannot be easily extended to general Zn1n2n3(B). Wang et. al. [20] used
piecewise linear interpolation to compute B from Zn1n2n3/Z where n1 + n2 + n3 = 2. This
approach works well for B not far from zero matrix, but is inaccurate when it is not the case.
We also mention that in [7] the fourth-order moments Zn1n2n3/Z, (n1 + n2 + n3 = 4), are
approximated by polynomials of the second-order moments Zn1n2n3 , (n1 +n2 +n3 = 2), with
a relative error of 5× 10−4. This approach is restricted to the cases where B is not involved
explicitly.

In this paper, we introduce a fast and accurate algorithm for evaluating Zn1n2n3(B). We
divide B into three cases and use different approximation method for each case. The main
techniques we utilize are interpolation and Gaussian integrals. We have implemented the
method for n1 + n2 + n3 ≤ 4 in a routine named BinghamMoments. It is freely available
online [16], in which pre-calculations are done and saved as constants in the routine to raise
the real-time efficiency. The cost of evaluating Zn1n2n3 is reduced to O(1) compared with
O(N2) in numerical integration. Numerical experiments show that the absolute error is less
than 5×10−8 in the routine, while 104 times faster than adaptive numerical quadrature with
the same accuracy. We apply the method to a liquid crystal model proposed in [3, 8]. The
model substitutes the polynomial bulk energy in the widely-used Landau-de Gennes theory
with the entropy term expressed by the Bingham distribution. By this substitution the order
parameters are confined in the physical range, and it is shown in [8] that this model can
be derived from molecular theory. We examine the defect patterns for rod-like molecules
confined in a sphere, and find a different structure from the Landau-de Gennes theory. The
rest of paper is organized as follows. In Sec. 2, we present the approximation method. The
numerical accuracy is examined in Sec. 3. An application to liquid crystals is given in Sec.
4. Concluding remarks are stated in Sec. 5.

2 The approximation method

We diagonalize B using an orthogonal matrix T with detT = 1,

B = Tdiag(b1, b2, b3)T T .
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Then the density function becomes

f(x|B) = exp

(
3∑
i=1

bi(T
Tx)2

i

)/∫
S2

exp

(
3∑
i=1

bi(T
Tx)2

i

)
dx . (4)

Thus, by the transformation x −→ T Tx,

Zn1n2n3(B) =

∫
S2
xn1

1 xn2
2 xn3

3 exp

(
3∑
i=1

bi(T
Tx)2

i

)
dx

=

∫
S2

(Tx)n1
1 (Tx)n2

2 (Tx)n3
3 exp

(
3∑
i=1

bix
2
i

)
dx (5)

becomes a linear combination of Zm1m2m3(diag(b1, b2, b3)). Furthermore, the distribution
f(x|diag(b1, b2, b3)) is invariant under changes (b1, b2, b3) → (b1 + h, b2 + h, b3 + h) for any
real number h. Without loss of generality, we assume that b1 ≤ b2 ≤ b3 = 0. Denote
Zn1n2n3(b1, b2) = Zn1n2n3(diag(b1, b2, 0)). It is easy to note that Zn1n2n3(b1, b2) is nonzero
only if ni are even numbers. Then by x2

3 = 1 − x2
1 − x2

2, we can express Zn1n2n3(b1, b2)
linearly by Znm0(b1, b2). Hence it suffices to compute Znm0(b1, b2), denoted in abbreviate by
Znm(b1, b2).

Choosing a parameter d > 0, we divide (b1, b2) ∈ (−∞, 0]2 into three regions,

(−∞,−d]2, (−∞,−d]× (−d, 0] ∪ (−d, 0]× (−∞,−d], (−d, 0]2.

and use different approximation method for each region. The following Gaussian integral is
used in the approximation,∫

R
x2n exp(−αx2)dx =

√
π

α

(2n− 1)!!

(2α)n
, α > 0. (6)

2.1 b1, b2 ≤ −d

We transform the integral domain into the unit circle,

Znm(b1, b2) =2

∫∫
x21+x22<1

xn1x
m
2 · exp

(
b1x

2
1 + b2x

2
2

)
· 1√

1− x2
1 − x2

2

dx1dx2,

=2
∑
j,k≥0

(
j + k

j

)
(2j + 2k − 1)!!

(2j + 2k)!!

