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A MULTI-LEVEL MIXED ELEMENT METHOD FOR THE EIGENVALUE
PROBLEM OF BIHARMONIC EQUATION

SHUO ZHANG, YINGXIA XI, AND XIA JI

Abstract. In this paper, we discuss approximating the eigenvalue problem of biharmonic equa-

tion. We first present an equivalent mixed formulation whichadmits amiable nested discretization.

Then, we construct multi-level finite element schemes by implementing the algorithm as in [33] to

the nested discretizations on series of nested grids. The multi-level mixed scheme for biharmonic

eigenvalue problem possesses optimal convergence rate andoptimal computational cost. Both the-

oretical analysis and numerical verifications are presented.

1. Introduction

The eigenvalue problem of the biharmonic equation (biharmonic eigenvalue problem) is one

of the fundamental model problems in linear elasticity, andcan find applications in, e.g., mod-

elling the vibration of thin plates. There has been a long history on developing the finite element

methods of the biharmonic eigenvalue problem, and many schemes have been proposed for dis-

cretization [9, 11, 25, 36], computation of guaranteed upper and lower bounds [10, 22, 23, 43], and

adaptive method and its convergence analysis [17]. This paper is devoted to studying the multi-

level efficient method of the biharmonic eigenvalue problem. Specifically, we present a discretiza-

tion scheme which preserves the nested essence on nested grids, and then construct a multi-level

algorithm based on the scheme. The cost of the multi-level algorithm versus the intrinsic accuracy

of the scheme is asymptotically optimal.

As well known, the multi-level algorithm based on nested essence has been a key tool in com-

putational mathematics and scientific computing fields. Forthe eigenvalue problem, many multi-

level algorithms have been designed and implemented. For example, there are several successful

methods for the Poisson eigenvalue problem. The two-grid method has been proposed and ana-

lyzed by Xu-Zhou in [38]. The idea of the two-grid method is related to the ideas in [23, 24] for

nonsymmetric or indefinite problems and nonlinear ellipticequations. Since then, many numerical
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methods for solving eigenvalue problems based on the idea ofthe two-grid method are developed

(see, e.g., [5, 12, 14, 28, 34, 42]). A type of multi-level correction scheme is presented by Lin-

Xie [33] and Xie [40]. The method is a type of operator iterative method (see, e.g, [31, 38, 44]).

Besides, Xie [39] presents a multi-level correction scheme, and the guaranteed lower bounds of

the eigenvalues can be obtained. The correction method for eigenvalue problems in these papers

are based on a series of finite element spaces with different approximation properties related to the

multi-level method (cf. [37]). With the proposed methods, the eigenvalue problem is transformed

to an eigenvalue problem on the coarsest grid and a series of source problem on the fine grids.

The scheme can be proved asymptotically optimal. The same strategy can be implemented on the

Stokes equation, and similar asymptotic optimality is constructed [32]. These works mentioned

above have indeed presented a framework of designing multi-level schemes which works well for

the elliptic eigenvalue problem and stable saddle point problem, provided a series of subproblems

with intrinsic nestedness.
In contrast to the second order problem, the multi-level method for the biharmonic eigenvalue

problem has seldom been discussed, due to the lack of nested subproblems. Indeed, when we con-

sider the primal formulation of the biharmonic problem, thehigh stiffness of the Sobolev space

H2 makes it difficult to construct nested discretizations. Besides spline-type elements, the rectan-

gular BFS element [8] is the only element which can form nested finite element spaces on nested

grids; a multi-level algorithm has been designed based on BFS element for fourth order prob-

lems on rectangular grids [24]. Moreover, elements that areable to form nested spaces are proved

to be conforming ones; therefore, people can not obtain guaranteed lower bounds of eigenvalues

with these elements. One way for this situation is to loose the stiffness of the finite element spaces.

Mixed element method is then frequently used, and several schemes for the biharmonic eigenvalue

problem with polynomials of low degree have been designed [1, 19]. Also, some discretization

schemes of mixed type for boundary value problems can be naturally utilized for the eigenvalue

problem; we refer readers to [6] for related discussion. However, we have to remark that the order-

reduced nestedness discretizations is still not straightforward. For example, the Ciarlet-Raviart

formulation [13] admits us to discretize the biharmonic operator with piecewise continuous linear

polynomials. However, as this formulation is stable on the space pairH1
0(Ω) × H−1(∆,Ω) [4], the

inheritance of thetopologyonto the finite element space is an issue, and the finite element spaces

on nested grids are nottopologicallynested. The same problem is encountered for some other

mixed formulations which introduce direct auxiliary variables, such as [15, 20, 21, 26, 29]. More

discussion can be found in [30]. These may explain why few multi-level scheme is discussed for

the biharmonic eigenvalue problem.
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In this paper, we seek to implement multi-level strategy by constructing amiable nested finite

element discretization for the biharmonic eigenvalue problem. We first introduce a mixed formu-

lation whose corresponding source problem is discussed in [30] and [18]. This mixed formulation

is stable on Sobolev spaces of zero and first orders (cf. Lemma28 below). As the stiffness is

loosened, polynomials of low degree are enough for its discretization, and optimal accuracy can

be expected. Therefore, it admits discretizations that arenested algebraically andtopologically.

Secondly, we construct a family of multi-level schemes for the mixed formulation of the eigen-

value problem. The multi-level algorithms for biharmonic eigenvalue problem possess optimal

accuracy and optimal computational cost.

For the proposed algorithms, both theoretical analysis andnumerical verification are given. We

remark that, though the multi-level strategy is essentially the same as the one used by Lin-Xie

[24, 32, 33, 40], the theoretical analysis is not directly bythe same virtue. Actually, if we separate

the “primal variables” from “Lagrangian multipliers”, we will find the skeleton bilinear form is not

coercive on the primal variables nor on the Lagrangian multipliers. This makes the classical theory

of the spectral approximation of the saddle-point problems(cf. [7, 32, 35]) not directly usable in

the present paper. A precise discussion can be found in Remark 31. Meanwhile, because of

the saddle-point-type essence, the problem is also different from the Steklov eigenvalue problem

discussed in [41]. We therefore construct different theory framework and interpret the eigenvalue

problem in mixed formulation as the eigenvalue problem of a generalized symmetric operator

rather than a self-adjoint one, and accomplish the theoretical analysis. The differences between

our theory and the existing theory for elliptic or saddle point problems include: (1) we represent

some existing results which are originally in variational formulation into operator formulation,

and then present error estimation in that context; the operator formulation can bridge the gap

between the biharmonic problem and the classical theory of spectral approximation, and can avoid

complicated appearance especially for the mixed formulation; (2) we figure out some properties of

generalized symmetric operators which are not necessarilyself-adjoint; and (3) in our theory, we

do not try to interpret the problem as a restrained problem onprimal variables or one on Lagrangian

multipliers, which is usually done for saddle-point problem; this makes the algorithm construction

and theoretical analysis more straightforward.

The remaining of the paper is organized as follows. In Section 2, we present the theory of

spectral approximation of the generalized symmetric operators. Some existing results are restated

and re-proved, and some new results are presented. In Section 3, we present a mixed formulation

of the biharmonic eigenvalue problem, and construct its (single-level) discretization schemes. A

multi-level algorithm is then constructed accordingly. Both the single- and multi-level algorithms

are optimal in accuracy, and the multi-level one also possesses optimal computational cost. The

theoretical proof is obtained under the framework discussed in Section 3. Numerical examples are
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then given in Section 4 with respect to both single- and multi-level methods. Finally, in Section 5,

some concluding remarks and further discussion are given.

2. Spectral approximation of generalized symmetric compact operators

In this section, we present some known and new results, including

– an estimate of spectral projection operator (Lemma 3);

– an multi-level algorithm (Algorithm 1) and its convergence estimate (Theorem 7);

– spectral approximation of generalized symmetric operator (Lemmas 15,16 and 19);

– corresponding results in variational form (Lemma 23, Algorithm 2 and Theorem 25).

Some bibliographic comments are given around.

2.1. Preliminaries. In this subsection, we collect some preliminaries from Chapter II of [2].

Let H be a Hilbert space, andT be a compact operator onH. Let µ be a nonzero eigenvalue of

T with algebraic multiplicitiesm. Denote the eigenspaceM(µ) := {u ∈ H : Tu= µu}. Let Γµ be a

circle on the complex plane centered atµ which encloses no other points ofσ(T). Let {Th}0<h61 be

a family of compact operators that converges toT in norm. Then forh sufficiently small, there exist

m eigenvalues ofTh, counting multiplicities, located insideΓµ. Denote them byµi,h, i = 1, · · · ,m.

