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A MULTI-LEVEL MIXED ELEMENT METHOD FOR THE EIGENVALUE
PROBLEM OF BIHARMONIC EQUATION

SHUO ZHANG, YINGXIA XI, AND XIA JI

AsstracT. In this paper, we discuss approximating the eigenvaluéleno of biharmonic equa-
tion. We first present an equivalent mixed formulation whacimits amiable nested discretization.
Then, we construct multi-level finite element schemes byl@menting the algorithm as in [33] to
the nested discretizations on series of nested grids. THhi@lewel mixed scheme for biharmonic
eigenvalue problem possesses optimal convergence ratepéinthl computational cost. Both the-
oretical analysis and numerical verifications are preskente

1. INTRODUCTION

The eigenvalue problem of the biharmonic equation (bihaimeigenvalue problem) is one
of the fundamental model problems in linear elasticity, aad find applications in, e.g., mod-
elling the vibration of thin plates. There has been a lon{physon developing the finite element
methods of the biharmonic eigenvalue problem, and manynsebdnave been proposed for dis-
cretization[[9, 11, 25, 36], computation of guaranteed upel lower bounds [10, 22,23,143], and
adaptive method and its convergence analysis [17]. Thismpapdevoted to studying the multi-
level dficient method of the biharmonic eigenvalue problem. Spedifiove present a discretiza-
tion scheme which preserves the nested essence on nestedagil then construct a multi-level
algorithm based on the scheme. The cost of the multi-legerahm versus the intrinsic accuracy
of the scheme is asymptotically optimal.

As well known, the multi-level algorithm based on nesteceass has been a key tool in com-
putational mathematics and scientific computing fields. tRereigenvalue problem, many multi-
level algorithms have been designed and implemented. Fongbe, there are several successful
methods for the Poisson eigenvalue problem. The two-grithatehas been proposed and ana-
lyzed by Xu-Zhou inl[38]. The idea of the two-grid method itated to the ideas in [23, 24] for
nonsymmetric or indefinite problems and nonlinear ellipications. Since then, many numerical
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methods for solving eigenvalue problems based on the iddeedfvo-grid method are developed
(see, e.q., [5,12,14,28,134,42]). A type of multi-levelreation scheme is presented by Lin-
Xie [33] and Xie [40]. The method is a type of operator iteratmethod (see, e.q, [31,/38]44])).
Besides, Xiel[39] presents a multi-level correction scheamel the guaranteed lower bounds of
the eigenvalues can be obtained. The correction methoddgenealue problems in these papers
are based on a series of finite element spaces witkrdnt approximation properties related to the
multi-level method (cf.[[37]). With the proposed methode eigenvalue problem is transformed
to an eigenvalue problem on the coarsest grid and a seriesuotes problem on the fine grids.
The scheme can be proved asymptotically optimal. The samegy can be implemented on the
Stokes equation, and similar asymptotic optimality is ¢artded [32]. These works mentioned
above have indeed presented a framework of designing teuttl-schemes which works well for
the elliptic eigenvalue problem and stable saddle poinlera, provided a series of subproblems

with intrinsic nestedness.
In contrast to the second order problem, the multi-levelhoétfor the biharmonic eigenvalue

problem has seldom been discussed, due to the lack of negiptbblems. Indeed, when we con-
sider the primal formulation of the biharmonic problem, thgh stifthess of the Sobolev space
H2 makes it dificult to construct nested discretizations. Besides spiipe-elements, the rectan-
gular BFS element 8] is the only element which can form refitete element spaces on nested
grids; a multi-level algorithm has been designed based o 8Ement for fourth order prob-
lems on rectangular grids [24]. Moreover, elements thathte to form nested spaces are proved
to be conforming ones; therefore, people can not obtainageed lower bounds of eigenvalues
with these elements. One way for this situation is to loosestifness of the finite element spaces.
Mixed element method is then frequently used, and sevenaises for the biharmonic eigenvalue
problem with polynomials of low degree have been desigh&digll Also, some discretization
schemes of mixed type for boundary value problems can beaigtutilized for the eigenvalue
problem; we refer readers to [6] for related discussion. elm@y, we have to remark that the order-
reduced nestedness discretizations is still not straaghtfrd. For example, the Ciarlet-Raviart
formulation [13] admits us to discretize the biharmonicraper with piecewise continuous linear
polynomials. However, as this formulation is stable on thace pairH(l)(Q) x H(A, Q) [4], the
inheritance of theopologyonto the finite element space is an issue, and the finite ekespanes
on nested grids are ntopologicallynested. The same problem is encountered for some other
mixed formulations which introduce direct auxiliary vdiies, such as [15,20,21,126)29]. More
discussion can be found in [30]. These may explain why fewtiredel scheme is discussed for
the biharmonic eigenvalue problem.
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In this paper, we seek to implement multi-level strategy bgstructing amiable nested finite
element discretization for the biharmonic eigenvalue [@ab We first introduce a mixed formu-
lation whose corresponding source problem is discuss&0ireind [18]. This mixed formulation
is stable on Sobolev spaces of zero and first orders (cf. LeBfrizelow). As the sfiness is
loosened, polynomials of low degree are enough for its diszation, and optimal accuracy can
be expected. Therefore, it admits discretizations thanasted algebraically anidpologically.
Secondly, we construct a family of multi-level schemes far tixed formulation of the eigen-
value problem. The multi-level algorithms for biharmonigenvalue problem possess optimal
accuracy and optimal computational cost.

For the proposed algorithms, both theoretical analysiswamderical verification are given. We
remark that, though the multi-level strategy is essentitde same as the one used by Lin-Xie
[24,/32]33], 40], the theoretical analysis is not directhtiy same virtue. Actually, if we separate
the “primal variables” from “Lagrangian multipliers”, weilvfind the skeleton bilinear form is not
coercive on the primal variables nor on the Lagrangian mpligtis. This makes the classical theory
of the spectral approximation of the saddle-point probléchs[7,[32/35]) not directly usable in
the present paper. A precise discussion can be found in Rd&iar Meanwhile, because of
the saddle-point-type essence, the problem is al§erdnt from the Steklov eigenvalue problem
discussed in[41]. We therefore construdtelient theory framework and interpret the eigenvalue
problem in mixed formulation as the eigenvalue problem ofeagyalized symmetric operator
rather than a self-adjoint one, and accomplish the thealedinalysis. The dierences between
our theory and the existing theory for elliptic or saddlerpgiroblems include: (1) we represent
some existing results which are originally in variationatriiulation into operator formulation,
and then present error estimation in that context; the emefarmulation can bridge the gap
between the biharmonic problem and the classical theorpaaftsal approximation, and can avoid
complicated appearance especially for the mixed formaaf2) we figure out some properties of
generalized symmetric operators which are not necessalilyadjoint; and (3) in our theory, we
do not try to interpret the problem as a restrained probleprional variables or one on Lagrangian
multipliers, which is usually done for saddle-point prahlehis makes the algorithm construction
and theoretical analysis more straightforward.