∫∫
x21+x22<1

x2j+n
1 x2k+m

2 exp
(
b1x

2
1 + b2x

2
2

)
dx1dx2.

(7)

The series converges because b1, b2 < 0. We truncate the series at j + k ≤ N1. Moreover, if d
is large, then x2j+n

1 x2k+m
2 increases with polynomial rate, while exp

(
b1x

2
1 + b2x

2
2

)
decreases

with exponential rate. Thus we expand the integral domain to R2 in the truncated series,
which yields the following approximation formula,

Ẑnm(b1, b2) =2
∑

j+k≤N1

(
j + k

j

)
(2j + 2k − 1)!!

(2j + 2k)!!

∫∫
R2

x2j+n
1 x2k+m

2 exp
(
b1x

2
1 + b2x

2
2

)
dx1dx2.

=
∑

j+k≤N1

(
j + k

j

)
(2j + 2k − 1)!!

(2j + 2k)!!

√
π2

b1b2

(2j + n− 1)!!(2k +m− 1)!!

(2b1)j+n/2(2b2)k+m/2
. (8)
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2.2 b1 > −d, b2 ≤ −d or b1 ≤ −d, b2 > −d

We explain our approximation method by the case b1 ≤ −d, b2 > −d. Rewrite Znm(b1, b2) as

Znm(b1, b2) = 4

∫ 1

−1
xn1 · exp

(
b1x

2
1

)
· gm(b2, x1) dx1, (9)

where

gm(b2, x1) =

∫ √1−x21

0
xm2 · exp

(
b2x

2
2

)
· 1√

1− x2
1 − x2

2

dx2. (10)

Denote a = 1− x2
1 and r = x2/a, then we have

gm =

∫ √a
0

xm2 · exp
(
b2x

2
2

)
· 1√

a− x2
2

dx2

=am/2
∫ 1

0
rm · exp

(
b2ar

2
)
· 1√

1− r2
dr

=am/2 · 1

2

√
π · Γ[(m+ 1)/2]

Γ[(m+ 2)/2]
· 1F1

(
m+ 1

2
;
m+ 2

2
; b2a

)
,

where

Γ(t) =

∫ ∞
0

xt−1 exp(−x)dx

is the gamma function, and 1F1 denotes the confluent hypergeometric function.
Note that 1F1(m+1

2 ; m+2
2 ; b2a) is an entire function about a ∈ C. Therefore gm(b2, x1)

equals to its Taylor’s series at x1 = 0 for x1 ∈ (−1, 1),

gm(b2, x1) =
∑
j≥0

1

(2j)!

(
∂2j

∂x2j
1

gm(b2, 0)

)
x2j

1 .

Similar to the case b1, b2 ≤ −d, we truncate the series at j ≤ N2. Again noticing b1 ≤ −d,
we expand the integral interval in (9) to R, leading to the approximation formula

Ẑnm(b1, b2) =4
∑
j≤N2

1

(2j)!

(
∂2j

∂x2j
1

gm(b2, 0)

)∫
R

exp
(
b1x

2
1

)
x2j+n

1 dx1

=4
∑
j≤N2

1

(2j)!

(
∂2j

∂x2j
1

gm(b2, 0)

)
·
√

π

−b1
(2j + n− 1)!!

(−2b1)j+n/2
. (11)

Next, we explain how to calculate the derivatives ∂2jgm(b2, 0)/∂x2j
1 . Denote

h1(a) = am/2, h2(a) = 1F1

(
m+ 1

2
;
m+ 2

2
; b2a

)
.

Then we have

∂jg

∂aj
=

1

2

√
π · Γ[(m+ 1)/2]

Γ[(m+ 2)/2]
·

j∑
k=0

(
j

k

)
∂kah1 · ∂j−ka h2, (12)
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with

∂kah1 =
(m/2)!

(m/2− k)!
a

m
2
−k, k ≤ m

2
, ∂kah1 = 0, k >

m

2
, (13)

and

∂kah2 = bk2

(
m+ 1

2

)(k)/(m+ 2

2

)(k)

· 1F1

(
m+ 1

2
+ k;

m+ 2

2
+ k; b2a

)
(14)

where
x(0) = 1, x(k) = x(x+ 1)(x+ 2) · · · (x+ k − 1)

is the rising factorial. Along with

∂2a

∂x2
1

∣∣∣∣
x1=0

= −2,
∂ia

∂xi1

∣∣∣∣
x1=0

= 0, i 6= 2,

and the chain rule, we arrive at

∂2j

∂x2j
1

g(xm2 |b2, x1)

∣∣∣∣
x1=0

= (−1)j · (2j)!

j!
· ∂

jg

∂aj

∣∣∣∣
a=1

. (15)

The derivatives ∂2jgm(b2, 0)/∂x2j
1 are functions of b2. In the routine BinghamMoments, we

precompute the values on grid points b2 = 0.001k, and compute the values between the grid
points by linear interpolation.

