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Entropy conservation and stability of numerical methods in gas dynamics have
received much interest. Entropy conservative numerical fluxes can be used as in-
gredients in two kinds of schemes: Firstly, as building blocks in the subcell flux
differencing form of Fisher and Carpenter (2013) and secondly (enhanced by dissi-
pation) as numerical surface fluxes in finite volume like schemes.

The purpose of this article is threefold. Firstly, the flux differencing theory is
extended, guaranteeing high-order for general symmetric and consistent numerical
fluxes and investigating entropy stability in a generalised framework of summation-
by-parts operators applicable to multiple dimensions and simplex elements. Sec-
ondly, a general procedure to construct affordable entropy conservative fluxes is
described explicitly and used to derive several new fluxes. Finally, robustness prop-
erties of entropy stable numerical fluxes are investigated and positivity preservation
is proven for several entropy conservative fluxes enhanced with local Lax-Friedrichs
type dissipation operators. All these theoretical investigations are supplemented
with numerical experiments.

1 Introduction

During the last decades, there has been an enduring and increasing interest in entropy conser-
vation and stability of numerical methods for conservation laws. It is a topic that still needs
further research and this article shall contribute to it.

As an ingredient, entropy conservative numerical fluxes can be used in two kinds of application:
They can be used as volume fluxes in the flux differencing framework of Fisher and Carpenter
[10] and – enhanced with additional dissipation operators – as numerical fluxes in a finite volume
framework.

In this article, the theory of the flux differencing form by Fisher and Carpenter [10] is extended.
Up to now, high order has only been proven for the special entropy conservative flux of Tadmor
[26] but has been observed for a variety of other numerical fluxes. Here, high order of accuracy
is proven in general for consistent and symmetric numerical fluxes (Theorem 3.1). Secondly, for
the first time, a formulation of generalised summation-by-parts operators that can be used in
multiple dimensions and on simplex elements is used to investigate entropy conservation and
stability (Theorem 3.2).

Afterwards, the construction of affordable entropy conservative fluxes is briefly reviewed,
a general procedure (Procedure 4.1) for their derivation is distilled and several new entropy
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conservative numerical fluxes are constructed. Nevertheless, entropy conservation or stability
alone are not sufficient. In order to be robust, numerical schemes for gas dynamics also have to
satisfy the physical constraints given by positivity (non-negativity) of the density and internal
energy / pressure. Thus, additional dissipation / limiting will be necessary in general, possibly
reducing the order of the scheme. Furthermore, general results about convergence are still
unknown.

However, the aim of this article is not the investigation of convergence but the analysis of
some entropy conservative and stable schemes. Therefore, the numerical fluxes are enhanced
with several dissipation operators. Positivity preservation is investigated and most entropy
conservative fluxes enhanced with local Lax-Friedrichs type dissipation operators are proven to
preserve non-negativity of the density under a non-vanishing CFL condition (Theorem 6.1).

This article is organised as follows. At first, some well-known properties of the Euler equations
are summed up in section 2 in order to fix the notation and for further reference. Afterwards, the
extension of the flux differencing theory of Fisher and Carpenter [10] is presented in section 3.
Thereafter, several entropy conservative numerical fluxes are constructed in sections 4 and 5.
To get numerical surface fluxes usable in finite volume methods, the addition of dissipation is
discussed in section 6, especially with regard to positivity preservation. After that, the methods
are tested in section 7. Finally, the results are summed up in section 8, conclusions are drawn
and some remaining open problems are formulated.

2 Euler Equations

In this section, some well known properties of the Euler equations in two space dimensions are
given in order to fix the notation and refer to them later. The Euler equations are

∂t


%
%vx
%vy
%e


︸ ︷︷ ︸

=u

+ ∂x


%vx

%v2
x + p
%vxvy

(%e+ p)vx


︸ ︷︷ ︸

=fx(u)

+ ∂y


%vy
%vxvy
%v2
y + p

(%e+ p)vy


︸ ︷︷ ︸

=fy(u)

= 0,
(1)

where % is the density of the gas, v = (vx, vy) its speed, %v the momentum, e the specific total
energy, and p the pressure. The total energy %e can be decomposed into the internal energy %ε
and the kinetic energy 1

2%v
2, i.e. %e = %ε+ 1

2%v
2. For a perfect gas,

p = %RT = (γ − 1)%ε = (γ − 1)

(
%e− 1

2
%v2

)
, (2)

where R is the gas constant, T the (absolute) temperature, and γ the ratio of specific heats.
For air, γ = 1.4 will be used, unless stated otherwise.

The (mathematical) entropy (scaled by a constant for convenience, as chosen inter alia by [3,
15]) used is

U = − %s

γ − 1
, (3)

where the (physical) specific entropy is given by s = log p
%γ = log p−γ log %. With the associated

entropy flux F = Uv = − %s
γ−1v, smooth solutions fulfil ∂tU + ∂xFx + ∂yFy = 0, and the entropy

inequality
∂tU + ∂xFx + ∂yFy ≤ 0 (4)

will be used as an additional admissibility criterion for weak solutions.
For %, p > 0, the entropy U(u) is strictly convex, and the entropy variables

w = U ′(u) =

(
γ

γ − 1
− s

γ − 1
− %v2

2p
,
%vx
p
,
%vy
p
,−%

p

)T
(5)

can be used interchangeably with the conservative variables u. The flux potentials ψx = %vx,
ψy = %vy fulfil ψ′x/y(w) = fx/y

(
u(w)

)
and Fx/y = w · fx/y − ψx/y.
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3 Summation-by-Parts Operators and Flux Differencing

In this section, summation-by-parts operators are briefly presented in order to fix the notation.
Afterwards, the flux differencing framework of Fisher and Carpenter [10, 11] is described and
new results about properties of the resulting semidiscretisations are given.