Let ui,h be the eigenvectors ofTh with respect toµi,h. DenoteMh(µ) := span{ui,h}i=1,...,m. Then

Mh(µ) is the approximation ofM(µ), measured by thegapbetween them.

A gapbetween two closed subspacesM andN of a Banach spaceX is defined by

δ̂(M,N) = max(δ(M,N), δ(N,M)),with δ(M,N) = sup
x∈M,‖x‖=1

dist(x,N).

Lemma 1. ( [2,27] ) If dim M = dimN < ∞, thenδ(N,M) < δ(M,N)[1 − δ(M,N)]−1.

Lemma 2. ( [2], Theorem 7.1.) There is a constant C independent of h, such that

δ̂(M(µ),Mh(µ)) 6 C‖(T − Th)|M(µ)‖,

for small h, where(T − Th)|M(µ) denotes the restriction of T− Th to M(µ).

Define the projection operators with respect toµ by

(1) E =
1

2πi

∫

Γµ

Rz(T)dz=
1

2πi

∫

Γµ

(z− T)−1dz, Eh =
1

2πi

∫

Γµ

Rz(Th)dz=
1

2πi

∫

Γµ

(z− Th)
−1dz.

Then range(E) = M(µ), and range(Eh) = Mh(µ). We refer to [2] for more discussion.
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2.2. Spectral approximation by the aid of projection operator. For G a subspace ofH with

H = G ⊕ Gc, denote byPG the projection operator ontoG alongGc. Let {Gh} be a sequence

of subspaces ofH, with the indicesh → 0, andGh → H. DefineTGh := PGhT, then {TGh}

are approximations ofT. We know that if‖PGhu − u‖H → 0 ash → 0 for anyu ∈ H, then

‖T − TGh‖H → 0 ash→ 0.

We write for shortPh the projection ontoGh, andTh := PhT. We assumeTh → T in norm as

h→ 0. Corresponding toM(µ) andMh(µ), we have the lemma below.

Lemma 3. There is a constant Cµ, such that

‖u− Ehu‖H 6 Cµ‖(I − Ph)u‖H, ∀u ∈ M(µ),(2)

‖T(u− Ehu)‖H 6 Cµ‖T(I − Ph)u‖H, ∀u ∈ M(µ).(3)

Proof. Direct calculation leads to that

u− Ehu = Eu− Ehu = 1
2πi

∫
Γµ

(z− Th)−1(T − Th) u
z−µdz

=
µ

2πi

∫
Γµ

(z− Th)−1(I − Ph) u
z−µdz= µ

2πi

∫
Γµ

(z− Th)−1(I − Ph)2 u
z−µdz,(4)

where it has been used that (T − Th)u = µ(I − Ph)u, and (I − Ph)2 = (I − Ph). Thus

‖u−Eh(µ)u‖H 6
1
2π

[2πrad(Γµ)] sup
z∈Γµ,h>0

‖(z−Th)
−1‖H
‖(T − Th)u‖H

rad(Γµ)
= |µ| sup

z∈Γµ,h>0
‖(z−Th)

−1‖H‖(I−Ph)u‖H.

Now ‖T − Th‖H → 0 implies that

|µ| sup
z∈Γµ,h>0

‖(z− Th)
−1‖H < ∞.

This proves (2). Further, note that

(z− Th)
−1 = (I − (z− Th)

−1(I − Ph)T)(z− T)−1,

and we have

T(u− Ehu) = µ

2πi

∫
Γµ

T(z− Th)−1(I − Ph) u
z−µdz

=
µ

2πi

∫
Γµ

(I − T(z− Th)−1(I − Ph))T(z− T)−1(I − Ph) u
z−µdz

=
µ

2πi

∫
Γµ

(I − T(z− Th)−1(I − Ph))(z− T)−1T(I − Ph) u
z−µdz.(5)

Thus

‖T(u− Ehu)‖H 6
|µ|

2π
[2πrad(Γ)] sup

z∈Γµ,h>0
‖(I − T(z− Th)

−1(I − Ph))(z− T)−1‖H
‖T(I − Ph)u‖H

rad(Γ)
.
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Since‖(z− Th)−1‖H and‖(z− T)−1‖H are uniformly bounded forz ∈ Γ andh > 0, we obtain

‖T(u− Ehu)‖H 6 Cµ‖T(I − Ph)u‖H.

The proof is completed. �

Remark 4. Inequality(2) is (3.16a) of [3], while (3) is a generalisation of(3.16c) of [3].

2.3. A multi-level algorithm for eigenvalue problem with projection approximation. The al-

gorithm is the same as the algorithms employed in [32, 33, 40], but is rewritten with respect to a

general context of operator. The error estimation is then reformed accordingly.

Algorithm 1. A multi-level algorithm for k eigenvalues of T.

Step 0: Construct a series of nested spaces G0 ⊂ G1 ⊂ · · · ⊂ GN ⊂ H. SetG̃0 = G0.

Step 1: For i = 1 : 1 : N, generate auxiliary spaces̃Gi recursively.

Step 1.i.1: Define projection operators̃Pi−1 : H → G̃i−1, and solve eigenvalue problem

for its first k eigenpairs{(µ̃i−1
j , ũi−1

j )} j=1,...,k

P̃i−1Tũ = µ̃ũ;

Step 1.i.2: Define projection operators Pi : H → Gi. Compute

ûi
j =

1

µ̃i−1
j

PiTũi−1
j , j = 1, . . . , k;

Step 1.i.3: Set

G̃i = G0 + span{ûi
j}

k
j=1.

Step 2: Define projection operators̃PN : H → G̃N, solve eigenvalue problem for its first k

eigenpairs{(µ̃N
j , ũ

N
j )} j=1,...,k:

P̃NTũ = µ̃ũ.

Remark 5. In the algorithm, the “first” k eigenvalues imply the k modulus-biggest eigenvalues.

The main work of the algorithm is to solve eigenvalue problems of T̃i := P̃iT and to compute the

action of Ti := PiT on every level.

Let µ be a nonzero eigenvalue ofT with multiplicity m, and denoteM(µ) = {u ∈ H : Tu =

µu, ‖u‖H = 1}. Let µ̃i
j andũi

j, j = 1 : m, i = 0 : N be the eigenpairs generated by the algorithm as

approximations toµ andM(µ). Specifically, denotẽMi(µ) := span{ũi
j}

m
j=1.
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Stability Constant. Let {ϕi}
n
i=1 ⊂ H ben unit vectors. Denote the stability constant of{ϕi}

n
i=1 by

(6) θ(ϕ1, . . . , ϕn) := inf
α∈Rn,α,0

‖
∑n

i=1αiϕi‖
2
H∑n

i=1 ‖αiϕi‖
2
H

.

The stability constant of{ϕi}
n
i=1 denotes to what extent the vectors are nearly orthogonal. If

θ(ϕ1, . . . , ϕn) = 1, then{ϕi}
n
i=1 are orthogonal to each other, and ifθ(ϕ1, . . . , ϕn) = 0, then{ϕi}

n
i=1

are linearly dependent.

Lemma 6. Letϕ ∈ span{ϕi}
n
i=1 be a unit vector, and V, Φ be a closed subspace of H. Then

(7) dist(ϕ,V) 6
√

2nθ(ϕ1, . . . , ϕn)−1 max
16i6n

dist(ϕi,V).

Here we defineθ(ϕ1, . . . , ϕn)−1 = ∞, if θ(ϕ1, . . . , ϕn) = 0.

Proof. Let vi ∈ V such that‖ϕi − vi‖H = dist(ϕi ,V). Letϕ =
∑

i βiϕi, such that‖ϕ‖H = 1. Then

dist(ϕ,V)2
6 ‖ϕ−

∑

i

βivi‖
2
H = ‖

∑

i

βi(ϕi−vi)‖
2
H 6

∑

i, j

|βiβ j |‖ϕi−vi‖H‖ϕ j−vj‖H 6 [2n
∑

i

β2
i ] max

i
‖ϕi−vi‖

2
H.

The proof is completed by the definition ofθ(ϕ1, . . . , ϕn). �

Theorem 7. Assume G0 is big enough, such thatδ(H,G0) is sufficiently small. Assume for the

projections thatmin
16l6N

inf
u∈H\Gl ,v∈Gl

‖u− v‖H
‖u− Plu‖H

> C0, and assume for the computed eigenvectors that

inf
16l6N

θ(ũl
1, . . . , ũ

l
m) > θ0. There exist constantsβ1 andβ2 dependent ofµ, C0 andθ0, such that,

(8) δ(M(µ), G̃N) 6 β1

N∑

l=0

[
N−1∏

j=l

(β2‖T − TP̃ j‖H)]δ(M(µ),Gl),

Proof. By lemma 2,

δ̂(M(µ), M̃0(µ)) 6 C sup
u∈M(µ)

‖(T − T0)u‖H 6 Cµ,1δ(M(µ), G̃0).