2.3 b1 > −d, b2 > −d

In this bounded region of (b1, b2), we use interpolation for Z00 and Zmn/Z00. We compute
them and their derivatives about b1, b2,

∂Z00

∂b1
= Z20,

∂(Znm/Z00)

∂b1
=
Zn+2,mZ00 − ZnmZ20

Z2
00

,

on the grid (b1,2)j = −j∆b, 0 ≤ j ≤ −d/∆b. These values are computed in advance and
saved as constants in the routine BinghamMoments. For Znm not on the grid points, we
calculate with the interpolation described below. Suppose we already know

f(xi, yj), fx(xi, yj), fy(xi, yj), j = 1, 2.

To obtain the approxiamte value f(x, y) on (x, y) ∈ [x1, x2]× [y1, y2], we first calculate

f(x, y1), f(x, y2), f(x1, y), f(x2, y)

with third-order Hermite interpolation,

f(x, y1) = f(x1, y1) · (1 + 2
x1 − x
x1 − x2

)(
x− x2

x1 − x2
)2 + f(x2, y1) · (1 + 2

x2 − x
x2 − x1

)(
x− x1

x2 − x1
)2

+fx(x1, y1) · (x− x1)(
x− x2

x1 − x2
)2 + fx(x2, y1) · (x− x2)(

x− x1

x2 − x1
)2.

Next we calculate
fy(x, y1), fy(x, y2), fx(x1, y), fx(x2, y)

5



with linear interpolation,

fy(x, y1) = fy(x1, y1)
x2 − x
x2 − x1

+ fy(x2, y1)
x− x1

x2 − x1
.

Then we can calculate f(x, y) with third order Hermite interpolation by

f(x, y) = f(x1, y) · (1 + 2
x1 − x
x1 − x2

)(
x− x2

x1 − x2
)2 + f(x2, y) · (1 + 2

x2 − x
x2 − x1

)(
x− x1

x2 − x1
)2

+fx(x1, y) · (x− x1)(
x− x2

x1 − x2
)2 + fx(x2, y) · (x− x2)(

x− x1

x2 − x1
)2, (16)

or

f(x, y) = f(x, y1) · (1 + 2
y1 − y
y1 − y2

)(
y − y2

y1 − y2
)2 + f(x, y2) · (1 + 2

y2 − y
y2 − y1

)(
y − y1

y2 − y1
)2

+fy(x, y1) · (y − y1)(
y − y2

y1 − y2
)2 + fy(x, y2) · (y − y2)(

y − y1

y2 − y1
)2. (17)

We compute f(x, y) as the average of (16) and (17).

2.4 The value of the parameters

We have introduced four parameters in the above: the size d for dividing the domain, the order
of truncation N1 and N2, and the grid size for the interpolation ∆b. We choose parameters
as d = 30, N1 = 5, N2 = 5, ∆b = 0.025 for Z00, and ∆b = 0.1 for Znm/Z00 in the
routine BinghamMoments, achieving maximal absolute error less than 5 × 10−8 for Z00 and
〈xn1xm2 〉, n + m ≤ 4. We will verify this in Sec. 3.2. With these parameters, the memory
needed for loading precomputed values (including ∂2jgm(b2, 0)/∂x2j

1 in the case 2.2, and the
values on the grid points in the case 2.3) is about 75MB, which is available for common
computers.

3 Numerical accuracy

3.1 Error estimate

We give an error estimate for the case 2.1 with some special functions. Denote

F (x) = e−x
2

∫ x

0
et

2
dt

as the Dawson function,

γ(n, x) =

∫ x

0
tn−1e−t dt

as the lower incomplete gamma function, and

αn(z) = E−n(z) = n!z−n−1e−z
(

1 + z +
z2

2!
+ · · ·+ zn

n!

)
as the exponential integral function.

