Skip to main content
Log in

On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to the construction and analysis of an adapted and nonlinear multiresolution algorithm designed for interpolation or approximation of discontinuous univariate functions. The adaption attained allows to avoid numerical artifacts that appear when using linear algorithms and, at the same time, to obtain a high order of accuracy close to the singularities. It is known that linear algorithms are stable and convergent for smooth functions, but diffusion and Gibbs effect appear if the functions are piecewise continuous. Our aim is to develop an algorithm for function approximation with full accuracy that is capable to adapt to corners (kinks) and jump discontinuities, that uses a centered stencil and that does not use extrapolation. In order to reach this goal, we will need some information about the jumps in the function that we want to approximate and its derivatives. If this information is available, the algorithm is the most compact possible in the sense that the stencil is fixed and we do not need a stencil selection procedure as other algorithms do, such as ENO subcell resolution (ENO-SR). If the information about the jumps is not available, we will show a technique to approximate it. The algorithm is based on linear interpolation plus correction terms that provide the desired accuracy close to corners or jump discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1980)

    MATH  Google Scholar 

  2. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Harten, A.: Multiresolution representation of data II. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amat, S., Aràndiga, F., Cohen, A., Donat, R., Garcia, G., von Oehsen, M.: Data compression with ENO schemes: a case study. Appl. Comput. Harmon. Anal. 11(2), 273–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194(2), 632–658 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, A., Dyn, N., Matei, B.: Quasi linear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amat, S., Busquier, S., Trillo, J.C.: On multiresolution schemes using a stencil selection procedure: applications to ENO schemes. Numer. Algorithms 44(1), 45–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83(1), 148–184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aràndiga, F., Donat, R., Mulet, P.: Adaptive interpolation of images. Signal Process. 83(2), 459–464 (2003)

    Article  MATH  Google Scholar 

  12. Aràndiga, F., Cohen, A., Donat, R., Dyn, N.: Interpolation and approximation of piecewise smooth functions. SIAM J. Numer. Anal. 43(1), 41–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards \(c^s\) functions with \(s>1\). Math. Comput. 80(80), 959–971 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Amat, S., Liandrat, J.: On the stability of the PPH nonlinear multiresolution. Appl. Comput. Harm. Anal. 18(2), 198–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Amat, S., Liandrat, J., Ruiz, J., Trillo, J.: On a compact non-extrapolating scheme for adaptive image interpolation. J. Frankl. Inst. 349(5), 1637–1647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Amat, S., Dadourian, K., Liandrat, J., Ruiz, J., Trillo, J.C.: On a class of \(L^1\)-stable nonlinear cell-average multiresolution schemes. J. Comput. Appl. Math. 234(4), 1129–1139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Amat, S., Liandrat, J., Ruiz, J., Trillo, J.: On a nonlinear cell-average multiresolution scheme for image compression. SeMA J. 1(60), 75–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Amat, S., Ruiz, J., Trillo, J.C.: Adaptive interpolation of images using a new nonlinear cell-average scheme. Math. Comput. Simul. 82(9), 1586–1596 (2012)

    Article  MathSciNet  Google Scholar 

  19. Amat, S., Dadourian, K., Liandrat, J.: Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms. Adv. Comput. Math. 34(3), 253–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Amat, S., Donat, R., Liandrat, J., Trillo, J.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found. Comput. Math. 6(2), 193–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Amat, S., Ruiz, J., Trillo, J.C.: Improving the compression rate versus \(L^1\) error ratio in cell-average error control algorithms. Numer. Algorithms 67(1), 145–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algorithms 23(2–3), 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aràndiga, F., Belda, A., Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43(2), 158–182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Amat, S., Dadourian, K., Liandrat, J.: On a nonlinear 4-point ternary and interpolatory multiresolution scheme eliminating the Gibbs phenomenom. Int. J. Numer. Anal. Model. 2(7), 261–280 (2010)

    Google Scholar 

  25. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics). SIAM, Philadelphia (2006)

    Book  Google Scholar 

  28. Li, Z., Lai, M.-C.: The immersed interface method for the Navier–Stokes equations with singular forces. J. Comput. Phys. 1(171), 822–842 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Inc., Upper Saddle River (2002)

    Google Scholar 

  30. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representation. Signal Process. 82(4), 587–608 (2002)

    Article  MATH  Google Scholar 

  31. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their useful suggestions and comments that, with no doubt, have helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ruiz.

Additional information

Sergio Amat has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714 and through the national research Project MTM2015-64382-P (MINECO/FEDER). Zhilin Li has been partially supported supported by the NSF Grant DMS-1522768. Juan Ruiz has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714, through the national research Project MTM2015-64382-P (MINECO/FEDER) and by the Fundación Seneca through the young researchers program Jiménez de la Espada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amat, S., Li, Z. & Ruiz, J. On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method. J Sci Comput 75, 1500–1534 (2018). https://doi.org/10.1007/s10915-017-0596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0596-3

Keywords

Mathematics Subject Classification

Navigation