Given{ũ0
j }

m
j=1, there exists{u0

j } ⊂ M(µ), such thatγ0
j ũ

0
j = E0u0

j , where|γ0
j − 1| 6 C1‖u0

j − P0u0
j ‖H is

guaranteed arbitrarily small. Setα0
j = γ

0
j µ̃

0
j/µ, then

‖α0
j û

1
j − P1u0

j ‖H = ‖(α
0
j/µ̃

0
j )T1ũ0

j − (1/µ)P1Tu0
j ‖H

= |1/µ| ‖P1T(γ0
j ũ

0
j − u0

j )‖H 6 |1/µ|‖T(u0
j − E0u0

j )‖H 6 Cµ,2‖T − TP̃0‖Hδ(M(µ), G̃0).(9)

Therefore,

‖α0
j û

1
j − u0

j ‖H 6 ‖α
0
j û

1
j − P1u

0
j ‖H + ‖P1u

0
j − u0

j ‖H 6 Cµ,2‖T − TP̃0‖Hδ(M(µ), G̃0) + δ(M(µ),G1).
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Sinceθ(ũ0
1, . . . , ũ

0
m) > θ0, we haveθ(u0

1, u
0
2, . . . , u

0
m) > 1

2θ0. Actually,

‖
∑

i αiu0
i ‖

2
H = ‖

∑
i αiũ0

i +
∑

i αi(u0
i − ũ0

i )‖H >
3
4‖
∑

i αiũ0
i ‖

2
H − 3‖

∑
i αi(u0

i − ũ0
i )‖

2
H

>
3
4‖
∑

i αiũ0
i ‖

2
H −C(m) maxi=1,...,m ‖(u0

i − ũ0
i )‖

2
H

∑
i α

2
i >

3
4‖
∑

i αiũ0
i ‖

2
H −C(m) maxi=1,...,m ‖u0

i − P0u0
i ‖
∑

i α
2
i .

Namely,

‖
∑

i αiu0
i ‖

2
H∑

i α
2
i

>
3
4

‖
∑

i αiũ0
i ‖

2
H∑

i α
2
i

−C(m)δ(M(µ),G0) >
1
2
θ0, for δ(M(µ),G0) small enough.

Therefore, by Lemma 6,

δ(M(µ), G̃1) 6
√

4mθ−1
0 max16 j6m{δ(span{u0

j }, G̃1)} 6
√

4mθ−1
0 max16 j6m{‖u0

j − α
0
j û

1
j ‖H}

6

√
4mθ−1

0 (Cµ,2‖T − TP̃0‖Hδ(M(µ), G̃0) + δ(M(µ),G1)),(10)

Similarly, we can obtain that

(11) δ(M(µ), G̃l+1) 6
√

4mθ−1
0 (Cµ,2‖T − TP̃l‖Hδ(M(µ), G̃l) + δ(M(µ),Gl+1)), l = 1, 2, . . . ,N − 1.

Therefore,

(12) δ(M(µ), G̃N) 6
√

4mθ−1
0

N∑

l=0

(
√

4mθ−1
0 Cµ,2)

(N−l)[
N−1∏

j=l

‖T − TP̃ j‖H]δ(M(µ),Gl).

The proof is completed by settingβ1 =

√
4mθ−1

0 andβ2 =

√
4mθ−1

0 Cµ2. �

Remark 8. By Lemma 1, Lemma 2, it follows for G0 big enough that

(13) δ̂(M(µ), M̃N(µ)) 6 β1

N∑

l=0

[
N−1∏

j=l

(β2‖T − TP̃ j‖H)]δ(M(µ),Gl).

Remark 9. If T0 is a good approximation of T, then|α0
j − 1| is small. Therefore, if we modify the

algorithm inStep 1.i.3by replacingûi
j with somĕui

j ∈ Gi such that‖ûi
j − ŭi

j‖ 6 Cδ(M(µ),G1) for

some constant C, then the result of the lemma keeps true.

2.4. Spectral approximation of generalized symmetric operator. Let a(·, ·) be a bounded sym-

metric bilinear form defined on the Hilbert spaceH.

Definition 10. If for any u∈ H, there is a unique v∈ H, such that

a(w, v) = a(S w, u), ∀w ∈ H,
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then define Sa∗ : H → H, the adjoint operator of S with respect to a(·, ·), by Sa∗u := v. If for an

operator S: H → H, Sa∗ exists and Sa∗ = S , then S is called symmetric with respect to a(·, ·), or

a(·, ·)-symmetric.

Lemma 11. If both Ra∗ and Sa∗ exist, then(R◦ S)a∗ exists, and(R◦ S)a∗ = Sa∗ ◦ Ra∗.

We propose the hypothesis below for an operatorS.

Hypothesis HC. For anyu ∈ H, a(S u, u) = 0 if and only if ‖S u‖H = 0.

Lemma 12. Let S be a(·, ·)-symmetric and satisfyHC, then the eigenvalues of S are all real.

Proof. Let H, S, anda(·, ·) be complexified in the usual manner. Letλ , 0 be an eigenvalue ofS,

andu be an eigenvector that belongs toλ. Then

|λ − λ̄||a(u, u)| = |a((S − λI )u, u) − a((S − λ̄I )u, u)| = |a((S − λI )u, u) − a(u, (S − λI )u)| = 0.

Namelyλ − λ̄ = 0. This finishes the proof. �

Lemma 13. Let S be a(·, ·)-symmetric and satisfyHC. Letµ1 , µ2 be two distinct eigenvalues of

S . Then

(14) a(u, v) = 0, ∀u ∈ M(µ1), v ∈ M(µ2).

Proof. Without loss of generality, assumeµ1 , 0, then

(15) a(u, v) = µ−1
1 a(µ1u, v) = µ−1

1 a(S u, v) = µ−1
1 a(u,S v) = (µ2/µ1)a(u, v).

Sinceµ1 , µ2, it follows thata(u, v) = 0. This finishes the proof. �

Lemma 14. Let S be a(·, ·)-symmetric and satisfyHC, then allµa(u, u) take the same sign, where

u is an eigenvector of S that belongs toµ, a nonzero eigenvalue of S .

Proof. Let dim(M(µ)) = m, µ , 0, then by Gram-Schmidt process, there existm linearly inde-

pendent eigenvectors{u j}, such thata(ui, u j) = 0, for 1 6 i , j 6 m. Now givenu =
∑

i αiui,

a(u, u) =
∑m

i=1 α
2
i a(ui , ui). Sincea(u, u) , 0, we have alla(ui , ui) take the same sign,i = 1, . . . ,m.

We can seta(u, u) > 0. Then there are two constants 0< cs < cb, such that

(16) cs‖v‖
2
H 6 a(v, v) 6 cb‖v‖

2
H, ∀ v ∈ M(µ).

Now, without loss of generality, givenu, v two eigenvectors ofS belonging toµ andν respec-

tively, such that‖S u‖H‖S v‖H , 0 anda(u, v) = 0. Thena(S(αu + βv), αu + βv) = µα2a(u, u) +

νβ2a(v, v). Thus byHC, µa(u, u) andνa(v, v) take the same sign. The proof is completed. �

Lemmas 15 and 16 then follows from the theory of spectral approximation of compact operators.
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Lemma 15. If T is a compact operator and a(·, ·)-symmetric, then all its eigenvalues are real.

Further, if all a(w,w), where w is any eigenvector of T that belongs to some nonzero eigenvalue,

take the same sign, the eigenvalues of T can be listed in a sequence as, counting multiplicities and

up to the sign,

(17) µ1 > µ2 > µ3 > µ4 > · · · > 0.

Lemma 16. Let T be a compact operator which is a(·, ·)-symmetric, and{Th}h>0 be a family of

compact operators which are a(·, ·)-symmetric. For each Th, if all a(wh,wh), where wh is any

eigenvector of Th that belongs to some nonzero eigenvalue, take the same sign,its eigenvalues are

listed in a sequence as, counting multiplicities and up to the sign,

(18) µ1,h > µ2,h > µ3,h > µ4,h > · · · > 0.

Assume that Th converges to T in norm as h→ 0. Then

(19) lim
h→0

µk,h = µk, k = 1, 2, . . . .