6



Theorem 3.1. Let Ẑnm be defined in (8) and denote N = N1. For b1, b2 ≤ −d, it holds

|Znm − Ẑnm| ≤ 4π
F (
√
d )√
d
− 2π

N∑
j=0

(2j − 1)!!

(2j)!!
· d−j−1γ(j + 1, d)

+2π

N+max(n,m)∑
j=0

(2j − 1)!!

(2j)!!
αj(d). (18)

Proof. We can divide the error into two parts:

e1 =Znm(b1, b2)− 2

∫∫
B(0,1)

xn1x
m
2 exp

(
b1x

2
1 + b2x

2
2

) N∑
j=0

(2j − 1)!!

(2j)!!
· (x2

1 + x2
2)j dx

=2

∫∫
B(0,1)

xn1x
m
2 exp

(
b1x

2
1 + b2x

2
2

)∑
j>N

(2j − 1)!!

(2j)!!
(x2

1 + x2
2)j dx, (19)

e2 =2

∫∫
R2\B(0,1)

xn1x
m
2 exp

(
b1x

2
1 + b2x

2
2

) N∑
j=0

(2j − 1)!!

(2j)!!
(x2

1 + x2
2)j dx. (20)

For e1, we have

e1 ≤ 2

∫∫
B(0,1)

exp
(
−d(x2

1 + x2
2)
)∑
j>N

(2j − 1)!!

(2j)!!
(x2

1 + x2
2)j dx

= 2

∫∫
B(0,1)

exp
(
−d(x2

1 + x2
2)
) 1√

1− x2
1 − x2

2

−
∑
j≤N

(2j − 1)!!

(2j)!!
(x2

1 + x2
2)j

 dx

≤ 4π

∫ 1

0
e−dr

2 r

1− r2
dr − 4π

N∑
j=0

(2j − 1)!!

(2j)!!

∫ 1

0
r2j+1e−dr

2
dr

= 4π
F (
√
d )√
d
− 2π

N∑
j=0

(2j − 1)!!

(2j)!!
d−j−1γ(j + 1, d). (21)

In the above, we use the polar coordinate transformation x1 = r cos θ, x2 = r sin θ. For e2,
denote M = max{n,m}, then we have

e2 ≤ 4π
N+M∑
j=0

(2j − 1)!!

(2j)!!

∫ ∞
1

r2j+1e−dr
2

dr = 2π
N+M∑
j=0

(2j − 1)!!

(2j)!!
αn(d). (22)

Combining (21) and (22), we get (18).

For our chosen parameters d = 30 andN1 = 5, the upper bound given by (18) is 6.038×10−8

for n + m ≤ 4. We also give the upper bound calculated from (18) for a few d and N1 in
Table 1. The estimate (18) is also helpful to choosing parameters under different demand of
accuracy, which will be shown in Table 3.

7



d 13 16 20 26

N1 5 6 6 6

Bound 4.4× 10−5 3.6× 10−6 4.5× 10−7 4.5× 10−8

Table 1: Absolute error bound by (18) under different values of d and N1 for n+m ≤ 4.

Moment Z Z20/Z Z02/Z

Maximal error 6.038× 10−8 2.030× 10−8 1.543× 10−8

Moment Z40/Z Z04/Z Z22/Z

Maximal error 4.031× 10−9 2.049× 10−8 2.098× 10−8

Table 2: Maximal absolute error for the 30, 000 pairs of (b1, b2).

3.2 Numerical Test

We compare the results calculated by our method and the results calculated by numerical
integration to testify the accuracy of our method numrically. The parameters in our method
are chosen as N1 = 5, N2 = 5 and d = 30. For numerical integration, we use adaptive
Simpson’s method to control the absolute error less than 10−11. We select randomly 10, 000
pairs of bi for each of the three cases: b1, b2 ≤ −d, max(b1, b2) > −d & min(b1, b2) ≤ −d,
and b1, b2 > −d, and calculate Z and the moments Znm/Z where n + m = 2, 4. Table 2
shows the maximal absolute errors of Z and Znm/Z among the 30000 samples, which are
under the magnitude of 10−8. In particular, the errors of Znm/Z are less than 5× 10−8. We
also examine the distribution of the absolute errors of Z (Figure 1(a)), Z20/Z (Figure 1(b))
and Z04/Z (Figure 1(c)) for the 10000 samples in each of three cases respectively, and find
that for most bi the absolute errors are less than 10−10. Moreover, the numerical test also
shows our method is very fast. Calculating all these 30, 000 examples, the adaptive Simpson’s
method with the target accuracy 5 × 10−8 spend 3117.761 seconds while our method only
0.193 seconds. Both routines are written in C and run in the same computer with a CPU
clock speed 2.5GHz.