3.1 Summation-by-Parts Operators

Summation-by-parts (SBP) operators are composed of discrete derivative operators and quadra-
ture rules. These differential and integral operators are compatible, i.e. they satisfy a discrete
analogue of the fundamental theorem of calculus or the divergence theorem in one or several
space dimensions, respectively. Since the multidimensional framework can be described nearly
as briefly as in one space dimension, multiple dimensions are considered here [14, 20].

Numerical solutions have to be represented as a vector u in a finite dimensional vector space.
In the following, nodal bases are considered, i.e. the components ui = u(ξi) are nodal values
at pairwise different points ξi. Furthermore, nonlinear operations are performed pointwise on
these nodes as in classical finite difference methods. As an example, the square of the numerical
solution represented as u is given as u2, where (u2)i = (ui)

2, and the flux f is given by the
components f

i
= f(ui).

Definition 3.1. An SBP operator on a d dimensional element Ω with order of accuracy p ∈ N
consists of the following components.

• Derivative operators Dj , j ∈ {1, . . . , d}, approximating the partial derivative in the j-th

coordinate direction. These are required to be exact for polynomials of degree ≤ p.

• A mass matrix M , approximating the L2 scalar product on Ω via

uTM v = 〈u, v〉M ≈ 〈u, v〉L2(Ω) =

∫
Ω
uv, (6)

where u, v are functions on Ω and u, v their approximations in the SBP basis (also known
as projections on the grid).

• A restriction operator R performing interpolation of functions on the volume Ω to the
boundary ∂Ω of Ω.

• A boundary mass matrix B approximating the L2 scalar product on ∂Ω via

uB
TB vB =

〈
uB, vB

〉
B
≈ 〈uB, vB〉L2(∂Ω) =

∫
∂Ω
uBvB, (7)

where uB, vB are functions on ∂Ω and uB, vB their approximations in the SBP basis (also
known as projections on the grid).

• Multiplication operators Nj , j ∈ {1, . . . , d}, performing multiplication of functions on the

boundary ∂Ω with the j-th component nj of the outer unit normal. Thus, if u is the
approximation of a function u|Ω in the SBP basis, Ru is the approximation of u|∂Ω on the
boundary and Nj Ru is the approximation of nj u|∂Ω, where nj is the j-th component of

the outer unit normal at ∂Ω.

• The restriction and boundary operators approximate uTRTBNj Rv ≈
∫
∂Ω uv nj , where

nj is the j-th component of the outer unit normal n, and this approximation has to be
exact for polynomials of degree ≤ p.

• Finally, the SBP property

M Dj +Dj
TM = RTBNj R (8)

has to be fulfilled, mimicking the divergence theorem on a discrete level∫
Ω

u (∂jv) +

∫
Ω

(∂ju) v ≈ uTM Dj v + uTDj
TM v = uTRTBNj Rv ≈

∫
∂Ω

uv nj . (9)
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In one space dimension, the index of the derivative and multiplication operators D1 , N1 will

be dropped. Furthermore, the boundary matrix is the 2× 2 identity matrix B = diag (1, 1) and
multiplication with the outer normal is given by N = diag (−1, 1).

Remark 3.1. In Definition 3.1, the order of accuracy is enforced in the usual sense (of Taylor
expansions) by requirements of exactness for polynomials up to some specific degree p.

Remark 3.2. Multi-dimensional SBP operators can be constructed via tensor products of SBP
operators in one dimension. However, genuinely multidimensional SBP operators on simplices
that are not formed as tensor products of lower dimensional operators can be constructed as
well [14]. However, coordinate directions j are still used there, as in many numerical schemes
known to the author.

Remark 3.3. Since coordinate directions j are used, multidimensional semidiscretisations can
be obtained via summing up the terms for each space dimension. Therefore, only one space
dimension is considered in the following.

3.2 Flux Differencing Form

In the flux differencing form of Fisher and Carpenter [10, 11], (two-point) numerical fluxes and
SBP operators are used to create high-order semidiscretisations of hyperbolic conservation laws.

Definition 3.2. A numerical flux fnum is a Lipschitz continuous mapping (u−, u+) 7→ fnum(u−, u+)
that is consistent with the flux f of the conservation law (1), i.e. fnum(u, u) = f(u).

Definition 3.3. A numerical flux fnum is entropy conservative (in the sense of Tadmor [25,
26]), if (wi−wk) ·fnum(ui, uk)−(ψi−ψk) = 0. Here, ui/k are conserved variables, wi/k = w(ui/k)
the corresponding entropy variables and ψi/k = ψ(ui/k) the flux potentials as in section 2.