The remaining of the paper is organized as follows. In Sad®pwe present the theory of
spectral approximation of the generalized symmetric dpesaSome existing results are restated
and re-proved, and some new results are presented. In 88ctice present a mixed formulation
of the biharmonic eigenvalue problem, and construct itsg{stlevel) discretization schemes. A
multi-level algorithm is then constructed accordingly.tBthe single- and multi-level algorithms
are optimal in accuracy, and the multi-level one also paesesptimal computational cost. The
theoretical proof is obtained under the framework disadigs&ection B. Numerical examples are
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then given in Sectionl4 with respect to both single- and meltel methods. Finally, in Sectidn 5,

some concluding remarks and further discussion are given.

2. SPECTRAL APPROXIMATION OF GENERALIZED SYMMETRIC COMPACT OPERATORS
In this section, we present some known and new results,dimgju

— an estimate of spectral projection operator (Lerhima 3);

— an multi-level algorithm (Algorithral1l) and its convergerestimate (Theorem 7);

— spectral approximation of generalized symmetric operaemmas 15,16 ard 1.9);
— corresponding results in variational form (Lemma 23, Aigpon[2 and Theorerm 25).

Some bibliographic comments are given around.

2.1. Preliminaries. In this subsection, we collect some preliminaries from Géap of [2].

Let H be a Hilbert space, antl be a compact operator ¢th. Let u be a nonzero eigenvalue of

T with algebraic multiplicitiesn. Denote the eigenspadé(u) := {ue H : Tu= uu}. Letl’, be a
circle on the complex plane centered:athich encloses no other points@{T). Let{Th}on<1 be
a family of compact operators that converge$ ia norm. Then foh suficiently small, there exist
m eigenvalues of},, counting multiplicities, located insidg,. Denote them by, i = 1,---, m.

.....

Mh(w) is the approximation oM(u), measured by thgap between them.
A gap between two closed subspaddsandN of a Banach spack is defined by

5(M, N) = max@(M, N), §(N, M)), with 6(M,N) = sup dist(x, N).

xeM,|Ix||=1
Lemma 1. ([2127]) If dimM = dimN < oo, thends(N, M) < (M, N)[1 — 6(M, N)] L.
Lemma 2. ([2], Theorem 7.1.) There is a constant C independent of ¢h shiat
S(M(w), Mn(1)) < CII(T = Th)lmgyll
for small h, whergT — Tp)|m(,) denotes the restriction of F Ty, to M(w).

Define the projection operators with respect:toy

_i _i _T)1 _i _i _ -1
(1) E_27Ti frﬂ R(T)dz= o fr”(z T)dz Eh_2ﬂ'i fr” R,(Th)dz= o fr”(z Th) dz

Then rangdf) = M(u), and rangdfy) = My(u). We refer to[[2] for more discussion.
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2.2. Spectral approximation by the aid of projection operator. For G a subspace dfl with
H = G & G, denote byPg the projection operator ont@ alongG°. Let {G} be a sequence
of subspaces off, with the indicesh — 0, andG, — H. DefineTg, = Pg,T, then{Tg,}
are approximations of . We know that if||Pg,u — ully — 0 ash — 0 for anyu € H, then
IT — Tg,llh — 0 ash — 0.

We write for shortP, the projection ontd@sy,, andT,, := PyT. We assumd@, — T in norm as
h — 0. Corresponding tt(u) and My (u), we have the lemma below.

Lemma 3. There is a constant £ such that

2 lu— Enulln < Cull(H = Pr)ulln, Vue M(u),
3 IT(U - Enu)lln < CuIT( = Pr)ulln, Yu e M(u).

Proof. Direct calculation leads to that
u-Epu=Eu-Epu= 2% fr”(z— Tn) (T — Th);2.dz
(4) = 4 | @=T) M0 = Podz= 4 [ (2= T) X1 - Pr)2dz

where it has been used that £ Tp)u = u(l = Pp)u, and ( — Pp)? = (I = Py). Thus

1 1, (T = Tr)ulln _
u—En(uully < —[2xrad su Ty Yy — 2 = sup I(z=Tx) HIull(1=P)Ull4.
[lu—En(u)ully 2ﬂ[ mrad(C,)] Zerwhizoll( )k adf,) |,u|ZEmF>)o||( h) " Ik (T=Pr)ully

Now ||T — Tylly — O implies that

-1
lul sup [I(z=Th) "Ik < co.
zel,,h>0

This proves[(R). Further, note that

Z-To) " =(-E-Ta) (I = PYT)(z-T)",

and we have
T(U=En) = 35 |, T@@=To) (1 - Pr)34;dz
= 45 J (1 =T@=To) (1 = P))T(z~T) (1 - Pr)dz
5) = 47 o, (= T@=T) (1 = P)(2-T)*T(I - Pr);tdz
Thus

Kl o rradD)] sup 11 = T(z=Tr) (1 = Pu))(z— Ty 0= Pl

T(u-Enu < —
IT( hU)IIH o o rad(’)
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Sincel|(z— Tn) YIw and||(z- T) 73|y are uniformly bounded faz € T andh > 0, we obtain

IT(U = EnWlln < CIT( = Pr)ully.
The proof is completed. O
Remark 4. Inequality(2) is (3.169 of [3], while (3)) is a generalisation of3.169 of [3].

2.3. A multi-level algorithm for eigenvalue problem with projection approximation. The al-
gorithm is the same as the algorithms employed inl[32, 33,l4d]is rewritten with respect to a
general context of operator. The error estimation is thésrmeed accordingly.

Algorithm 1. A multi-level algorithm for k eigenvalues of T.
Step 0: Construct a series of nested spacescGG; c --- € Gy C H. SetG, = Go.
Step 1: Fori = 1: 1 :N, generate auxiliary spac& recursively.
Step 1.i.1: Define projection operatorB;_; : H — G;_;, and solve eigenvalue problem
for its first k eigenpairg Nij‘l, Uij‘l Yiet k

P_iT0 = fili

Step 1.i.2: Define projection operators;P H — G;. Compute

0 =——=PTU™" j=1...k

i
Step 1.i.3: Set

Gi = Go + sparftl }*_;.

Step 2: Define projection operator§N ' H = Gy, solve eigenvalue problem for its first k

P\TU = A,
Remark 5. In the algorithm, the “first” k eigenvalues imply the k modsihiggest eigenvalues.

The main work of the algorithm is to solve eigenvalue prolsle|fﬁ~'i = ﬁT and to compute the
action of T, := P;T on every level.

Let u be a nonzero eigenvalue ®f with multiplicity m, and denoteM(u) = {ue H : Tu =
uu, ully = 1} Letﬁij andu"j, j=1:m,i=0:N be the eigenpairs generated by the algorithm as

approximations ta andM(u). Specifically, denotd/; () = spaﬁﬂ‘j}?‘:l.
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Stability Constant. Let {¢;}]; € H ben unit vectors. Denote the stability constantef}! ; by

| YL, @iwll?

(6) 0(p1, ..., n) 1= | '
VT aernaz0 YN leigill?

The stability constant ofy;}; denotes to what extent the vectors are nearly orthogonal. If
01, ....¢n) = 1, then{y;}L, are orthogonal to each other, andff:, . .., ¢,) = O, then{g}!
are linearly dependent.