Remark 17. The assumption that all a(w,w) take the same sign where w is any eigenvector of

T that belongs to some nonzero eigenvalue is a mild one for elliptic problems, and, according to

Brezzi’s theory, many types of saddle-point problems.

2.4.1. Spectral approximation by the aid of projection operator.

Lemma 18. Let PG be a projection on G⊂ H. If both T and PG are a(·, ·)-symmetric on H, then

TG = PGT is a(·, ·)-symmetric on G.

Proof. Givenu, v ∈ G,

a(TGu, v) = a(PGTu, v) = a(u,TPGv) = a(PGu,Tv) = a(u,PGTv) = a(u,TGv).

This completes the proof. �

Let G := {Gh}h>0 be a family of subspaces ofH, andPh be the projection operators onGh.

Assume that

(20) inf
Gh∈G

inf
u∈H\Gh,v∈Gh

‖u− v‖H
‖u− Phu‖H

> C0.

Lemma 19. Let T and Ph be a(·, ·)-symmetric, and Th = PhT converges to T in norm. Letµ

be a nonzero eigenvalue of T with algebraic multiplicity m and let µh be an eigenvalue of Th that

converge toµ. There is a constant C, such that for h sufficiently small,|µ−µh| 6 Cδ̂(M(µ),Mh(µ))2.

Proof. Firstly, letvh ∈ Gh, then

a(Thvh, vh) = a(PhTvh, vh) = a(Tvh,P
a∗
h vh) = a(vh,T

a∗Pa∗
h vh) = a(vh,TPhvh) = a(Tvh, vh).
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Let uh ∈ Mh(µ), with ‖uh‖H = 1. There isu ∈ M(µ), ‖u‖H = 1, such thatuh = γEhu. Note that

a(Tu, v) = µa(u, v), anda(Thuh, vh) = µha(uh, vh), for v ∈ H andvh ∈ Gh. Then

|µ − µh|a(uh, uh) = |a(T(u− uh), (u− uh)) − µa((u− uh), (u− uh))|

6 C‖u− uh‖
2
H 6 C(‖u− Ehu‖2H + |γ − 1|2‖Ehu‖2).

By Lemma 3 and (20), we can prove‖u− Ehu‖H 6 δ̂(M(µ),Mh(µ)) and|γ − 1| 6 δ̂(M(µ),Mh(µ)).

The proof is then completed by noting that, by (20), Lemma 3 and (16), we havecsh‖vh‖
2
H 6

a(vh, vh) 6 cbh‖vh‖
2
H for vh ∈ Mh(µ). �

2.5. Variational formulation. Let H be a Hilbert space, anda(·, ·) andb(·, ·) be two bounded

symmetric bilinear forms onH. Besides,b(u, u) > 0 for u ∈ H. Let an operatorT : H → H be

defined by

a(Tw, v) = b(w, v), ∀ v ∈ H.

Hypothesis HIS. inf
v∈H

sup
w∈H

a(v,w)
‖v‖H‖w‖H

> C.

Lemma 20. If a(·, ·) satisfiesHIS, then,

(1) T is uniquely defined, and,‖T‖H =∼ ‖T
a∗‖H

1;

(2) T is a(·, ·)-symmetric, andHC holds.

Proof. The existence ofTa∗ follows from the Babuška theory. Moreover, we have‖u‖H =∼ sup
v∈H

a(u, v)
‖v‖

.

Therefore,‖T‖H =∼ sup
v∈H

sup
w∈H

a(Tv,w)
‖w‖H‖v‖H

= sup
v∈H

sup
w∈H

a(v,Ta∗w)
‖w‖H‖v‖H

=
∼ ‖T

a∗‖H.

The a(·, ·)-symmetry follows from the definition. DefineB : H → H by (Bv,w)H = b(v,w),

where (·, ·)H is the basic inner product equipped ontoH. ThenB is uniquely defined, andB is

self-adjoint. Note thatb(u, u) > 0, and we haveB positive semi-definite. Particularly, it is easy to

show that (Bv, v)H = 0 if and only if Bv= 0. Namely,b(u, u) = 0 if and only ifb(u, v) = 0 for any

v ∈ H. Further,a(Tu, u) = 0 if and only ifa(Tu, v) = 0 for anyv ∈ H, which byHIS is equivalent

to Tu= 0. ThusHC holds. The proof is completed. �

Remark 21. In general, T can not be symmetric with respect to the intrinsic inner product of H.

LetG := {Gi}i=0,1,... be such that

G0 ⊂ G1 ⊂ · · · ⊂ H.

1From this point onwards,., &, and =∼ respectively denote6, >, and= up to a constant. The hidden constants de-
pend on the domain, and, when triangulation is involved, they also depend on the shape-regularity of the triangulation,
but they do not depend onh or any other mesh parameter.
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Define operatorsPi : H → Gi andTi : H → Gi by

a(Piw, v) = a(w, v), w ∈ H,∀ v ∈ H, a(Tiw, v) = b(w, v), ∀ v ∈ Gi .

Hypothesis HISG. inf
G∈G

inf
v∈G

sup
w∈G

a(v,w)
‖v‖H‖w‖H

> C′.

The lemma below is standard.

Lemma 22. If a(·, ·) andG satisfyHIS andHISG, the two operators Pi and Ti are well defined.

Evidently, Ti = PiT. Besides,

(21) ‖(I − PG)w‖H 6 (1+
1
C
+

1
C′

) inf
v∈G
‖w− v‖H, ∀w ∈ H.

Lemma 23. Provided the assumptions of Lemmas 15 and 16. Let the eigenvalues of T be listed in

a sequence as, counting multiplicities,

(22) µ1 > µ2 > µ3 > µ4 > · · · > 0.

For each Ti, list its eigenvalues in a sequence as

(23) µ1,i > µ2,i > µ3,i > µ4,i > . . . . > µNi ,i > 0.

Provided Piu→ u for u∈ H, then

(24) lim
i→∞

µk,i = µk, k = 1, 2, . . . .

2.5.1. Multi-level algorithm in variational form.

Algorithm 2. An N-level algorithm for first k eigenvalues of T.

Step 0: Construct a series of nested spaces G0 ⊂ G1 ⊂ · · · ⊂ GN ⊂ H. SetG̃0 = G0.

Step 1: For i = 1 : 1 : N, generate auxiliary space triples̃Gi recursively.

Step 1.i.1: Solve the eigenvalue problem below for its first k eigenpairs(µ̃i−1
j , ũi−1

j ) j=1,...,k

µa(ũ, v) = b(ũ, v), ũ ∈ G̃i−1, ∀ v ∈ G̃i−1,

such that a(ũi−1
j , ũi−1

l ) = 0, for 1 6 j , l 6 k.

Step 1.i.2: Compute

a(ûi
j , v) =

1

µ̃i−1
j

b(ũi−1
j , v), ∀ v ∈ Gi.

Step 1.i.3: Set

G̃i = G0 + span{ûi
j}

k
j=1.
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Step 2: Solve eigenvalue problem for its first k eigenpairs(µ̃N
j , ũ

N
j ) j=1,...,k:

µa(ũ, v) = b(ũ, v), ũ ∈ G̃N, ∀ v ∈ G̃N.

such that a(ũN
j , ũ

N
l ) = 0, for 1 6 j , l 6 k.

Lemma 24. Let µ be a nonzero eigenvalue of T, with multiplicity m, and M(µ) the eigenspace.

Let {Th} be a family of approximating operators, andµ1,h, . . . , µm,h be the eigenvalues of Th ap-

proximatingµ. Let {ui,h} be the unit eigenvectors with respect toµi,h, such that a(ui,h, u j,h) = 0 for

1 6 i , j 6 m. There is a constant c, such thatθ(u1,h, . . . , um,h) > c for h sufficiently small.

Proof. Firstly, there are two constants 0< cs < cb, such that

cs‖v‖
2
H 6 a(v, v) 6 cb‖v‖

2
H, ∀ v ∈ M(µ).

Therefore, there are two constants 0< c′s < c′b, such that forh sufficiently small,

c′s‖uh,i‖
2
H 6 a(uh,i, uh,i) 6 c′b‖uh,i‖

2
H, 1 6 i 6 m,

and further, with 0< c′′s < c′′b ,

c′′s ‖vh‖
2
H 6 a(vh, vh) 6 c′′b ‖vh‖

2
H, ∀ vh ∈ Mh(µ).

Now, givenuh =
∑

i βiui,h, then

∑
i β

2
i ‖ui,h‖

2
H 6 c′′−1

s

∑
i β

2
i a(ui,h, ui,h) = c′′−1

s

∑
i a(βiui,h, βiui,h)

= c′′−1
s a(

∑
i βiui,h,

∑
i βiui,h) 6 c′′b/c

′′
s ‖
∑

i βiui,h‖
2
H.(25)

The proof is completed by the definition ofθ(u1,h, . . . , um,h). �

Theorem 25. There exist constantsβ1 andβ2 dependent ofµ, such that, with G0 big enough,

(26) δ(M(µ), G̃N) 6 β1

N∑

l=0

(β2‖T − TP0‖H)N−lδ(M(µ),Gl).