A numerical flux fnum is entropy stable, (in the sense of Tadmor [25, 26]), if (wi − wk) ·
fnum(ui, uk)− (ψi − ψk) ≤ 0.

Definition 3.4. A numerical flux is symmetric, if fnum(ui, uk) = fnum(uk, ui).

A general semidiscretisation of a conservation law ∂tu + div f = 0 using SBP operators can
be written on one element as

∂tu = −VOL− SURF, (10)

where VOL are volume terms in the interior of the element and SURF are surface terms coupling
the elements.

Numerical fluxes are used in two different ways in semidiscretisations applying the flux dif-
ferencing form of Fisher and Carpenter [10, 11]. Firstly, numerical fluxes fnum are applied at
element boundaries in order to couple neighbouring elements as in finite volume and discon-
tinuous Galerkin methods. Secondly, numerical fluxes are used in the interior of each element
in order to form a discretisation of the divergence of the flux f . In order to distinguish these
different applications of fluxes, the second kind of fluxes will be denoted fvol, since they form
the volume terms of the semidiscretisation.

In the end, a semidiscretisation using the flux differencing form can be written as (10), where
the volume and surface terms are given by

VOLi =
∑
k

2Di,kf
vol(ui, uk), (11)

SURF = M−1RTBN
(
fnum −Rf

)
. (12)

Here, fnum contains the numerical fluxes at the interfaces between elements. In (11), the sum∑
k contains contributions from all points of the nodal basis used to represent the numerical

solutions. Heuristically, the factor 2 appears in the volume terms (11), since the volume flux fvol

can be interpreted as a mean value, containing an additional factor 1
2 . It is justified essentially

by Lemma 3.1 below.
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Remark 3.4. As mentioned in Remark 3.3, semidiscretisations in multiple space dimensions
contain additional sums over each coordinate direction; the fluxes, derivative and multiplication
operators have to be indexed by space dimension.

Remark 3.5. A first order finite volume method can be obtained in this setting as follows. The
nodal basis uses only one node inside each element (e.g. the midpoint). Thus, the solution is
constant in each element and the derivative matrix D is zero. Moreover, the 1× 1 mass matrix
is the length ∆x of the element. Thus, the volume terms (11) vanish and the surface terms
(12) become SURF = 1

∆x

(
fnum
R − fnum

L

)
, where fnum

L/R is the numerical flux at the left / right
boundary of the element.

3.3 Order of Accuracy

Fisher and Carpenter [10, Theorem 3.1] considered diagonal-norm SBP operators including
the boundary nodes and showed that the volume terms (11) of the semidiscretisation (10) are
approximations to ∂xf of the same order of accuracy as the SBP derivative operators D , if the

two-point flux fvol used is the entropy conservative one proposed by Tadmor [26],

fvol(ui, uk) =

∫ 1

0
f
(
u
(
w(ui) + t(w(uk)− w(ui))

))
dt. (13)

Here, the following generalisation of Theorem 3.1 of [10] will be proven.

Theorem 3.1. If the numerical flux fvol is smooth, consistent with the flux f , and symmetric,
the volume terms (11) are an approximation to ∂xf of the same order of accuracy as the SBP
derivative matrix D .

Remark 3.6. An analogous result holds in multiple space dimensions, if the contributions of
the coordinate directions are summed up as mentioned in Remark 3.3.

In order to prove Theorem 3.1, the following Lemma will be used.

Lemma 3.1. If the numerical flux fvol is smooth, consistent with the flux f , and symmetric, a
power series expansion of the m-th component fvol

m can be written as

fvol
m (wi, wk) = fm(wi) +

1

2
f ′m(wi) · (wk − wi) +

∑
|α|≥2

cα (wk − wi)α , (14)

where multi-index notation is used, cα are scalar coefficients, and w denotes any variable, e.g.
conservative variables, primitive variables, or entropy variables.

Here, multi-index notation [9, Appendix A.3] is used, i.e. the multi-index α = (α1, . . . , αn) ∈
Nn0 has length |α| = α1 + · · ·+ αn and for x ∈ Rn, xα := xα1

1 · · · · · xαnn . The last term in (14) is
a sum over multi-indices α of length |α| ≥ 2.

Proof of Lemma 3.1. A general power series expansion of the mapping wk 7→ fvol
m (wi, wk)

around wi is

fvol
m (wi, wi) +

∂fvol
m (wi, wk)

∂wk

∣∣∣∣∣
wk=wi

· (wk − wi) +
∑
|α|≥2

cα (wk − wi)α . (15)

Since the numerical flux fvol is consistent, i.e. fvol
m (wi, wi) = fm(wi), it suffices to prove

∂wkf
vol
m (wi, wk)

∣∣
wk=wi

= 1
2f
′
m(wi).

Denoting the partial derivative with respect to the l-th component of wk as ∂wk,lf
vol
m (wi, wk),

∂fvol
m (wi, wk)

∂wk,l

∣∣∣∣∣
wk=wi=w

= lim
δ→0

fvol
m (w,w + δel)− fvol

m (w,w)

δ

= lim
δ→0

fvol
m (w + δel, w)− fvol

m (w,w)

δ
=
∂fvol

m (wi, wk)

∂wi,l

∣∣∣∣∣
wk=wi=w

.