Lemma 6. Lety € sparg;}iL, be a unit vector, and \# ® be a closed subspace of H. Then

7) diste, V) < V2n6(e1, ..., ¢n)t maxdist(gi, V).
<I<n

Here we defin®(p1, ..., ¢n) ™t = o0, if O(¢1, ..., ¢n) = 0.

Proof. Letv; € V such that|g; — villy = dist(g;, V). Letp = 3, Bigi, such that|e|ly = 1. Then

diste. V) < lle= D Avillh = 11 ) Bilei=WIi% < D 1BBilllgi~illullpi=villn < [2n ) AT maxilei—vilf.
i i i i

The proof is completed by the definition @4, . . ., ¢n). m|
Theorem 7. Assume @is big enough, such thai(H, Gy) is syficiently small. Assume for the

o . . u-—v
projections thatmin  inf | [

———— > Cy, and assume for the computed eigenvectors that
1<I<N ueH\GyveG [JU — PyUl|

1irln‘N 9(0'1, ..., Uy) = 6. There exist constangs andg, dependent gf, Cy andéy, such that,

N N-1

8) (M), Gn) < B1 ) [[ |BaIT = TPilI)I6M(), G,
=0 j=I

Proof. By lemmd2,

S(M (), Mo(i)) < C sup I(T = To)ully < Ca8(M(w), Go).

Given{ﬂ?}?‘zl, there exist$u‘j’} c M(u), such thaty‘j’l]? = Eou‘j’, Wherely? -1 < Clllu‘j’ — Pou‘j’llH is
guaranteed arbitrarily small. Se} = y{ii%/u, then

12005 = Paullln = [1(@¥/E9) T1l? — (1/p)P1T Wllk
©) = 11/ulIPT AW — Ul < 11/ullIT (W0 — Bl < CpuallT — TPollud(M(u), Go).

Therefore,

1290t — Wl < 11090t = Pl + IP1US = Wil < Cyoall T = TPolIuO(M (), Go) + 6(M(w), Gy).
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Sinced(ll, . ..., W0) > 6o, we haved(ud, ud, ..., u3) > 360. Actually,
~ ~ 3 ~ ~
|l 2 CYiUiO||2H = I % CYiUiO + 2 CVi(Ui0 - UiO)HH > 2l 2 a/iUiOHZH =31 2 CVi(Ui0 - Ui0)||2H
Namely,

| i @il S §||Zi a3
Ziaiz 4 Ziaiz

— C(m)o(M(u), Go) > %90, for 6(M(u), Go) small enough

Therefore, by Lemmia 6,
S(M(u), G) < J4mB;* maicj<mfd(spariu®}, Go)} < /4mB;t maiejem(lIU? — @001}

(10) < /A, HCLallT = TPolld(M(w), Go) + S(M(u), G1)),

Similarly, we can obtain that

(11) 5(M(u), Gra1) < /AME;HC,2IT = TRIW6(M(), G) + (M), Giaa)), 1=1,2,...,N=1.

Therefore,

N N-1
(12) (M), Gy) < J4mE5t > (\J4ameiC, o)™ V| I = TRylIulo(M (), Gi).
1=0 j=I

The proof is completed by settifly = /4m¥;* andp, = |/4mP;1C,,. i

Remark 8. By Lemmall, Lemnia 2, it follows fop ®ig enough that
N-1

N
(13) SM(u), M() <81 ) [ [(BalIT = TRyl1)I6(M(u), G).

1=0 j=I

Remark 9. If Tq is a good approximation of T, them? — 1] is small. Therefore, if we modify the
algorithm in Step 1.i.3by replacingd with somell; € G; such thai|(, — Ti|| < C5(M (), G,) for

some constant C, then the result of the lemma keeps true.

2.4. Spectral approximation of generalized symmetric operatar Leta(-, -) be a bounded sym-
metric bilinear form defined on the Hilbert spade

Definition 10. If for any ue H, there is a unique ¥ H, such that

a(w,v) = a(Swu), Ywe H,
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then define $ : H — H, the adjoint operator of S with respect t¢.,a), by S*u := v. If for an
operator S: H — H, S* exists and & = S, then S is called symmetric with respectto-g or
a(-, -)-symmetric.

Lemma 11. If both R* and S* exist, thenR o S)** exists, anqRo S)* = S* o R¥.

We propose the hypothesis below for an oper&tor
Hypothesis HC. For anyu € H, a(Suu) = 0 if and only if||S U]y = 0.

Lemma 12. Let S be &, -)-symmetric and satisiC, then the eigenvalues of S are all real.

Proof. LetH, S, anda(:, -) be complexified in the usual manner. Le# 0 be an eigenvalue @&,
andu be an eigenvector that belongstoThen

|4 = Allau, u)l = la((S - Al)u, u) — a((S — A1), u)] = [a((S - Al)u, u) — a(u, (S — Al)u)| = 0.
Namely — A = 0. This finishes the proof. |

Lemma 13. Let S be &, -)-symmetric and satistC. Letu; # u, be two distinct eigenvalues of
S. Then

(14) a(u,v) =0, Yue M(uy), ve M(uy).

Proof. Without loss of generality, assumpe # 0, then

(15) a(u, V) = s'a(uuu. V) = pr'a(S uv) = pr'a(u, SV = (uz/u)a(u, v).

Sinceu; # u», it follows thata(u, v) = 0. This finishes the proof. m|

Lemma 14. Let S be &, -)-symmetric and satishiC, then allua(u, u) take the same sign, where
u is an eigenvector of S that belongstca nonzero eigenvalue of S.

Proof. Let dim(M(u)) = m, u # 0, then by Gram-Schmidt process, there eridinearly inde-
pendent eigenvectols;}, such thaia(u,u;) = 0, for 1 <i # j < m. Now givenu = }}; aiu;,
a(u,u) = Y7, ea(u, u). Sincea(u,u) # 0, we have alb(u;, u;) take the same sign=1,..., m.
We can seti(u, u) > 0. Then there are two constants@s < ¢,, such that

(16) cdVI3 < a(v,v) < lMI3, YV e M(uw).

Now, without loss of generality, givem v two eigenvectors o belonging tou andv respec-
tively, such that|S ul4||SVl4 # 0 anda(u,v) = 0. Thena(S(au + V), au + Bv) = ua?a(u, u) +
vB?a(v, v). Thus byHC, ua(u, u) andva(v, v) take the same sign. The proof is completed. ©

Lemmag 1b anld 16 then follows from the theory of spectral@gpration of compact operators.
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Lemma 15. If T is a compact operator and(a-)-symmetric, then all its eigenvalues are real.
Further, if all a(w, w), where w is any eigenvector of T that belongs to some nongavalue,
take the same sign, the eigenvalues of T can be listed in @Bsequas, counting multiplicities and
up to the sign,

(17) H1> o>z > g > -2 0.

Lemma 16. Let T be a compact operator which i§.a)-symmetric, andTp}n.0 be a family of

compact operators which are(-a-)-symmetric. For each (I if all a(w,, w,), where w is any

eigenvector of Jthat belongs to some nonzero eigenvalue, take the sametsigigenvalues are
listed in a sequence as, counting multiplicities and up todign,

(18) Mih > Moh > Mah > Map = -+ = 0.

Assume that Jconverges to T in norm as+ 0. Then

(19) r|]ir73/.1|(,h = Uk, k=12,....