Proof. SinceG0 ⊂ G̃ j, (I − P0)(I − P̃ j) = I − P̃ j, and‖T − TP̃ j‖H = ‖T(I − P0)(I − P̃ j)‖H‖H 6

‖T − TP0‖H. The result then follows from Lemma 24 and Theorem 7. �

3. Mixed method for the biharmonic eigenvalue problem

In this section, we present a mixed method for the biharmoniceigenvalue problem. We will

first construct an equivalent mixed formulation of the eigenvalue problem (Theorem 27), and then

consider its direct discretization (Theorem 36) and multi-level scheme (Theorem 39) within the

framework presented in Section 2. The optimal complexity ofthe algorithm is also discussed.
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3.1. Preliminary theory of eigenvalue problem. Let Ω ⊂ R2 be a polygonal domain, andΓ =

∂Ω be the boundary ofΩ. Let H1(Ω), H1
0(Ω), H2(Ω), andH2

0(Ω) be the standard Sobolev spaces

as usual, andL2
0(Ω) := {w ∈ L2(Ω) :

∫
Ω

wdx = 0}. In this paper, we use the subscript “
˜
” to denote

vector, and particularly,H
˜

1
0(Ω) = (H1

0(Ω))2. Consider the biharmonic eigenvalue problem:

(27)



∆2u = λu inΩ
u = 0 on∂Ω,
∂u
∂n
= 0 on∂Ω.

The variational form is to find (λ, u) ∈ R × H2
0(Ω), such that

(28)
∫

Ω

∇2u : ∇2v :=
∫

Ω

2∑

i, j=1

∂2u
∂xi∂xj

∂2v
∂xi∂xj

= λ(u, v) := λ
∫

Ω

uv, ∀ v ∈ H2
0(Ω).

By the property of elliptic operators, the problem (28) has an eigenvalue sequenceλ j:

(29) 0< λ1 6 λ2 6 · · · 6 λk 6 · · · , and lim
k→∞

λk = ∞.

3.2. Mixed formulation. To reduce the order of the Sobolev spaces involved, we begin with the

following well known result on the exactness amongH2
0(Ω), H

˜
1
0(Ω), and operators rot and∇.

Lemma 26. ( [16,18]) ∇H2
0(Ω) = {ψ

˜
∈ H

˜
1
0(Ω) : rotψ

˜
= 0}.

DefineV := H1
0(Ω)× H

˜
1
0(Ω) × L2

0(Ω) × H1
0(Ω). Now we can introduce the mixed formulation of

the eigenvalue problem: find (u, ϕ
˜
, p,w) ∈ V, such that

(30)



(∇w,∇v) = λ(u, v) ∀ v ∈ H1
0(Ω)

(∇ϕ
˜
,∇ψ

˜
) +(p, rotψ

˜
) +(∇w, ψ

˜
) = 0 ∀ψ

˜
∈ H

˜
1
0(Ω)

(rotϕ
˜
, q) = 0 ∀q ∈ L2

0(Ω)

(∇u,∇s) +(ϕ
˜
,∇s) = 0 ∀ s ∈ H1

0(Ω).

Theorem 27. The eigenvalue problem(30) is equivalent to(28).

We postpone the proof of 27 after some technical results. First, equipV with the norm

‖(u, ϕ
˜
, p,w)‖V :=

‖u‖21,Ω + ‖ϕ
˜
‖21,Ω + ‖p‖

2
0,Ω + ‖w‖

2
1,Ω


1/2

,
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thenV is a Hilbert space. Define onV a bilinear form

(31) a((u, ϕ
˜
, p,w), (s, ψ

˜
, q, v))

:= (∇w,∇v) + (∇ϕ
˜
,∇ψ

˜
) + (p, rotψ

˜
) + (∇w, ψ

˜
) + (rotϕ

˜
, q) + (∇u,∇s) + (ϕ

˜
,∇s).

Lemma 28. Given F∈ V′, there exists a unique(u, ϕ
˜
, p,w) ∈ V, such that

(32) a((u, ϕ
˜
, p,w), (s, ψ

˜
, q, v)) = 〈F, (s, ψ

˜
, q, v)〉, ∀ (s, ψ

˜
, q, v) ∈ V.

Moreover,

‖(u, ϕ
˜
, p,w)‖V =∼ ‖F‖V′ .

Proof. Denoteâ((u, ϕ
˜
), (v, ψ

˜
)) := (∇ϕ

˜
,∇ψ

˜
), and b̂((u, ϕ

˜
), (q, s)) := (rotϕ

˜
, q) + (∇u,∇s) + (ϕ

˜
,∇s).

Accordingly, denoteZ := {(u, ϕ
˜
) ∈ H1

0(Ω) × H
˜

1
0(Ω) : b̂((u, ϕ

˜
), (q, s)) = 0}. Evidently â(·, ·) is

coercive onZ. For any (q, s) ∈ L2
0(Ω) × H1

0(Ω), we can chooseϕ
˜
∈ H

˜
1
0(Ω), such that (rotϕ

˜
, q) =

‖q‖20, and‖ϕ
˜
‖1,Ω 6 C‖q‖0,Ω. Now, let sϕ

˜
∈ H1

0 be defined such that (∇sϕ
˜
,∇v) = (ϕ

˜
,∇v) for any

v ∈ H1
0(Ω), and setu = s− sϕ

˜
, then b̂((u, ϕ

˜
), (q, s)) = ‖q‖20,Ω + ‖∇s‖20,Ω, and‖ϕ

˜
‖1,Ω + ‖u‖1,Ω 6

C(‖q‖0,Ω + ‖s‖1,Ω). This indeed shows the inf-sup condition

(33) inf
(q,s)∈L2

0(Ω)×H1
0(Ω)

sup
(u,ϕ

˜
)∈H1

0(Ω)×H
˜

1
0(Ω)

b̂((u, ϕ
˜
), (q, s))

(‖q‖0,Ω + ‖s‖1,Ω)(‖ϕ
˜
‖1,Ω + ‖u‖1,Ω)

> C.

The proof is completed by Brezzi’s theory. �

Remark 29. The inf-sup condition follows immediately.

(34) inf
(u,ϕ

˜
,p,w)∈V

sup
(s,ψ

˜
,q,v)∈V

a((u, ϕ
˜
, p,w), (s, ψ

˜
, q, v))

‖(u, ϕ
˜
, p,w)‖V‖(s, ψ

˜
, q, v)‖V

> C.

Proof of Theorem 27.Given f ∈ L2, there is a uniqueu ∈ H2
0(Ω), such that (∇2u,∇2v) = ( f , v)

for v ∈ H2
0(Ω), and a unique (˜u, ϕ̃

˜
, p̃, w̃) ∈ V, such thata((ũ, ϕ̃

˜
, p̃, w̃), (s, ψ

˜
, q, v)) = ( f , v) for
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∀ (s, ψ
˜
, q, v) ∈ V, and moreover, ˜u = u. Now let (λ, u) be an eigenpair of (28), then there is

(ũ, ϕ̃
˜
, p̃,w) ∈ V, such thata((ũ, ϕ̃

˜
, p̃, w̃), (s, ψ

˜
, q, v)) = λ(u, v) for ∀ (s, ψ

˜
, q, v) ∈ V, and moreover

ũ = u. On the other hand, let (λ̃, ũ, ϕ̃
˜
, p̃, w̃) be an eigenpair of (30), then there is a uniqueu ∈

H2
0(Ω), such that (∇2u,∇2v) = λ̃(ũ, v), ∀ v ∈ H2

0(Ω). It follows further thatu = ũ. The proof is

completed. �

In the sequel, we focus ourselves on (30). Define onV

(35) b((u, ϕ
˜
, p,w), (s, ψ

˜
, q, v)) := (u, v).

Both a(·, ·) andb(·, ·) are symmetric. Then (30) is rewritten to: find (u, ϕ
˜
, p,w) ∈ V, such that

(36) a((u, ϕ
˜
, p,w), (s, ψ

˜
, q, v)) = λb((u, ϕ

˜
, p,w), (s, ψ

˜
, q, v)), ∀ (s, ψ

˜
, q, v) ∈ V.