(16)

5



Due to this symmetry, the l-th component of directional derivative of the flux fvol
m (wi, wk) at

wi = wk = w in direction 1√
2
(1, 1)T is given by

2√
2

∂fvol
m (wi, wk)

∂wk,l

∣∣∣∣∣
wk=wi=w

= lim
δ→0

fvol
m (w + δ√

2
el, w + δ√

2
el)− fvol

m (w,w)

δ

= lim
δ→0

fm(w + δ√
2
el)− fm(w)

δ
=

1√
2

lim
δ→0

fm(w + δel)− fm(w)

δ
=

1√
2

∂fm(w)

∂wl
,

(17)

where the consistency fvol(w,w) = f(w) has been used. This proves the desired equality
∂wkf

vol
m (wi, wk)

∣∣
wk=wi

= 1
2f
′
m(wi).

Proof of Theorem 3.1. It suffices to consider a single component m of the flux. In order to
simplify the notation, this index is dropped in the following. Using Lemma 3.1, the volume
terms (11) at xi can be rewritten as∑

k

2Di,kf
vol(wi, wk) =

∑
k

2Di,kf(wi) +
∑
k

Di,kf
′(wi) · (wk − wi)

+
∑
k

Di,k

∑
|α|≥2

cα (wk − wi)α .
(18)

Since the derivative is exact for constants, i.e. D 1 = 0, the first sum on the right hand side of
(18) vanishes. By the same reason, the second sum can be rewritten as∑

k

Di,kf
′(wi) · (wk − wi) = f ′(wi) ·

∑
k

Di,kwk (19)

and is therefore of the desired order of accuracy. Finally, the third summand in (18) is a higher
order correction to the product rule. Due to the binomial theorem (in multi-index notation),∑

|α|≥2

cα(wk − wi)α =
∑
|α|≥2

cα
∑
β≤α

(
α

β

)
wβk (−wi)α−β (20)

for multi-indices α, β ∈ Nn0 . Thus, the third term in (18) is∑
|α|≥2

cα
∑
β≤α

(
α

β

)∑
k

(−wi)α−βDi,kw
β
k , (21)

where β ≤ α means ∀j : βj ≤ αj . By the product rule, a smooth function w of x satisfies

∂xw
β = ∂x

(
wβ11 . . . wβnn

)
=

n∑
j=1

βjw
β1
1 . . . w

βj−1

j−1 w
βj−1
j w

βj+1

j+1 . . . wβnn ∂xwj

=

n∑
j=1

βjw
β−ej∂xwj ,

(22)

where ej is the j-th unit vector, (ej)l = δjl. Thus, the third sum in (18) is an approximation of
the same order of accuracy as the derivative matrix D to

∑
|α|≥2

cα
∑
β≤α

(
α

β

)
(−wi)α−β

n∑
j=1

βjw
β−ej
i

∑
k

Di,kwk,j

=
∑
|α|≥2

cα

n∑
j=1

∑
β≤α

(
α

β

)
βj(−1)α−β

︸ ︷︷ ︸
w
α−ej
i

∑
k

Di,kwk,j ,

(23)
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where 1 is the vector with components 1 of the same size as wi and wk,j is the j-th component
of the vector wk approximating w at x = xk. The sum depending on β vanishes, since

∂wj (−1 + w)α = ∂wj
∑
β≤α

(
α

β

)
(−1)α−βwβ =

∑
β≤α

(
α

β

)
(−1)α−ββjwβ−ej

w=1
=⇒ 0 = αj (−1 + 1)α−ej =

∑
β≤α

(
α

β

)
(−1)α−ββj .

(24)

Thus, the volume terms (11) are an approximation of the same order of accuracy as the derivative
matrix D to ∂xf(w) at xi.

3.4 Entropy Conservation

Fisher and Carpenter [10, Theorem 3.2] considered diagonal-norm SBP operators including the
boundary nodes in one space dimension and showed that the semidiscretisation (10) using the
volume terms (11) and the surface terms (12) is semidiscretely entropy conservative if the vol-
ume flux fvol is consistent, symmetric and entropy conservative. They proved additional subcell
entropy conservation properties that are not considered here, since its extension to multidimen-
sional SBP operators on simplices does not seem clear. Instead, only entropy conservation across
elements will be considered. Here, the following generalisation / variation of Theorem 3.2 of
[10] will be proven.

Theorem 3.2. If the numerical (volume) flux fvol is consistent with f , symmetric, and entropy
conservative, the nodal mass matrix M is diagonal, and the boundary operator RTBN R is
diagonal, too, the semidiscrete scheme (10) is entropy conservative / stable across elements, if
the numerical (surface) flux fnum is entropy conservative / stable.