Remark 17. The assumption that all(e, w) take the same sign where w is any eigenvector of

T that belongs to some nonzero eigenvalue is a mild one fiptielproblems, and, according to
Brezzi's theory, many types of saddle-point problems.

2.4.1. Spectral approximation by the aid of projection operator.

Lemma 18. Let P; be a projection on G- H. If both T and R are &-, -)-symmetric on H, then
Te = PsT is &, -)-symmetric on G.

Proof. Givenu, v € G,
a(Tgu,v) = a(PcTu,v) = a(u, TPgVv) = a(Psu, TV) = a(u, PcTV) = a(u, Tgv).
This completes the proof. |

Let G := {Gn}n0 be a family of subspaces &f, and P, be the projection operators @sy,.
Assume that

. U-—ViH
(20) inf Mu=Vw o e,
GheG ueH\Gn,veGh ||U — PhUl|n

Lemma 19. Let T and R be &, -)-symmetric, and J = P,T converges to T in norm. Let
be a nonzero eigenvalue of T with algebraic multiplicity ndl d&t 1, be an eigenvalue of,Tthat

converge tqu. There is a constant C, such that for hffaziently smallju—pun| < CS(M (1), Mn(u))?.
Proof. Firstly, letv, € Gy, then

a(ThVh, Vi) = a(PnT Vi, Vi) = a(T Vi, Pi"Vh) = a(Vh, T*'Pi™Vi) = a(Vi, T Pavi) = a(T Wi, V).
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Letu, € Mp(w), with |juyly = 1. There isu € M(w), ||ulls = 1, such thaty, = yEu. Note that
a(Tu,v) = wa(u,v), anda(Thun, Vi) = una(un, Vi), for ve H andv, € Gy. Then
i — pnla(uin, Un) = 1a(T (U = Un), (U = Un)) — pa((u — Un), (U — Un))|
< Cllu =l < C(llu = Enullg, + Iy = 1PIIERUIP).
By Lemma 3 and{20), we can proife — Exully < 6(M(), Mi(w)) andly — 1| < §(M(u), Mn(u)).
The proof is then completed by noting that, by1(20), Lenitha 8 @), we havecsi|vill? <

a(Vh, V) < ConllVhl[Z for vy € Mp(u). O

2.5. Variational formulation. Let H be a Hilbert space, anal-,-) andb(-,-) be two bounded
symmetric bilinear forms oil. Besidesp(u,u) > O foru € H. Let an operatofl : H — H be
defined by

a(Tw,v) = b(w,v), YveH.

. . a(v, w)
Hypothesis HIS inf sup———— >
yp W et IVl Wl

Lemma 20. If a(-, -) satisfieHIS, then,

(1) T is uniquely defined, anfiiT ||y = T2 1
(2) T is &, )-symmetric, andHC holds.

a(u, v)

Proof. The existence of * follows from the BabuSka theory. Moreover, we hiug, = sup

ver V|

a(Tv,w) a(v, T*w) .
B e T el T MY L

The a(-, -)-symmetry follows from the definition. DefinB : H — H by (Bv,w)y = b(v,w),
where (, -)y is the basic inner product equipped oio ThenB is uniquely defined, an® is
self-adjoint. Note thalb(u, u) > 0, and we hav® positive semi-definite. Particularly, it is easy to
show that By, v)y = 0 if and only if Bv= 0. Namely,b(u, u) = 0 if and only ifb(u, v) = O for any
v € H. Furthera(Tu,u) = 0 if and only ifa(T u,v) = 0 for anyv € H, which byHIS is equivalent

to Tu= 0. ThusHC holds. The proof is completed. |

H-

Remark 21. In general, T can not be symmetric with respect to the inicimser product of H.

LetG = {Gi}i—01... be such that

yoen

GypcGyc---CcH.

IFrom this point onwards;, >, and = respectively denotg, >, and= up to a constant. The hidden constants de-
pend on the domain, and, when triangulation is involved; #iso depend on the shape-regularity of the triangulation,
but they do not depend dnor any other mesh parameter.
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Define operator®, : H —» G; andT; : H — G; by

a(Pw,v) =a(w,v), we H,YveH, a(Tiw,V)=Db(w,v), YveG,.

Hypothesis HISG. inf inf supM >C.
GeG VeG e |IVI[HIIWIIH
The lemma below is standard.

Lemma 22. If a(:, ) and G satisfyHIS andHISG, the two operators Pand T, are well defined.
Evidently, T= P,T. Besides,

1 1.
(21) (I = Pe)Wilp < (1 + ct 6) !/Qé IW—Vil4, YweH.

Lemma 23. Provided the assumptions of Lemrhak 15[afd 16. Let the eigexsvaf T be listed in
a sequence as, counting multiplicities,

(22) M1 > 2 > 3> s > 2 0.

For each T, list its eigenvalues in a sequence as

(23) M1j > Hoj > M3j > Haj > ... = uni = 0.
Provided Ru — u for ue H, then

(24) _Iim,uKi = Uk, k= 1, 2,
|—00

2.5.1. Multi-level algorithm in variational form.
Algorithm 2. An N-level algorithm for first k eigenvalues of T.

Step 0: Construct a series of nested spacescGG; c --- ¢ Gy € H. SetG, = Go.
Step 1: Fori = 1: 1 : N, generate auxiliary space tripl& recursively.

/’la(u’ V) = b(ﬂ’ V)’ Ue G—l’ Yve G—l’
such that &%, 8™") = 0, for 1 < j # | < k.
Step 1.i.2: Compute
1

~j—1
Hj

N i1
a(l, v) = b(@ ", v), VveG;.

Step 1.i.3: Set

Gi = Go + spartl }*_;.
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pa(@,v) = b(@, V), e Gy, YVveGy.
such that &', oY) =0, for1 < j # I < k.

Lemma 24. Let u be a nonzero eigenvalue of T, with multiplicity m, anduMthe eigenspace.
Let {T,} be a family of approximating operators, apgl, ..., umn be the eigenvalues of, Tap-
proximatingu. Let{u;,} be the unit eigenvectors with respect4@, such that & ,, ujn) = O for
1<i# j<m. Thereis aconstantc, such ti#éty y,, . .., uyy) > ¢ for h syficiently small.

Proof. Firstly, there are two constants<Ocs < ¢y, such that
clMIZ < a(v,v) < M, Vv e M(u).

Therefore, there are two constants @ < ¢, such that foh suficiently small,

CollunillZ < a(Unj, Unj) < Chllunilly, 1<i<m
and further, with O< ¢ < ¢,

CZIIVAlIE < a(Vh, Vi) < Gy lIVhllZ. Y Vi € Min(u).
Now, givenuy = }; BiUin, then

i Bl < €7t X BZa(Uin, Uin) = ¢t X a(Biin, Bilin)

(25) = ¢/t a(3 Billin, X Billin) < ¢ /S i BilinllZ-
The proof is completed by the definition &fu, p,, . . . , Ump). O

Theorem 25. There exist constanf andg, dependent of, such that, with @ big enough,
_ N
(26) §(M(), Gn) < B1 ) (BalIT = TPgllu)N'6(M(w), G).
1=0

Proof. SinceGy c Gj, (I — Po)(I = P;) = | = P, and|IT = TPjlly = IIT(I = Po)(I = Pllully <
IT = T Py|ln. The result then follows from Lemnial24 and Theofém 7.