We also give some other suggested values of d, N1 and N2 in Table 3 for different demanded
accuracy for Znm/Z, which are also testified numerically with 30, 000 random samples. By
comparing with the errors in Table 3 and Table 1, we find that the upper bound given by
(18) are indicative for the choice of parameters.

Demanded maximal absolute error 5× 10−5 5× 10−6 5× 10−7 5× 10−8

d 13 16 20 26

N1 5 6 6 6

N2 4 5 6 6

Table 3: Suggested values of parameters d, N1 and N2 under different demanded absolute
error.

8
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Figure 1: Distribution of error. Blue bars: b1, b2 ≤ −d; Green bars: max(b1, b2) > −d &
min(b1, b2) ≤ −d; Yellow bars: b1, b2 > −d. Ei represents the interval [10−i−1, 10−i) for
i = 7, 8, 9. E10 = [0, 10−10) and E6 = [10−7,∞).

4 Application to liquid crystals

In this section, we apply our algorithm to a Q-tensor model for rod-like liquid crystals.
Compared with the original Landau-de Gennes Q-tensor theory, the model is able to constrain
the tensor within the physical range [3], and is closely connected to molecular theory [8]. But
the Bingham distribution in the model brings difficulty in numerical simulations. We will
explain how our fast algorithm accelerates the computation.

Suppose that the rod-like molecules are confined inside the unit sphere. Then the anchoring
effect on the spherical surface will induce defects for the alignment of the molecules. We
consider the following simplified free energy,

F =

∫
Ω

dxdydz
[
(B : (Q+

I

3
)− logZ)− 1

2
α1 |Q|2 +

1

2
α2 |∇Q|2

]
+ Fp, (23)

where the region Ω is chosen as the unit sphere, I is the identity matrix, and

Qij(x) =

∫
S2

(xixj −
1

3
δij)f(x|B)dS

is a symmetric traceless matrix describing the orientational distribution of rod-like molecules
at each spatial point, with f(x|B) and Z = Z000(B) defined in (1) and (2). Here δij is
the Kronecker notation. The first two terms in the integral are the bulk energy describing
the nematic phase in equilibrium. This bulk energy is the only terms distinct from the
phenomenological Landau-de Gennes theory, where the bulk energy is given as a polynomial

a2tr(Q2)− a3tr(Q3) + a4(tr(Q2))2.

The gradient term is the energy contribution of the spatial inhomogeneity. The boundary
penalty term

Fp =

∫
∂Ω

dS [Q11xy−Q12(x2− 1

3
)]2 +[Q12z−Q13y]2 +[Q22xy−Q12(y2− 1

3
)]2 +[Q12z−Q23x]2

9



is added to enforce the value of Q on the sphere to be approximately

Q = λ

 x2 − 1
3 xy xz

xy y2 − 1
3 yz

xz yz z2 − 1
3

 .

In fact, if Q is given as above, then Fp = 0. Our aim is to find local minimizers of the energy
functional (23) that describe metastable states.

Express B as B = Tdiag(b1, b2, 0)T T , where T is orthogonal with detT = 1 and can be
expressed by Euler angles,

T =

 cosα cos γ − cosβ sinα sin γ cos γ sinα+ cosα cosβ sin γ sinβ sin γ
− cosβ cos γ sinα− cosα sin γ cosα cosβ cos γ − sinα sin γ cos γ sinβ

sinα sinβ − cosα sinβ cosβ

 .

In this case, Q = Tdiag(q1, q2, q3)T T , where the eigenvalues are given by q1 = Z20(b1, b2)/Z00(b1, b2),
q2 = Z02(b1, b2)/Z00(b1, b2), and q3 = 1− q1 − q2.