Proof of Theorem 3.2. In the semidiscrete scheme (10), the rate of change of the total entropy∫
Ω U is given as d

dt

∫
Ω U = wTM ∂tu. Multiplying the volume term (11) with wTM results in∑

i,k

2wi ·
[
M D

]
i,k
fvol
i,k =

∑
i,k

wi ·
[
M D +RTBN R −DTM

]
i,k
fvol
i,k , (25)

where fvol
i,k = fvol(ui, uk). Since the mass matrix M is diagonal,∑

i,k

wi ·
[
M D −DTM

]
i,k
fvol
i,k =

∑
i,k

(MiiDik −MkkDki)wi · fvol
i,k

=
∑
i,k

MiiDik(wi − wk) · fvol
i,k ,

(26)

where the indices i, j have been exchanged in the second part of the sum, using the symmetry
of fvol. Then, by entropy conservation (wi − wk) · fvol

i,k = ψi − ψk,∑
i,k

MiiDik(wi − wk) · fvol
i,k =

∑
i,k

MiiDik(ψi − ψk) = −
∑
i,k

MiiDikψk

=−
∑
i,k

[
M D

]
ik
ψk = −

∑
i,k

[
RTBN R −DTM

]
ik
ψk = −

∑
i,k

[
RTBN R

]
ik
ψk,

(27)

since the derivative D is exact for constants, i.e. D 1 = 0.

The boundary term with the diagonal matrix RTBN R can be written as∑
i,k

wi ·
[
RTBN R

]
i,k
fvol
i,k =

∑
k

[
RTBN R

]
k,k
wk · fvol

k,k︸︷︷︸
=fk

,
(28)

since the volume flux fvol is consistent with the flux f . Therefore, the total expression becomes∑
i,k

2wi ·
[
M D

]
i,k
fvol
i,k =

∑
k

[
RTBN R

]
k,k

(wk · fk − ψk)︸ ︷︷ ︸
=Fk

=
∑
i,k

[
RTBN R

]
i,k
Fk = 1TRTBN RF,

(29)

7



since the entropy flux F is given by F = w · f − ψ.

The surface term (12) multiplied with wTM is wTRTBN
(
fnum −Rf

)
. Thus, the semidis-

crete rate of change of the entropy U in one element is

wTM ∂tu = −1TRTBN RF − wTRTBN
(
fnum −Rf

)
. (30)

Since RTBN R is diagonal, 1TRTBN RF = wTRTBN Rf − 1TRTBN Rψ. Therefore,

wTM ∂tu = 1TRTBN Rψ − wTRTBN fnum. (31)

Since the numerical flux is defined per boundary, the contribution of one boundary between
cells with indices −,+ is given as

(w+ − w−) · fnum − (ψ+ − ψ−), (32)

which vanishes for an entropy conservative flux fnum and is non-positive for an entropy stable
flux.

Remark 3.7. A multi-dimensional analogue of Theorem 3.2 can be obtained if the contribu-
tions of the coordinate directions are summed up as mentioned in Remark 3.3. However, the
assumption of diagonal mass and boundary matrices is still crucial. To the author’s knowledge,
there are no known SBP operators on simplices in general with diagonal RTBNj R . In the

framework of Hicken et al. [14], this operator is called Ej and they mention (Remark 4 in sec-
tion 4.2) that they have not been able to get diagonal operators that are sufficiently accurate.
However, using tensor products of Lobatto-Legendre nodes in cubes, these operators are diago-
nal. Additionally, it can be conjectured that it is possible to get diagonal operators RTBNj R if

enough nodes are added at the boundaries. However, this would probably reduce the efficiency
of the scheme.

Remark 3.8. To sum up, the semidiscretisation (10) using the flux differencing form of the
volume terms (11) and surface terms (12) with entropy stable numerical fluxes is entropy stable
and high order accurate. However, additional dissipation will still be needed in general if
discontinuities appear. Thus, it should only be considered as an entropy stable baseline scheme.

4 Entropy Conservative Fluxes

In the semidiscrete setting of Tadmor [25, 26], an entropy conservative numerical flux has to
fulfil

[[w]] · fnum,j − [[ψj ]] = 0, (33)

where w are the entropy variables (5), fnum,j is the numerical flux in space direction j, ψj is
the flux potential in space direction j, and

[[a]] = a+ − a− (34)

denotes the jump of a quantity, cf. Definition 3.3. Since the flux fj is the gradient of the
potential ψj , i.e. fj = ∂wψj , the condition (33) for an entropy conservative flux determines
fnum,j as an appropriate mean value of fj . Indeed, the entropy conservative flux proposed by
Tadmor [26, Equation (4.6a)] has the form of an integral mean

fnum,j(w−, w+) =

∫ 1

s=0
fj

(
u
(
w− + s(w+ − w−)

))
ds. (35)

However, this integral mean value is difficult to compute in general. Tadmor [25, Theorem 6.1]
proposed another integral mean based on a piecewise linear path in phase space to compute an
integral mean similar to (35). Nevertheless, another approach will be used here.

Following the well-known proverb “Differentiation is mechanics, integration is art.”, the in-
tegral mean can be exchanged by some kind of differential mean. Sadly, there is no differential

8



mean value theorem giving some kind of numerical flux fulfilling (33) directly in general. How-
ever, the mean value theorem can be used for scalar variables. Indeed, if a scalar conservation
law is considered, both the flux potential ψ and the entropy variable w in (33) are scalar. Thus,
the entropy conservative flux fnum,j is uniquely determined as fnum,j = [[ψj ]]/[[w]] for [[w]] 6= 0.