3. MIXED METHOD FOR THE BIHARMONIC EIGENVALUE PROBLEM

In this section, we present a mixed method for the biharmeigenvalue problem. We will
first construct an equivalent mixed formulation of the eigdue problem (Theorem 27), and then
consider its direct discretization (Theorénl 36) and mleliel scheme (Theorem139) within the
framework presented in Sectibh 2. The optimal complexitthefalgorithm is also discussed.
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3.1. Preliminary theory of eigenvalue problem. Let Q c R? be a polygonal domain, ard =
9Q be the boundary of2. Let H}(Q), H3(2), H3(Q), andHZ(€2) be the standard Sobolev spaces

as usual, and3(Q) := {w e LA(Q) : f wdx = 0}. In this paper, we use the subscrigttb denote

vector, and particularlytd3(Q) = (H3(€2))?. Consider the biharmonic eigenvalue problem:

A’U = Au inQ
u = 0 0noQ,
(27) U
— = 0 0noQ.
on

The variational form is to findA, u) € R x H3(<), such that

o’u v
vy : V2 _f = AU, V) := f , H2(Q).
(28) f u: Vvev Z a)(' a% a)(' ax =A(u,v) =41 qu VYve Hj(Q)

By the property of elliptic operators, the probleml(28) has@envalue sequendg:

(29) O<A; <A< <AL, andklim/lk:oo

3.2. Mixed formulation. To reduce the order of the Sobolev spaces involved, we beifintie
following well known result on the exactness amdtg§(Q2), H3(€2), and operators rot arfd

Lemma 26. ( [16}[18]) VH3(Q) = {¢ € H(<Q) : roty = 0}.

DefineV := H3(Q) x H3() x L3() x H3(€2). Now we can introduce the mixed formulation of

the eigenvalue problem: findi(, p, w) € V, such that

(Vw,Vv) = A(u,v) YveHj(Q)

(Vo, V) +(p.roty) +(Vw,y) = 0 Yy € Hy(Q)

(30) (rotp, q) =0 VgeLi(Q)
(Vu,Vs) +(g,Vs) =0 Vs e Hj(Q).

Theorem 27. The eigenvalue proble@0) is equivalent ta28).

We postpone the proof 6f P7 after some technical resultst,FquipV with the norm

1/2
. 2 2 2 2
(U, ¢, P, Wl := (IIUIILQ +llgllza + IPlloq + ||W||1,g) ;
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thenV is a Hilbert space. Define ovi a bilinear form
(31) a((u’ (£7 p? W)’ (S9 lg’ q’ V))

= (Vw, W) + (Vo, Vi) + (p, roty) + (YW, ¢) + (roty, g) + (Vu, Vs) + (¢, V).
Lemma 28. Given Fe V’, there exists a uniqu@, ¢, p,w) € V, such that

(32) (. pW). (S 4. G.V) = (F.(S 4.0 V), ¥ (S4.0V) €V

Moreover,

(U, ¢, p.WIlv = Il

Proof. Denotea((u, ¢), (v, ¥)) := (Ve, V¥), and B((u, ¢), (0, 9) = (rotp,q) + (Vu,Vs) + (¢, Vs).
Accordingly, denoteZ := {(u,¢) € Hg(Q) x H3(Q) : b((u, ¢),(9,9) = 0}. Evidentlyd(.,) is
coercive onZ. For any (), s) € L§(Q) x Hj(Q), we can choose € H{(Q), such that (rat, g) =
a3, andliglle < Clidlloq. Now, Iets,£ € H} be defined such thaV(sSg,Vv) = (g, V) for any
v € HJ(Q), and seu = s - sp, thenb((,¢), (0, 9) = lldl, + IVSl3,, andliglie + llulla <

C(lldllo.q + lISl1q)- This indeed shows the inf-sup condition

b((u, ¢). (@, 9))

(33) inf sup > C.
@9LFDHI) ( pyenzxH i) (Ao +lISlLa)(liglla + [Iull1e)

The proof is completed by Brezzi’s theory. O
Remark 29. The inf-sup condition follows immediately.

a((u, ¢, p, W), (8,4, 0. V)

34 inf su > C.
(34) GEBI ey T PWIVIIS 6 i

Proof of Theorem[27.Given f € L?, there is a unique € H3(Q), such that Y?u, V&) = (f,v)
for v e H3(Q), and a uniquel;p, p,W) € V, such thata((T, ¢, p, W), (s,¢¥,q,v)) = (f,v) for
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V(s ¢.,q9,v) € V, and moreovery ™= u. Now let (1,u) be an eigenpair of (28), then there is
(@, ¢, p,w) €V, such thawa((G, ¢, p,W), (s,¢, q,Vv)) = A(u,v) for V(s ¢, q,v) € V, and moreover
i = u. On the other hand, lefi({, @, P, W) be an eigenpair of(30), then there is a unique

H2(Q), such that Y2u, V&) = A(@,v), Y v € H3(Q). It follows further thatu = & The proof is

completed. |
In the sequel, we focus ourselves bnl(30). Defin&/on
(35) b((u, ¢, p, W), (s, ¢, G, V)) := (U, V).

Botha(., ) andb(-, -) are symmetric. Thei (30) is rewritten to: find ¢, p, w) € V, such that

(36)  a((u.g. p.W).(Sy.qV) = (U@ p.W). (S Y. GV). V(Sy.qV) € V.

Associated witha(-, -) andb(-, -), we define an operatdr by

@7 aT(epw).(s¢.q ) =b((Ug p.W.(S¥.0V). V(S¥.qV) € V.

Lemma 30. The operator T is well defined from V to \;,a)-symmetric, and compact.

Proof. The well-posedness df follows directly from thafa(-, -) induces an isomorphism between
V and its dual, andb(-, -) is continuous orV. As botha(, -) andb(:, -) are symmetricT is a(-, -)-
symmetric. Now, let{(u;, ¢;, pj,wj)} be a bounded sequence ¥ then there is subsequence

{(Uj @5 Py W3, )}, such thafuy,} is a Cauchy sequence (). Therefore{T (uj,, ¢, Pj,. W;,)}
is a Cauchy sequence Yh which, further, has a limit therein. This finishes the proof |

The eigenvalue problerh (B0) is equivalent to finding @& € R and (i, ¢, p,w) € V, such that

T(u, ¢, p,W) = u(u, ¢, p, W), thend = ;% andu is the eigenpair we are seeking for.

Remark 31. The formulation(30) is a saddle-point problem, while the variables p and w can
be viewed as two Lagrangian multipliers. However, we notd the right hand side [ -) is
not coercive on the space of the primal variables (u apaehor on the space of the Lagrangian

variables. This makes the classical theory for saddle{gmioblems, such as discussions|in[32],
[B5] or [7], not directly work for (30). This way, some generalized theory has to be developed.
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3.3. Discretization and accuracy. Let HY), HY, andL?2, be some specific finite element subspaces

of HJ, H3 andLZ, respectively. We introduce the discretized mixed eigkmvproblem:

find (Un, @n, Pn, Wh) € Vi := Hy x Hig X L, X Hi, such that

(VWh, VVh) = /lh(uh,vh) Yve H%O
(Ven, Vym)  +(pn. rotign)  +(VWh, yn) = 0 Vn € Hig

(38) (rOtign, Gn) = 0 Ve L2
(Vun, Vs)  +(gn, Vsn) =0 Vs € HL,.