Associated witha(·, ·) andb(·, ·), we define an operatorT by

(37) a(T(u, ϕ
˜
, p,w), (s, ψ

˜
, q, v)) = b((u, ϕ

˜
, p,w), (s, ψ

˜
, q, v)), ∀ (s, ψ

˜
, q, v) ∈ V.

Lemma 30. The operator T is well defined from V to V, a(·, ·)-symmetric, and compact.

Proof. The well-posedness ofT follows directly from thata(·, ·) induces an isomorphism between

V and its dual, andb(·, ·) is continuous onV. As botha(·, ·) andb(·, ·) are symmetric,T is a(·, ·)-

symmetric. Now, let{(u j, ϕ
˜

j , p j,wj)} be a bounded sequence inV, then there is subsequence

{(u jk, ϕ
˜

jk, p jk,wjk)}, such that{u jk} is a Cauchy sequence inL2(Ω). Therefore,{T(u jk, ϕ
˜

jk, p jk,wjk)}

is a Cauchy sequence inV, which, further, has a limit therein. This finishes the proof. �

The eigenvalue problem (30) is equivalent to finding 0, µ ∈ R and (u, ϕ
˜
, p,w) ∈ V, such that

T(u, ϕ
˜
, p,w) = µ(u, ϕ

˜
, p,w), thenλ = 1

µ
andu is the eigenpair we are seeking for.

Remark 31. The formulation(30) is a saddle-point problem, while the variables p and w can

be viewed as two Lagrangian multipliers. However, we note that the right hand side b(·, ·) is

not coercive on the space of the primal variables (u andϕ
˜
) nor on the space of the Lagrangian

variables. This makes the classical theory for saddle-point problems, such as discussions in [32],

[35] or [7], not directly work for (30). This way, some generalized theory has to be developed.
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3.3. Discretization and accuracy. Let H1
h0, H

˜
1
h0 andL2

h0 be some specific finite element subspaces

of H1
0, H

˜
1
0 andL2

0, respectively. We introduce the discretized mixed eigenvalue problem:

find (uh, ϕ
˜

h, ph,wh) ∈ Vh := H1
h0 × H

˜
1
h0 × L2

h0 × H1
h0, such that

(38)



(∇wh,∇vh) = λh(uh, vh) ∀ v ∈ H1
h0

(∇ϕ
˜

h,∇ψ
˜

h) +(ph, rotψ
˜

h) +(∇wh, ψ
˜

h) = 0 ∀ψ
˜

h ∈ H
˜

1
h0

(rotϕ
˜

h, qh) = 0 ∀qh ∈ L2
h0

(∇uh,∇sh) +(ϕ
˜

h,∇sh) = 0 ∀ sh ∈ H1
h0.

For the well-posedness of the discretized problem, we propose the assumption below.

Assumption AIS. The discrete inf-sup condition holds uniformly that

(39) inf
qh∈L2

h0

sup
ψ
˜

h∈H
˜

1
h0

(rotψ
˜

h, qh)

‖∇hψ
˜

h‖0,Ω‖qh‖0,Ω
> C.

Remark 32. In two dimensional,rot is the perpendicular of∇. Considering the homogeneous

boundary condition imposed on H
˜

1
0(Ω), we know that the condition(39) is equivalent to the well-

known inf-sup condition for the incompressible Stokes problem.

Lemma 33. Assume the assumptionAIS holds. There exists a constant C, uniformly with respect

to Vh, such that

(40) inf
(uh,ϕ

˜
h,ph,wh)∈Vh

sup
(sh,ψ

˜
h,qh,vh)∈Vh

a((uh, ϕ
˜

h, ph,wh), (sh, ψ
˜

h, qh, vh))

‖(uh, ϕ
˜

h, ph,wh)‖V‖(sh, ψ
˜

h, qh, vh)‖V
> C.

Proof. The proof is the same as that of Lemma 28. �

The projection operatorPh : V → Vh is defined associated witha(·, ·) by

(41) a(Ph(u, ϕ
˜
, p,w), (sh, ψ

˜
h, qh, vh)) = a((u, ϕ

˜
, p,w), (sh, ψ

˜
h, qh, vh)), ∀ (sh, ψ

˜
h, qh, vh) ∈ Vh.

By Lemma 22, we have the optimal approximation below.

Lemma 34. Given assumptionAIS, Ph is well defined. There exists a constant C, such that

(42) ‖(u, ϕ
˜
, p,w) − Ph(u, ϕ

˜
, p,w)‖V 6 C inf

(vh,ψ
˜

h,qh,sh)∈Vh

‖(u, ϕ
˜
, p,w) − (sh, ψ

˜
h, qh, vh)‖.
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List the eigenvalues ofT as

(43) µ1 > µ2 > ... > 0.

By Lemma 16, the eigenvalues ofT := PhT can be listed as

(44) µ1,h > µ2,h > ... > µNh,h,

whereNh is the dimension ofVh. If Vh provides approximation ofV, namely (I −Ph) tends to zero

ash→ 0 pointwise, then limh→0 µi,h = µi, i = 1, 2, . . . .

Let µ be a nonzero eigenvalue ofT with multiplicity m. Denote

M(µ) := {(s, ψ
˜
, q, v) ∈ V : T(s, ψ

˜
, q, v) = µ(s, ψ

˜
, q, v)}.

Assumeh is sufficiently small, andµ(1),h, µ(2),h, . . . , µ(m),h be the discrete eigenvalues to approximate

µ, and (u, ϕ
˜
, p,w)(i),h be the corresponding eigenfunctions. Denote

Mh(µ) := span{(u, ϕ
˜
, p,w)(i),h}

m
i=1.

By Lemma 34 and Lemma 2, we have the estimate below.

Lemma 35. There exists a constant Cµ, uniform for h sufficiently small, such that

δ̂(M(µ),Mh(µ)) 6 Cµδ(M(µ),Vh).

Note thatM(µ) and Mh(µ) coincides with the continuous and discretized spacesM(µ−1) and

Mh(µ−1) of (30) and (38), respectively. We thus have the result below by Lemma 19.

Theorem 36. Let λ be the k-th eigenvalue of(30) (thus(28)), with M(λ) being its invariant sub-

space; let(λh, (uh, ϕ
˜

h, ph,wh)) be the k-th eigenpair of(38). Thenλh→ λ as h→ 0. Further, for h

sufficiently small,

|λh − λ| 6 Cδ(M(λ),Vh)
2,

and

δ((uh, ϕ
˜

h, ph,wh),M(λ)) 6 Cδ(M(λ),Vh).

Moreover, there exists a u∈ H2
0(Ω) being an eigenvector of(28)belonging toλ, such that

‖uh − u‖1,Ω 6 Cδ(M(λ),Vh).
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3.3.1. Lagrangian type finite element discretization.Directly, we can chooseH1
h0 to be theH1

Lagrange element space ofk-th degree,̃H1
h0 to be the vectorH1 Lagrange element space ofk-th

degree, andL2
h0 to be theH1 Lagrange element space of (k− 1)-th degree,k = 2, 3, . . . . We denote

this construction by Lagrangian type triplePk ∼ Pk ∼ Pk−1. Similarly, we can choose, e.g.,H1
h0

to be theH1 Lagrange element space of second degree,H̃1
h0 to be the vectorH1 Lagrange element

space of second degree, andL2
h0 to be the space of piecewise constants. We denote this choiceby

reduced Lagrangian type tripleP2 ∼ P2 ∼ P0.

Lemma 37. Let Vh be constructed by the Lagrangian type triple Pk ∼ Pk ∼ Pk−1, then if M(λ) ⊂

(Hk+1(Ω) × H
˜

k+1(Ω) × Hk(Ω) × Hk+1(Ω)) ∩ V,

δ̂(M(µ),Mh(µ)) 6 C(M(µ))hk, k = 2, 3, . . . .

Let Vh be constructed by the Lagrangian type triple P2 ∼ P2 ∼ P0, then if M(λ) ⊂ (H2(Ω) ×

H
˜

2(Ω) × H1(Ω) × H2(Ω)) ∩ V,

δ̂(M(µ),Mh(µ)) 6 C(M(µ))h.

3.4. Multi-level scheme with Lagrange type elements.To implement the multi-level algorithm,

we construct the multi-level auxiliary spaces on multi-level grids. LetThi , i = 0, 1, . . . ,N, be a

series of nested grids onΩ. Particularly, we sethi ≈ κ
ih0. The spacesVhi are constructed thereon.