A similar procedure can be used for systems of conservation laws, where the entropy variables
w are vector-valued. Thus, expressing both the entropy variables and the flux potential in a
common set of scalar variables (e.g. primitive variables), differential mean values can be used
for each scalar variable. There are several mean values that can be used for this task. The
simplest one is the arithmetic mean

{{a}} = (a− + a+)/2, (36)

with corresponding product and chain rule

[[ab]] = {{a}}[[b]] + {{b}}[[a]], [[a2]] = 2{{a}}[[a]]. (37)

This is enough to get some entropy conservative fluxes for the shallow water equations, since
the entropy variables w and the flux potential ψ can be expressed as polynomials in both
the primitive variables and the entropy variables [21]. However, this is not true for the Euler
equations. Therefore, other means have to be used. Roe [22] proposed the logarithmic mean

{{a}}log =
a+ − a−

log a+ − log a−
, (38)

described in [15], including a numerically stable implementation. The corresponding chain rule
reads as

[[ log a]] = [[a]]/{{a}}log. (39)

As an example, the derivation of the entropy conservative flux of [22] is carried out in section 4.1.
Thereafter, the basic idea is distilled as Procedure 4.1 in section 4.2. Afterwards, the framework
of kinetic energy preserving fluxes of [16] is presented and commented in section 4.3. Finally,
the entropy conservative numerical flux of [3] is given and several new fluxes are constructed.
While the fluxes of[22] and [3] in sections 4.1 and 4.4 are well-known in the literature, the other
ones are new.

4.1 Using
√

%
p
,
√

%
p
v,
√
%p as Variables

The entropy conservative flux of [15, 22] can be derived using the variables

z1 :=

√
%

p
, z2 :=

√
%

p
vx, z3 :=

√
%

p
vy, z5 :=

√
%p. (40)

In these variables, the flux potentials ψx/y = %vx/y, the entropy s, and the entropy variables w
(5) are given by

ψx = z2z5, ψy = z3z5, s = −(γ + 1) log z1 − (γ − 1) log z5, (41)

w =

(
γ

γ − 1
− s

γ − 1
− 1

2
z2

2 −
1

2
z2

3 , z1z2, z1z3, −z2
1

)T
.

Thus, the jumps can be expressed using the chain rules / discrete differential mean value theo-
rems (37) and (39) as

[[w1]] =− 1

γ − 1
[[s]]− 1

2
[[z2

2 ]]− 1

2
[[z2

3 ]] =
γ + 1

γ − 1
[[ log z1]] + [[ log z5]]− 1

2
[[z2

2 ]]− 1

2
[[z2

3 ]]

=
γ + 1

γ − 1

1

{{z1}}log

[[z1]] +
1

{{z5}}log

[[z5]]− {{z2}}[[z2]]− {{z3}}[[z3]],
(42)

[[w2]] = [[z1z2]] = {{z1}}[[z2]] + {{z2}}[[z1]], [[w3]] = [[z1z3]] = {{z1}}[[z3]] + {{z3}}[[z1]], (43)

9



[[w4]] = −[[z2
1 ]] = −2{{z1}}[[z1]], [[ψx]] = [[z2z5]] = {{z2}}[[z5]] + {{z5}}[[z2]],

and the entropy conservation conditions [[w]]·fnum,x−[[ψx]] = 0 (33) becomes (fnum,y analogously)

0 =

(
γ + 1

γ − 1

1

{{z1}}log

fnum,x
% + {{z2}}fnum,x

%vx + {{z3}}fnum,x
%vy − 2{{z1}}fnum,x

%e

)
[[z1]]

+
(
−{{z2}}fnum,x

% + {{z1}}fnum,x
%vx − {{z5}}

)
[[z2]] +

(
−{{z3}}fnum,x

% + {{z1}}fnum,x
%vy

)
[[z3]]

+

(
1

{{z5}}log

fnum,x
% − {{z2}}

)
[[z5]].

(44)

Thus, the fluxes (fnum,y analogously)

fnum,x
% = {{z2}}{{z5}}log, f

num,x
%vx =

{{z2}}
{{z1}}

fnum,x
% +

{{z5}}
{{z1}}

, fnum,x
%vy =

{{z3}}
{{z1}}

fnum,x
% , (45)

fnum,x
%e =

1

2

γ + 1

γ − 1

1

{{z1}}{{z1}}log

fnum,x
% +

1

2

{{z2}}
{{z1}}

fnum,x
%vx

+
1

2

{{z3}}
{{z1}}

fnum,x
%vy

,

proposed (in one space dimension) in [15, 22] can be seen to be consistent and entropy con-
servative. However, by this choice of variables z, the pressure influences the numerical density
flux. As explained by Derigs et al. [6], this can lead to problems if there are discontinuities in
the pressure, see also Remark 6.2 and the numerical tests in section 7.

4.2 General Procedure to Construct Affordable Entropy Conservative Fluxes

The general procedure to construct affordable entropy conservative fluxes that has been men-
tioned in the introduction of this section has been exemplified in the previous section 4.1.
Similarly, the affordable, entropy conservative numerical flux of [3] can be constructed using the
same general approach that can be described as

Procedure 4.1. 1. Express the flux potentials ψ and the entropy variables w (5) using the
chosen set of variables.

2. Express the jumps of ψ,w as products of some mean values and jumps of the chosen
variables using some kind of product/chain rule as in the mean value theorem.