For the well-posedness of the discretized problem, we m®pite assumption below.
Assumption AIS. The discrete inf-sup condition holds uniformly that

(rotym, 0n)

39 inf su >C
9 0t g obiy, Mnlloalloloa

Remark 32. In two dimensionalrot is the perpendicular oV. Considering the homogeneous
boundary condition imposed onjt{2), we know that the conditiof89) is equivalent to the well-

known inf-sup condition for the incompressible Stokeslprab

Lemma 33. Assume the assumptiénS holds. There exists a constant C, uniformly with respect
to V,, such that

a((Un, ¢n, Pn, Wh), (Sh, ¥h, Gh, Vi)

(40) inf sup > C.
o Prm)Vh (o g mpevi [1(Uns s P Wllv Il (Sh n, s Vi)l

Proof. The proof is the same as that of Lemima 28. O
The projection operatd?;, : V — V, is defined associated wit{:, -) by

(41)  a(Pn(u, ¢, P, W), (Sh, ¥h, Gh, Vi) = a((U, @, P, W), (Sh, ¥ns On, Vi), Y (Sh, Yhs Oy Vi) € V.

By Lemmd 22, we have the optimal approximation below.
Lemma 34. Given assumptioAlS, P, is well defined. There exists a constant C, such that

(42) ”(u? ‘£’ p’ W) - Ph(u’ ‘f?’ p’ W)HV < C Inf ”(u? ‘f?’ p’ W) - (s’l? %h’ qh’ Vh)”

(Vh.Y¥h,0n,S)€Vh
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List the eigenvalues ofF as

Vv

(43) M1 = U2 .=0.
By Lemmd_16, the eigenvalues ©f:= P,T can be listed as
(44) Hin = Hoh 2 ... 2 UNyh

whereNy is the dimension oY/, If V}, provides approximation of, namely ( — P,) tends to zero
ash — 0 pointwise, then limuouin = ui, 1 =1,2,....
Let u be a nonzero eigenvalue dfwith multiplicity m. Denote

M) :={(s¥,q,v) € VI T(s4,0,V) = u(s ¢, q,V)}.

Assumehis suficiently small, andiayn, 1)ns - - -, ) n D€ the discrete eigenvalues to approximate
u, and @, ¢, p, W) n be the corresponding eigenfunctions. Denote

Mhn(u) = spari(u, ¢, p, W)g).n}izs

By Lemmda34 and Lemnid 2, we have the estimate below.

Lemma 35. There exists a constant,Quniform for h sgiciently small, such that

S(M (1), Mn(x)) < Cu(M (1), Vin).

Note thatM(u) and My(u) coincides with the continuous and discretized spadés ) and
Mh(u1) of (30) and[38), respectively. We thus have the resultidip Lemmd19.

Theorem 36. Let A be the k-th eigenvalue @B0) ¢hus(28)), with M(2) being its invariant sub-
space; lef(n, (Un, ¢, Ph, Wh)) be the k-th eigenpair of38). Thend, — 1as h— 0. Further, for h

syficiently small,
|4n = Al < C6(M(A), Vi),

and
6((Uh, %h, Pn, Wh)’ M (/l)) < C6(M (/l)’ Vh)

Moreover, there exists a& HS(Q) being an eigenvector 28) belonging tat, such that

lun — Ullza < CS(M(A), Vi).
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3.3.1. Lagrangian type finite element discretizatidBirectly, we can choosél?}, to be theH?
Lagrange element space loth degreeﬂ}0 to be the vectoH?! Lagrange element space loth
degree, andiﬁ0 to be theH! Lagrange element space &« 1)-th degreek = 2,3,.... We denote
this construction by Lagrangian type trighg ~ Py ~ P_1. Similarly, we can choose, e.g—.l,ﬁo
to be theH! Lagrange element space of second deg‘?\ﬁ@to be the vectoH! Lagrange element

space of second degree, drff to be the space of piecewise constants. We denote this chypice
reduced Lagrangian type tripky ~ P, ~ Py.

Lemma 37. Let \4, be constructed by the Lagrangian type triplg P Py ~ Py_1, then if M(1) C

(H¥1(Q) x H¥1(Q) x H¥(Q) x H*Y(Q)) NV,

(M), Mn(w)) < C(M()h . k=2,3,....

Let 4, be constructed by the Lagrangian type triple P P, ~ Py, then if M(1) c (H?(Q) x
H2(Q) x HY(Q) x H3(Q)) NV,
S(M(), Mn(w)) < C(M())h.

3.4. Multi-level scheme with Lagrange type elements.To implement the multi-level algorithm,
we construct the multi-level auxiliary spaces on multidegrids. Let7y,,i = 0,1,...,N, be a

series of nested grids @. Particularly, we selt; ~ «'hg. The space¥), are constructed thereon.

Lemma 38. Let MN(,LL) be the approximation invariant subspace ofdylgenerated by Algorithm
[2. If there is a constant C, such that for hfgtiently small,6(M(u), Vi) < Chr, then there is a
constant C, such that, fof7y,, syficiently fine,

S(Mn(), M(w)) < C'h.

Proof. By Theoreni 25,

N N
(45) 6(M(1), My (1)) < B1 ) (BallT =T Poll) " '6(M(u), Vi) < 85 > (Ball T =T Pollin) V-V,
I=0 =0
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Note that in the current context,

a((l - Ph)(u’ ¥, P, W)’ (S’ '2?’ . V))

ITA = P)(u ¢, p,W)Ilv = su
(I = Pn)(u, @, p, W)llv W’q’gev I(s.¢. 0, V)llv

b((I' = Pn)(u. ¢, p. W), (s.¢. Q. V))

= Su
(v,l,b,q,gev ||(S’ l’é’? q’ V)”V

~

By dual argument, ify, is suficiently fine, such thas,||T — T Pollv/«" < 1, then

N
—_ - _ T\N-I _ ﬁ;_ -ht
5(M(u),MN(u))<ﬁ1hN;(ﬁzllT TR/ = T T = TR ™

The proof is finished. |
The theorem below follows immediately.

Theorem 39. Let A be the k-th eigenvalue @B0) (thus(28)), with M(2) being its invariant sub-

space; le(n, (T, @n, Pn, Wh)) be the k-th eigenpair of38) generated by the Algorithim 2. Provided

the assumptions in Lemrhal 38, then, 7oy syficiently fine,
An — A < CO(Mn (), M(w)) < C'h?,
and there exists a @ H2(Q2) being an eigenvector q&8) belonging ta1, such that
1Uh — Ullo < C'h"
Corollary 40. Let My(u) be the approximation of k) generated by the Algorithii 2.