Lemma 38. Let M̃N(µ) be the approximation invariant subspace of M(µ) generated by Algorithm

2. If there is a constant C, such that for h sufficiently small,δ(M(µ),Vh) 6 Chτ, then there is a

constant C′, such that, forTh0 sufficiently fine,

δ(M̃N(µ),M(µ)) 6 C′hτ.

Proof. By Theorem 25,

(45) δ(M(µ), M̃N(µ)) 6 β1

N∑

l=0

(β2‖T−TP0‖H)N−lδ(M(µ),Vhl ) 6 β
′
1

N∑

l=0

(β2‖T−TP0‖H)N−lκτ(l−N)hτN.
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Note that in the current context,

‖T(I − Ph)(u, ϕ
˜
, p,w)‖V =∼ sup

(v,ψ
˜
,q,s)∈V

a((I − Ph)(u, ϕ
˜
, p,w), (s, ψ

˜
, q, v))

‖(s, ψ
˜
, q, v)‖V

= sup
(v,ψ

˜
,q,s)∈V

b((I − Ph)(u, ϕ
˜
, p,w), (s, ψ

˜
, q, v))

‖(s, ψ
˜
, q, v)‖V

.

By dual argument, ifTh0 is sufficiently fine, such thatβ2‖T − TP0‖V/κ
τ < 1, then

δ(M(µ), M̃N(µ)) 6 β′1h
τ
N

N∑

l=0

(β2‖T − TP0‖V/κ
τ)N−l =

β′1

1− β2‖T − TP0‖V/κτ
· hτN.

The proof is finished. �

The theorem below follows immediately.

Theorem 39. Let λ be the k-th eigenvalue of(30) (thus(28)), with M(λ) being its invariant sub-

space; let(λ̃h, (ũh, ϕ̃
˜

h, p̃h, w̃h)) be the k-th eigenpair of(38)generated by the Algorithm 2. Provided

the assumptions in Lemma 38, then, forTh0 sufficiently fine,

|λ̃h − λ| 6 Cδ̂(M̃N(µ),M(µ)) 6 C′h2τ,

and there exists a u∈ H2
0(Ω) being an eigenvector of(28)belonging toλ, such that

‖ũh − u‖1,Ω 6 C′hτ.

Corollary 40. Let M̃N(µ) be the approximation of M(µ) generated by the Algorithm 2.

(1) In case Vh is constructed by the Lagrangian type triple Pk ∼ Pk ∼ Pk−1, if M(λ) ⊂

(Hk+1(Ω) × H
˜

k+1(Ω) × Hk(Ω) × Hk+1(Ω)) ∩ V, then forTh0 fine enough,

δ(M(µ),Vh) 6 C′hk.

(2) In case Vh is constructed by the reduced Lagrangian type triple P2 ∼ P2 ∼ P0, if M(λ) ⊂

(H2(Ω) × H
˜

2(Ω) × H1(Ω) × H2(Ω)) ∩ V, then forTh0 fine enough,

δ(M(µ),Vh) 6 C′h.

Namely, anO(h2k) convergence rate can be expected on eigenvalue for the multi-level algorithm

implemented withPk ∼ Pk ∼ Pk−1 triple, and anO(h2) rate for eigenvalue withP2 ∼ P2 ∼ P0

triple. For eigenfunctions, the order can be the half of thatfor eigenvalues.
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Remark 41. In every step of the multi-level algorithm, we only have to solve a source problem

to the accuracy ofδ(M(µ),Vhi ), which is enough to guarantee the final accuracy of the multi-level

algorithm.

3.5. Implement issue and optimal complexity.The cost of the algorithm comes via two sources.

To solve an eigenvalue problem oñVhi for N + 1 times, and to solve a source problem onVhi every

step. Particularly, in each step of the multi-level algorithm, we have to solve a source problem:

find (uh, ϕ
˜

h, ph,wh) ∈ Vh, such that

(46)



(∇wh,∇vh) = ( fh, vh) ∀ v ∈ H1
h0

(∇ϕ
˜

h,∇ψ
˜

h) +(ph, rotψ
˜

h) +(∇wh, ψ
˜

h) = 0 ∀ψ
˜

h ∈ H
˜

1
h0

(rotϕ
˜

h, qh) = 0 ∀qh ∈ L2
h0

(∇uh,∇sh) +(ϕ
˜

h,∇sh) = 0 ∀ sh ∈ H1
h0.

The entire system can be decomposed to three subsystems and solved sequentially. Namely,

(1) find wh ∈ H1
h0, such that (∇wh,∇vh) = ( fh, vh), ∀ vh ∈ H1

h0;

(2) find (ϕ
˜

h, ph) ∈ H
˜

1
h0 × L2

h0, such that



(∇ϕ
˜

h,∇ψ
˜

h) + (ph, rotψ
˜

h) = −(∇wh, ψ
˜

h) ∀ψ
˜

h ∈ H
˜

1
h0

(rotϕ
˜

h, qh) = 0 ∀qh ∈ L2
h0;

(3) find uh ∈ H1
h0, such that (∇uh,∇sh) = −(ϕ

˜
h,∇sh), ∀ sh ∈ H1

h0.

The three subsystems can be solved approximately within thecostO(h−2) to guarantee the ac-

curacy δ(M(µ),Vhi ). Meanwhile, the eigenvalue problem oñVhi can be solved with the cost

O(dim(Ṽhi))3(by QR algorithm). Therefore, the total cost of the algorithm is

(47) cost=∼

N∑

i=0

h−2
i + (N + 1)(dim(Vh0))

3
6

1
1− κ

h−2
N + h−6

0 | loghN|.

When we focus on the first several other than all eigenvalues,we can use algorithms rather than

QR algorithm which costs less. Whenh0 ≫ hN, the total cost can beO(h−2
N ). The cost is optimal

versus the intrinsic computational accuracy of the scheme for expected eigenvalues.
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4. Numerical experiments

In this section, we test the proposed mixed element scheme for eigenvalue problem (28) on

the convex domain (unit squareΩ = (0, 1) × (0, 1), left of Figure 1) and the non-convex domain

(L-shape domainΩ = [0, 1] × [0, 1]/[0, 1
2] × [ 1

2, 1], right of Figure 1). The initial meshes with

mesh sizeh0 ≈ 0.25 are given in both of the figures, the finest mesh is obtained by five bisection

refinements.
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Figure 1. The initial meshes, left: the square, right: the L-shape domain.

We run series of numerical experiments on the these two domains, and test the accuracies of

both the single-level and multi-level finite element schemes. Two kinds of finite element triples of

lowest degree are tested, they are

triple A: the reduced Lagrangian type triplesP2 ∼ P2 ∼ P0;

triple B: the Lagrangian type triplesP2 ∼ P2 ∼ P1.

On each domain, we construct a series of nested grids{Thi }
5
i=0 and construct finite element triples

H1
hi0
×H

˜
1
hi0
× L2

hi 0
thereon with some specific finite elements. Particularly, wewill set the grid sizes

hi ≈ h0(1/2)i. On each series of meshes, we will run the single-level and multi-level algorithms,

to generate two series of approximated eigenvalues{λhi } and{λ̃hi }, and two series of approximated

eigenfunctions{(uhi , ϕ
˜

hi , phi ,whi)} and{(ũhi , ϕ̃
˜

hi , p̃hi , w̃hi)}. The convergence order is computed by

(48) Ordk
λ = log2(|

λ5 − λk−1

λ5 − λk
|), k = 1, 2, 3, 4,

(49) Ordk
u = log2(||

u5 − uk−1

u5 − uk
||H1), k = 1, 2, 3, 4.
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Figure 2. The convergence rates for the eigenvalues and eigenfunctions of the
square with single-level scheme andtriple A . Y-axis of left figure meansλh5 −
λhk, k = 1, 2, 3, 4, one point is missing since on the coarse meshλh5 − λh1 < 0.
Y-axis of right figure means||uh5 − uhk ||H1, k = 1, 2, 3, 4.

From all these numerical results, we observe 1) both the schemes provide convergent discretiza-

tion to the eigenvalue problem; their accuracy may depend onthe regularity of the eigenfunctions,

and essentially the domain; 2) the multi-level algorithm construct the same performance as the

single-level scheme, but less computation cost if both of them use the finest mesh; 3) fortriple

A, the convergence rate of eigenfunction is higher than the estimation; and 4) for both single-

and multi-level methods, the computed eigenvalues can provide upper or lower bounds for the

eigenvalues by different triples on convex domain.