4.3 Kinetic Energy Preservation

Besides entropy conservation / stability (cf. Definition 3.3), kinetic energy preservation has
been proposed as a desirable property of numerical fluxes for the Euler equations (1) and has
therefore been used as a design criterion [3, 12, 16]. The kinetic energy 1

2%v
2 satisfies (for smooth

solutions)

∂t

(
1

2
%v2

)
+ ∂x

(
1

2
%v2vx

)
+ ∂y

(
1

2
%v2vy

)
+ vx∂xp+ vy∂yp = 0. (46)

In order to mimic this behaviour discretely in one space dimension, Jameson [16, Equation
(2.23)] formulated the following condition, also used in [3, Section 3] and [12, Equation (3.23)].

Definition 4.1. A numerical flux for the Euler equations (1) is said to be kinetic energy
preserving, if the momentum flux fnum

%v can be written as fnum
%v = {{v}}fnum

% + pnum, where pnum

is a consistent approximation of the pressure.

Remark 4.1. Every consistent numerical flux fnum
%v can be written in the form required in

Definition 4.1, if some differences are accepted, i.e. if pnum = fnum
%v − {{v}}fnum

% is accepted as
numerical approximation of the pressure. Thus, Definition 4.1 alone does not seem to yield a
useful criterion for the construction of numerical fluxes, i.e. the structural property “kinetic
energy preserving” is not well-defined.
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Remark 4.2. In this article, some properties of numerical fluxes proposed in the literature as
desirable design criteria are used, including entropy conservation / stability (Definition 3.3) and
kinetic energy preservation (Definition 4.1). It is not the purpose of this article to judge these
criteria or attempt to use them for convergence proofs. However, as described in Remark 4.1,
the property “kinetic energy preserving” should be considered carefully. Furthermore, robust-
ness properties of entropy conservative numerical fluxes enhanced with additional dissipation
operators are investigated in section 6. There, some fluxes fulfilling an additional structural
property are proven to preserve the non-negativity of the density under a non-vanishing CFL
condition.

4.4 Using %, v, β as Variables

Using the inverse of the temperature

β =
1

2RT
=

%

2p
, (47)

Chandrashekar [3] derived some entropy conservative fluxes. The flux potential and the entropy
variables are

ψx = %vx, ψy = %vy, (48)

w =

(
γ

γ − 1
− s

γ − 1
− βv2, 2βvx, 2βvy, −2β

)T
, s = log

p

%γ
= − log β − (γ − 1) log %− log 2.

(49)

4.4.1 Variant 1

Writing the jumps using the chain rules (37) and (39) as

[[w1]] =− 1

γ − 1
[[s]]− [[βv2]] = [[ log %]] +

1

γ − 1
[[ log β]]− [[βv2]]

=
1

{{%}}log

[[%]] +
1

γ − 1

1

{{β}}log

[[β]]− {{v2
x}}[[β]]− {{v2

y}}[[β]]− 2{{β}}{{vx}}[[vx]]− 2{{β}}{{vy}}[[vy]],

[[w2]] =2[[βvx]] = 2{{β}}[[vx]] + 2{{vx}}[[β]],

[[w3]] =2[[βvy]] = 2{{β}}[[vy]] + 2{{vy}}[[β]],

[[w4]] =− 2[[β]],

[[ψx]] =[[%vx]] = {{%}}[[vx]] + {{vx}}[[%]],

[[ψy]] =[[%vy]] = {{%}}[[vy]] + {{vy}}[[%]],
(50)

the entropy conservation conditions [[w]] · fnum,x/y − [[ψx/y]] = 0 (33) become

0 =

(
1

{{%}}log

fnum,x
% − {{vx}}

)
[[%]] +

(
−2{{β}}{{vx}}fnum,x

% + 2{{β}}fnum,x
%vx − {{%}}

)
[[vx]]

+
(
−2{{β}}{{vy}}fnum,x

% + 2{{β}}fnum,x
%vy

)
[[vy]] +

(
1

γ − 1

1

{{β}}log

fnum,x
% − {{v2

x}}fnum,x
%

− {{v2
y}}fnum,x

% + 2{{vx}}fnum,x
%vx + 2{{vy}}fnum,x

%vy − 2fnum,x
%e

)
[[β]],

0 =

(
1

{{%}}log

fnum,y
% − {{vy}}

)
[[%]] +

(
−2{{β}}{{vx}}fnum,y

% + 2{{β}}fnum,y
%vx

)
[[vx]]

+
(
−2{{β}}{{vy}}fnum,y

% + 2{{β}}fnum,y
%vy − {{%}}

)
[[vy]] +

(
1

γ − 1

1

{{β}}log

fnum,y
% − {{v2

x}}fnum,y
%

− {{v2
y}}fnum,y

% + 2{{vx}}fnum,y
%vx + 2{{vy}}fnum,y

%vy − 2fnum,y
%e

)
[[β]].

(51)
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Thus, the fluxes

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}

2{{β}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

1

2(γ − 1)

1

{{β}}log

fnum,x
% −

{{v2
x}}+ {{v2

y}}
2

fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},
fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}

2{{β}} ,

fnum,y
%e =

1

2(γ − 1)

1

{{β}}log

fnum,y
% −

{{v2
x}}+ {{v2

y}}
2

fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy ,

(52)
proposed by Chandrashekar [3] can be seen to be entropy conservative. Since p = %

2β , they
are consistent. Additionally, they are kinetic energy preserving with numerical pressure flux

pnum =
{{%}}

2{{β}} .