(1) In case Y is constructed by the Lagrangian type triplg R Py ~ Pi_q, if M(1) C
(H¥(Q) x HY(Q) x HY(Q) x H*1(Q)) NV, then forT1, fine enough,

S(M(w), Vi) < C'h.
(2) In case Y is constructed by the reduced Lagrangian type trip}e~PP, ~ Py, if M(1) C
(H?(Q) x H2(Q) x HY{(Q) x H2(Q)) N V, then forTy, fine enough,
§(M(u), Vi) < C'h.

Namely, arO(h?) convergence rate can be expected on eigenvalue for theleudt algorithm
implemented withP, ~ P, ~ P,_; triple, and anO(h?) rate for eigenvalue wit®, ~ P, ~ Py
triple. For eigenfunctions, the order can be the half of thatigenvalues.
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Remark 41. In every step of the multi-level algorithm, we only have tlves@ source problem
to the accuracy o$(M(u), Vi), which is enough to guarantee the final accuracy of the nheme
algorithm.

3.5. Implement issue and optimal complexity. The cost of the algorithm comes via two sources.

To solve an eigenvalue problem Qﬂ for N + 1 times, and to solve a source problem\gpevery
step. Particularly, in each step of the multi-level aldurt we have to solve a source problem:
find (uh"fh’ ph,Wh) €V, such that

(VWh, VVh) = (fh, Vh) Yve H%O
(Vn, Vign) - +(pn, rotign)  +(VWh,yn) = 0 VY € Hio

(46) (rotn, O) =0 Vg e L2,
(Vun, Vsn) - +(n, V) =0 Vs € H.

The entire system can be decomposed to three subsystemslaed Sequentially. Namely,

(1) findw, € H,, such that Pwh, Vi) = (fn, Vi), ¥ vin € H;
(2) find (en, Pn) € HE, X L3, such that

(Ven, Vign) + (Pns rotyn) = —(VWh, Y1) Vom € Hiy
(rotn, On) =0 Vo € L;

(3) findu, € Hy,, such thatYun, Vs,) = —(¢n, V), ¥ s € Hy,.

The three subsystems can be solved approximately withicaseO(h=2) to guarantee the ac-
curacy 5(M(u), Vi,). Meanwhile, the eigenvalue problem &k can be solved with the cost

O(dim(Vy,))3(by QR algorithm). Therefore, the total cost of the algaritis
\ 1

(47) cost= Z h2 + (N + 1)(dim(V,))® < 1—hN2 + hs® loghyl.
= K

When we focus on the first several other than all eigenvaluessan use algorithms rather than
QR algorithm which costs less. Whég > hy, the total cost can b@(hy?). The cost is optimal
versus the intrinsic computational accuracy of the schemexXpected eigenvalues.
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4. NUMERICAL EXPERIMENTS
In this section, we test the proposed mixed element schemeidenvalue probleni_(28) on
the convex domain (unit squage = (0, 1) x (0, 1), left of Figure 1) and the non-convex domain
(L-shape domai2 = [0, 1] x [0, 1]/[0, 3] x [%, 1], right of Figure[1). The initial meshes with
mesh sizéy ~ 0.25 are given in both of the figures, the finest mesh is obtaiyed/é bisection
refinements.

The initial mesh The initial mesh

0.9 1 09r

0.8r 1 0.8

0.71 1 0.7F

0.6- 1 0.6

0.5 1 05

0.4 E 0.4

0.3r 1 0.3F

0.2r 1 0.2

0.1r 1 0.1f

Ficure 1. The initial meshes, left: the square, right: the L-shapaain.

We run series of numerical experiments on the these two dwnand test the accuracies of
both the single-level and multi-level finite element schemi@vo kinds of finite element triples of
lowest degree are tested, they are

triple A: the reduced Lagrangian type tripleg ~ P, ~ Py;
triple B: the Lagrangian type tripleB, ~ P, ~ P;.
On each domain, we construct a series of nested Figls , and construct finite element triples

Hi o x Hp o X L o thereon with some specific finite elements. Particularlyywieset the grid sizes

hi ~ hg(1/2)". On each series of meshes, we will run the single-level anditeuel algorithms,
to generate two series of approximated eigenvaliigsand{ 1, }, and two series of approximated
eigenfunctiong(un,, ¢n,, Pn» Whi)} and{(Tr;, @n» Pn» Whi)}. The convergence order is computed by

/1k1

(48) Ordt = Iogz(l |) k=12 3,4,

(49) Ordk = Iogg(ll — Y 1||Hl) k=1,234.
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Convergence rates of eigenfunctions by P 2P0 in square domain

Convergence rates for eigenvalues by P 2P0 in square domain
0

10° — T T T T 10

1st
i ond 1st
3rd i 2nd
Emn —H-3d
10 5th 4th
——s6th 5th
10 Q —+—6th

Errors

10° b Height=2

Width=1

Width=1

10'1 L L L L L L L Il Il
10—11 10—13 ) 10—15 10'17 10'19 10—11 10—13 10—]5 10*17 10*19
Size of mesh Size of mesh

Ficure 2. The convergence rates for the eigenvalues and eigerdneodf the
square with single-level scheme atriple A. Y-axis of left figure meangy, —
An, K =1,2,3,4, one point is missing since on the coarse magh- 1, < O.
Y-axis of right figure meanun, — Uy lly1, k=1,2,3,4.

From all these numerical results, we observe 1) both thaseb@rovide convergent discretiza-
tion to the eigenvalue problem; their accuracy may depernti@regularity of the eigenfunctions,
and essentially the domain; 2) the multi-level algorithnmgtouct the same performance as the
single-level scheme, but less computation cost if both efrtluse the finest mesh; 3) foiple
A, the convergence rate of eigenfunction is higher than thienagson; and 4) for both single-
and multi-level methods, the computed eigenvalues canigeaypper or lower bounds for the
eigenvalues by dlierent triples on convex domain.

4.1. On the accuracy of single-level finite element schemes.

4.1.1. Experiments on convex domaiRigure[2 gives the convergence rates of the eigenvalues
and eigenfunctions for the square with finite elemeipie A, we give the errors for the first
six eigenvalues and eigenfunctions, all the rates are @l@dsere we obtain the lower bound
of the eigenvalues, the errors are givenhy - A, k = 1,2, 3,4, the convergence rates of the
eigenfunctions are better than the theoretical resultethers are given bylu,, — up Iz, K =
1,2,3,4.

Figure[3 gives the convergence rates of the the first six e@ees and eigenfuctions for the
square with finite elemertiple B, all the convergence rates of eigenvalues are almost 4\Weere
obtain the upper bound of the eigenvalues, the errors aeadpy A, — An,, k= 1,2,3,4. All the
convergence rates of eigefunctions are almost 2 which isistamt with the theoretical result.
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Convergence rates for eigenvalues byP P, in square domain Convergent rates of eigenfunctions by P zP1 in square domain
o
T 10 T

ﬁ: 1st
2nd
—B-3rd
i 4th

5th

——6th

Errors
Errors

Height=2

Height=4

Width=1 Width=1

4 -3
10 L L L L L 10 L L
=) 13 15 0 100 107 10

L
19

L
-17 10

.
107"° 10

10
Size of mesh Size of mesh

Ficure 3. The convergence rates for the eigenvalues and eigemfigsctf the
square with single-level scheme atrgple B. Y-axis of left figure meang, —
Ang, k=1,2,3,4. Y-axis of right figure meanfu,, — up|ly:, k=1,2,3,4.