4.1. On the accuracy of single-level finite element schemes.

4.1.1. Experiments on convex domain.Figure 2 gives the convergence rates of the eigenvalues

and eigenfunctions for the square with finite elementtriple A , we give the errors for the first

six eigenvalues and eigenfunctions, all the rates are almost 2, here we obtain the lower bound

of the eigenvalues, the errors are given byλh5 − λhk, k = 1, 2, 3, 4, the convergence rates of the

eigenfunctions are better than the theoretical result, theerrors are given by||uh5 − uhk ||H1, k =

1, 2, 3, 4.

Figure 3 gives the convergence rates of the the first six eigenvalues and eigenfuctions for the

square with finite elementtriple B , all the convergence rates of eigenvalues are almost 4, herewe

obtain the upper bound of the eigenvalues, the errors are given byλhk − λh5, k = 1, 2, 3, 4. All the

convergence rates of eigefunctions are almost 2 which is consistent with the theoretical result.
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Figure 3. The convergence rates for the eigenvalues and eigenfuctions of the
square with single-level scheme andtriple B . Y-axis of left figure meansλhk −
λh5, k = 1, 2, 3, 4. Y-axis of right figure means||uh5 − uhk ||H1, k = 1, 2, 3, 4.
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Figure 4. The convergence rates for the eigenvalues and eigenfuctions of the L-
shape domain with single-level scheme andtriple A . Y-axis of left figure means
λh5 − λhk, k = 1, 2, 3, 4. Y-axis of right figure means||uh5 − uhk ||H1, k = 1, 2, 3, 4.

4.1.2. Experiments on nonconvex domain.Figure 4 gives the convergence rates of the first six

eigenvalues and eigenfuctions for the L-shape domain with finite elementtriple A , all the conver-

gence rates of the eigenvalues are almost 2, here we obtain the lower bound of the eigenvalues, the

errors are given byλh5 −λhk, k = 1, 2, 3, 4. The convergence rates of the eigenfunctions are almost

2 which is better than the theoretical result.
Table 1 gives the convergence rates of the the first six eigenvalues and eigenfunctions for the

L-shape domain with finite elementtriple B , the change of the eigenvalues is not monotone.

4.2. On the accuracy of multi-level finite element schemes.



A MULTI-LEVEL MIXED METHOD FOR THE BIHARMONIC EIGENVALUE PROBLEM 25

Table 1. The performance oftriple B on L-shape domain with single-level scheme.

Mesh 1 2 3 4 Trend Ordλ Ordu

λ1 6637.38041 6671.06581 6687.93810 6696.13794ր 1.61242 1.64878
λ2 11057.17095 11054.86661 11054.58037 11054.52410ց 2.60578 2.06026
λ3 14905.85096 14904.70082 14905.03399 14905.17967ցր 1.71677 2.05330
λ4 26165.81310 26153.57454 26152.64925 26152.55881ց 3.48943 2.08511
λ5 33343.11501 33391.54019 33423.03931 33438.85710ր 1.58081 1.73460
λ6 53319.98768 53463.51716 53539.42249 53575.08523ր 1.64543 1.71939
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Figure 5. The convergence rates for the eigenvalues and eigenfuctions of the
square with multi-level scheme andtriple A . Y-axis of left figure means̃λh5 −

λ̃hk, k = 1, 2, 3, 4, one point is missing since on the coarse meshλ̃h5 − λ̃h1 < 0.
Y-axis of right figure means||ũh5 − ũhk ||H1, k = 1, 2, 3, 4.

4.2.1. Experiments on convex domain.Figure 5 gives the convergence rates of the first six eigen-

values and eigenfuctions for the square with finite elementtriple A by the multi-level scheme,

the multi-level method has almost the same convergence rates as the single-level one, all the con-

vergence rates are almost 2, here we also obtain the lower bound of the eigenvalues as in the

single-level scheme, the errors are given byλ̃h5 − λ̃hk, k = 1, 2, 3, 4.

Figure 6 gives the results with finite elementtriple B , all the convergence rates for the eigen-

values are almost 4 which is the same as single-level method and we also get the upper bound, all

the convergence rates for the eigenfunctions are almost 2.

4.2.2. Experiments on nonconvex domain.Figure 7 gives the convergence rates of the first six

eigenvalues and eigenfunctions for the L-shape domain withfinite elementtriple A by multi-level

scheme, analogous to single-level method, all the convergence rates are almost 2 and the lower

bound is obtained, which is similar to Figure 4.
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Figure 6. The convergence rates for the eigenvalues and eigenfunctions of the
square with multi-level scheme andtriple B . Y-axis of left figure means̃λhk −

λ̃h5, k = 1, 2, 3, 4. Y-axis of right figure means||ũh5 − ũhk ||H1, k = 1, 2, 3, 4.

10
−1.9

10
−1.7

10
−1.5

10
−1.3

10
−1.1

10
0

10
1

10
2

10
3

Size of mesh

E
rr

or
s

Convergence rates for eigenvalues by P
2
P

0
 in Lshape domain 

 

 

Width=1

Height=2

1st
2nd
3rd
4th
5th
6th

10
−1.9

10
−1.7

10
−1.5

10
−1.3

10
−1.1

10
−3

10
−2

10
−1

10
0

Size of mesh

E
rr

or
s

Convergence rates of eigenfunctions by P
2
P

0
 in L−shape domain 

 

 

Width=1

Height=2

1st
2nd
3rd
4th
5th
6th

Figure 7. The convergence rates for the eigenvalues and eigenfunctions of the L-
shape domain with multi-level scheme andtriple A . Y-axis of left figure means
λ̃h5 − λ̃hk, k = 1, 2, 3, 4. Y-axis of right figure means||ũh5 − ũhk ||H1, k = 1, 2, 3, 4.

Table 2 gives the convergence rates of the the first six eigenvalues and eigenfunctions for the

L-shape domain with finite elementtriple B by multi-level scheme, the change of the eigenvalues

is still not monotone.

5. Concluding remarks

In this paper, we construct a multi-level mixed scheme for the biharmonic eigenvalue problem.

The algorithm possesses both optimal accuracy and optimal computational cost. We remark that,

the mixed formulation given in the present paper is equivalent to the primal one; namely, at con-

tinuous level, no spurious eigenvalue is brought in. By the mixed formulation presented in this
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Table 2. The performance oftriple B on L-shape domain with multi-level scheme.

Mesh 1 2 3 4 Trend Ordλ Ordu

λ1 6637.38138 6671.06594 6687.93813 6696.13795ր 1.61241 1.66165
λ2 11057.17116 11054.86661 11054.58037 11054.52410ց 2.60579 2.06026
λ3 14905.85342 14904.70090 14905.03400 14905.17968ցր 1.71659 1.92185
λ4 26165.83290 26153.57474 26152.64926 26152.55882ց 3.48970 2.08559
λ5 33343.30473 33391.55758 33423.04243 33438.85781ր 1.58052 1.66333
λ6 53330.17977 53465.12739 53539.64109 53575.12545ր 1.63222 1.68321

paper, the biharmonic eigenvalue problem can be discretized with low-degree Lagrangian finite

elements. Discretized Poisson equation and Stokes problems also play roles in the implementa-

tion of the multi-level algorithm, which can reduce much thecomputational work. Both theoretical

analysis and numerical verification are given.

For the theoretical analysis, we reinterpret the mixed formulation as an eigenvalue problem

of a generalized symmetric operatorT on an augmented spaceV. This view of point may take

hint to the research on other topics of these saddle-point problems; these will be discussed in

future. Aiming at the multi-level algorithm, in this paper,we only discuss the conforming cases

thatVh ⊂ V. The nonconforming cases thatVh 1 V can also be used as a single-level algorithm

lonely. Also, the utilization to biharmonic equation with other boundary condition and eigenvalue

problems with other types can be expected.

It is observed that both the single- and multi-level algorithms tend to be able to provide upper

or lower bounds of the eigenvalues, at least when the domain is convex. The theoretical verifica-

tion and further utilization of this phenomena will be meaningful. Actually, the computation of

the guaranteed bounds with the mixed formulation is not thattrivial, as the operator associated is

not adjoint in the Hilbert space. Some new techniques may have to be turned to for the theoretical

analysis. Also, once we can get the guaranteed bounds, the multi-level algorithms can be improved

in both its design and performance. The guaranteed computation of the upper and lower bounds

will be discussed in future works. Because the mixed formulation admits nested discretization, the

combination and interaction between the multi-level algorithm and the adaptive algorithm seem

expected. This will also be discussed in future.
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