We use the spherical coordinates (r, θ, φ) to represent the position, i.e.,

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (24)

The integral becomes
∫

(·)dxdydz =
∫

(·)r2 sin θdrdθdφ, and the gradient term becomes

|∇Q|2 = |∂rQ|2 +
1

r2
|∂θQ|2 +

1

r2 sin2 θ
|∂φQ|2. (25)

The free energy is discretized at N ×N ×N = 323 Gaussian quadrature nodes (rj , θk, φl) in
[0, 1] × [0, π] × [0, 2π]. At each node (b1, b2, α, β, γ)jkl act as the basic variables, from which
Qjkl is computed. The gradient term is computed using the spectral-collocation method.
From the value of Q at the discretized nodes, a polynomial

Q(r, θ, φ) =

N−1∑
j=0

M−1∑
k=0

L−1∑
l=0

cjklQ rjθkφl

is constructed through interpolation. The derivatives about (r, θ, φ), as well as the values
on the boundary, are then computed from the above polynomial. We refer to [19] where the
details about the spectral-collocation method are illustrated. The free energy is minimized
using the BFGS method (see, for instance, [2]). In the iteration we need to compute the
derivatives of F about (bi)

jkl, where fourth moments are involved. For instance,

∂

∂b1
Q = Tdiag(

∂q1

∂b1
,
∂q2

∂b1
,
∂(−q1 − q2)

∂b1
)T T ,

where
∂q1

∂b1
=
Z40Z00 − Z2

20

Z2
00

.

It is worth pointing out that at each point, the value of Q and Z are computed from B.
Therefore, our algorithm is executed O(N3) times in each BFGS iteration step, which greatly
accelerates the simulation. Another thing is that the Bingham distribution remains the same
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(a) Radial hedgehog (b) Ring disclination (c) Sphere ring band

Figure 2: Three axisymmetric defect patterns, shown by the slice of x2-x3 plane, where x3

is the axis of symmetry. White rods represent principal eigenvectors. The background color
describes the biaxiality µ, with red indicates biaxial and blue indicates uniaxial. In all three
cases α2 = 0.04, and α1 are chosen as: (a) α1 = 11; (b) α1 = 16; (c) α1 = 22.

when we alter the parameters α1,2, the domain (from sphere to cylinder or ellipse, etc.), and
add some terms like in [8]. Thus our algorithm is suitable for all these cases.

Before looking at the results, we first define the biaxiality. When Q 6= 0, we say Q is
uniaxial if it has two identical eigenvalues, and is biaxial if it has distinct eigenvalues. Note
that trQ = 0. The biaxiality is measured by

µ = 1− 6
(trQ3)2

(trQ2)3
.

For uniaxial Q, we have µ = 0; for biaxial Q, we have 0 < µ ≤ 1. We examine the
defect pattern under different α1 and α2. At each point, the favored direction of the rod-like
molecules is the principal unit eigenvector n of Q. While Q is continuous in the unit sphere, n
might be discontinuous at the points where Q = 0 or Q has two identical positive eigenvalues.
Defect patterns are classified by the configuration of these points.

We fix α2 = 0.04 and let α1 vary. Three defect patterns are observed and drawn in
Figure 2: radial hedgehog (Figure 2(a)), when α1 = 11; ring disclination (Figure 2(b)), when
α1 = 16; sphere ring band (Figure 2(c)), when α1 = 22. In the radial hedgehog pattern, Q
is uniaxial everywhere with the principal eigenvector along the radial direction. The sphere
center, where Q = 0, is the only point defect. In the ring disclination pattern, the points
where Q has two identical positive eigenvalues form a circle in the x-y plane, round which
is a torus of biaxial region. In the sphere ring band pattern, the points where Q = 0 form
two rings on the spherical surface. In the band between these two rings on the spherical
surface, Q has two identical positive eigenvalues. A strong biaxial region is observed inside
the sphere near the band. The last pattern is not found in the Landau-de Gennes theory [9].
We believe that this novel pattern come from the term B : (Q+ I/3)− logZ, since it is the
only term different from the Landau-de Gennes theory. Hence, it is necessary for this model
to be further examined.

5 Conclusion

We develop a fast and accurate algorithm to evaluate the moments of Bingham distribution.
Numerical test shows that it is remarkbly faster than direct numerical quadrature, while
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maintaining high accuracy. We apply the algorithm to the liquid crystal model that contains
the Bingham distribution, which is able to constrain the order parameters within the physical
range. We examine the defect patterns of liquid cystals confined inside a sphere and find a
novel pattern, suggesting that the model be examined thoroughly and compared with the
Landau-de Gennes theory in future studies. Armed with our algorithm, these studies will
become much less expensive computationally.
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