Convergence rates for eigenvalues byP P in Lshape domain Convergence rates of eigenfunctions by PP in L-shape domain
10°

ﬁ: 1st
2nd
—B-3rd
i 4th

5th

—— 6th

Errors
Errors

Height=2 Height=2

Width=1

Width=1

10t 107+ 107+ 10° 10° 10 10" 10" 1077 107
Size of mesh Size of mesh

Ficure 4. The convergence rates for the eigenvalues and eigemfisctif the L-
shape domain with single-level scheme dngle A . Y-axis of left figure means
Ans — An. K=1,2,3,4. Y-axis of right figure meanup, — up|ly:, k=1,2,3,4.

4.1.2. Experiments on nonconvex domalrigure[4 gives the convergence rates of the first six
eigenvalues and eigenfuctions for the L-shape domain wittefelementriple A, all the conver-
gence rates of the eigenvalues are almost 2, here we obgdiovtker bound of the eigenvalues, the
errors are given byn, — 4, K= 1,2, 3,4. The convergence rates of the eigenfunctions are almost

2 which is better than the theoretical result.

Table[1 gives the convergence rates of the the first six eajees and eigenfunctions for the
L-shape domain with finite elemetriple B, the change of the eigenvalues is not monotone.

4.2. On the accuracy of multi-level finite element schemes.
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TasLe 1. The performance dfiple B on L-shape domain with single-level scheme.

Mesh 1 2 3 4 Trend Ord, Ord,

A1 6637.38041 6671.06581 6687.93810 6696.13794” 1.61242 1.64878
Ao 11057.17095 11054.86661 11054.58037 11054.5241Q  2.60578 2.06026
Az 14905.85096 14904.70082 14905.03399 14905.17967” 1.71677 2.05330
Az 26165.81310 26153.57454 26152.64925 26152.55884, 3.48943 2.08511
As  33343.11501 33391.54019 33423.03931 33438.85710 1.58081 1.73460
Ag 53319.98768 53463.51716 53539.42249 53575.08523  1.64543 1.71939

Convergence rates for eigenvalues byP P in square domain Convergence rates of eigenfunctions by PP in square domain
o
! !

i 1st
2nd
3rd
%
5th

—+—6th

10°

104

10° b

10—

107° 107°
Size of mesh Size of mesh

Ficure 5. The convergence rates for the eigenvalues and eigenrfiscof the
square with multi-level scheme artidple A. Y-axis of left figure meansl,, -
/lhk, k = 1,2,3,4, one point is missing since on the coarse mh,gh— An, < 0.
Y-axis of right figure meani,, — U |l4z, k= 1,2, 3,4.

4.2.1. Experiments on convex domaiRigure[5 gives the convergence rates of the first six eigen-
values and eigenfuctions for the square with finite elengpie A by the multi-level scheme,
the multi-level method has almost the same convergence aatthe single-level one, all the con-
vergence rates are almost 2, here we also obtain the lowerdboluthe eigenvalues as in the
single-level scheme, the errors are givenilgy— Ay, k = 1,2,3,4.

Figurel6 gives the results with finite elemeriple B, all the convergence rates for the eigen-
values are almost 4 which is the same as single-level mettdva also get the upper bound, all
the convergence rates for the eigenfunctions are almost 2.

4.2.2. Experiments on nonconvex domalrigure[7 gives the convergence rates of the first six
eigenvalues and eigenfunctions for the L-shape domainfinite elementriple A by multi-level
scheme, analogous to single-level method, all the conweryeates are almost 2 and the lower
bound is obtained, which is similar to Figure 4.
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Convergence rates of eigenfunctions by P P in square domain

Convergence rates for eigenvalues by P 2P1 in square domain
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Ficure 6. The convergence rates for the eigenvalues and eigerdaoaadf the
square with multi-level scheme andple B. Y-axis of left figure meansl, -
Ans, K=1,2,3,4. Y-axis of right figure meanl,, — Gn,lln1, k=1,2,3,4.

Convergence rates of eigenfunctions by P P in L-shape domain

Convergence rates for eigenvalues by P Po in Lshape domain
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Ficure 7. The convergence rates for the eigenvalues and eigerdoscif the L-
shape domain with multi-level scheme atnighle A . Y-axis of left figure means

Ans — An. K=1,2,3,4. Y-axis of right figure meanifiy, — U |ly:, k= 1,2,3,4.

Table[2 gives the convergence rates of the the first six eajees and eigenfunctions for the
L-shape domain with finite elemetrtple B by multi-level scheme, the change of the eigenvalues

is still not monotone.

5. CONCLUDING REMARKS

In this paper, we construct a multi-level mixed scheme ferlitharmonic eigenvalue problem.
The algorithm possesses both optimal accuracy and optiomapatational cost. We remark that,
the mixed formulation given in the present paper is equivatie the primal one; namely, at con-
tinuous level, no spurious eigenvalue is brought in. By theeghformulation presented in this
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TasLE 2. The performance dfiple B on L-shape domain with multi-level scheme.

Mesh 1 2 3 4 Trend Ord, Ord,
A1 6637.38138 6671.06594 6687.93813 6696.13795” 1.61241 1.66165
A, 11057.17116 11054.86661 11054.58037 11054.5241Q  2.60579 2.06026
Az 14905.85342 14904.70090 14905.03400 14905.17963” 1.71659 1.92185
As  26165.83290 26153.57474 26152.64926 26152.5588%  3.48970 2.08559
As  33343.30473 33391.55758 33423.04243 33438.8578%  1.58052 1.66333
Ae  53330.17977 53465.12739 53539.64109 53575.12548  1.63222 1.68321

paper, the biharmonic eigenvalue problem can be disctetidth low-degree Lagrangian finite
elements. Discretized Poisson equation and Stokes pretdésa play roles in the implementa-
tion of the multi-level algorithm, which can reduce much toenputational work. Both theoretical
analysis and numerical verification are given.

For the theoretical analysis, we reinterpret the mixed fdation as an eigenvalue problem
of a generalized symmetric operafbron an augmented spate This view of point may take
hint to the research on other topics of these saddle-pootil@ms; these will be discussed in
future. Aiming at the multi-level algorithm, in this pap&re only discuss the conforming cases
thatV,, c V. The nonconforming cases thdt ¢ V can also be used as a single-level algorithm
lonely. Also, the utilization to biharmonic equation witther boundary condition and eigenvalue
problems with other types can be expected.

It is observed that both the single- and multi-level aldoris tend to be able to provide upper
or lower bounds of the eigenvalues, at least when the domeaiarivex. The theoretical verifica-
tion and further utilization of this phenomena will be mesgful. Actually, the computation of
the guaranteed bounds with the mixed formulation is nottiinaal, as the operator associated is
not adjoint in the Hilbert space. Some new techniques mag twle turned to for the theoretical
analysis. Also, once we can get the guaranteed bounds, tidewal algorithms can be improved
in both its design and performance. The guaranteed coniputait the upper and lower bounds
will be discussed in future works. Because the mixed fortnuteadmits nested discretization, the
combination and interaction between the multi-level atipon and the adaptive algorithm seem
expected. This will also be discussed in future.
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