4.4.2 Variant 2

Choosing another possibility to split the jumps

[[βv2
x/y]] ={{βvx/y}}[[vx/y]] + {{vx/y}}[[βvx/y]]

={{βvx/y}}[[vx/y]] + {{β}}{{vx/y}}[[vx/y]] + {{vx/y}}2[[β]],
(53)

the entropy conservation conditions (33) can be written as

0 =

(
1

{{%}}log

fnum,x
% − {{vx}}

)
[[%]]

+
(
−{{βvx}}fnum,x

% − {{β}}{{vx}}fnum,x
% + 2{{β}}fnum,x

%vx − {{%}}
)

[[vx]]

+
(
−{{βvy}}fnum,x

% − {{β}}{{vy}}fnum,x
% + 2{{β}}fnum,x

%vy

)
[[vy]]

+

(
1

γ − 1

1

{{β}}log

fnum,x
% − {{v2

x}}fnum,x
% − {{v2

y}}fnum,x
%

+ 2{{vx}}fnum,x
%vx + 2{{vy}}fnum,x

%vy − 2fnum,x
%e

)
[[β]],

0 =

(
1

{{%}}log

fnum,y
% − {{vy}}

)
[[%]]

+
(
−{{βvx}}fnum,y

% − {{β}}{{vx}}fnum,y
% + 2{{β}}fnum,y

%vx

)
[[vx]]

+
(
−{{βvy}}fnum,y

% − {{β}}{{vy}}fnum,y
% + 2{{β}}fnum,y

%vy − {{%}}
)

[[vy]]

+

(
1

γ − 1

1

{{β}}log

fnum,y
% − {{v2

x}}fnum,y
% − {{v2

y}}fnum,y
%

+ 2{{vx}}fnum,y
%vx + 2{{vy}}fnum,y

%vy − 2fnum,y
%e

)
[[β]].

(54)
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Thus, the fluxes

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx =

{{βvx}}+ {{β}}{{vx}}
2{{β}} fnum,x

% +
{{%}}

2{{β}} ,

fnum,x
%vy =

{{βvy}}+ {{β}}{{vy}}
2{{β}} fnum,x

% ,

fnum,x
%e =

1

2(γ − 1)

1

{{β}}log

fnum,x
% −

{{v2
x}}+ {{v2

y}}
2

fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},

fnum,y
%vx =

{{βvx}}+ {{β}}{{vx}}
2{{β}} fnum,y

% ,

fnum,y
%vy =

{{βvy}}+ {{β}}{{vy}}
2{{β}} fnum,y

% +
{{%}}

2{{β}} ,

fnum,y
%e =

1

2(γ − 1)

1

{{β}}log

fnum,y
% −

{{v2
x}}+ {{v2

y}}
2

fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy ,

(55)
proposed by Chandrashekar [3] can be seen to be entropy conservative. Since the property
“kinetic energy preserving” is not well-defined, they could possibly be considered as kinetic
energy preserving, cf. Remark 4.1.

4.5 Using %, v, 1
p

as Variables

Using the variables %, v, 1
p , the flux potentials and the entropy variables (5) can be written as

ψx = %vx, ψy = %vy, (56)

w =

(
γ

γ − 1
− s

γ − 1
− %v2

2p
,
%vx
p
,
%vy
p
, −%

p

)T
, s = log

p

%γ
= − log

1

p
− γ log %. (57)

One variant to write the jumps is given by setting

[[w1]] =− 1

γ − 1
[[s]]− 1

2[[%v2

p ]] =
1

γ − 1[[ log
1

p
+ γ log %]]− 1

2[[%v2

p ]]
=

1

γ − 1

1

{{p−1}}
log

[[p−1]] +
γ

γ − 1

1

{{%}}log

[[%]]− {{%p}}{{vx}}[[vx]]

− {{%p}}{{vy}}[[vy]]− {{%}}{{v
2
x}}+ {{v2

y}}
2

[[p−1]]−
{{v2

x}}+ {{v2
y}}

2
{{p−1}}[[%]],

[[w2]] =[[%vxp ]] = {{%p}}[[vx]] + {{%}}{{vx}}[[p−1]] + {{vx}}{{p−1}}[[%]],

[[w3]] =[[%vyp ]] = {{%p}}[[vy]] + {{%}}{{vy}}[[p−1]] + {{vy}}{{p−1}}[[%]],

[[w4]] =− [[%p ]] = −{{%}}[[p−1]]− {{p−1}}[[%]],

[[ψx]] =[[%vx]] = {{%}}[[vx]] + {{vx}}[[%]],

[[ψy]] =[[%vy]] = {{%}}[[vy]] + {{vy}}[[%]].

(58)
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Therefore, the entropy conservation conditions (33) can be written as

0 =

(
γ

γ − 1

1

{{%}}log

fnum,x
% −

{{v2
x}}+ {{v2

y}}
2

{{p−1}}fnum,x
% + {{p−1}}{{vx}}fnum,x

%vx

+ {{p−1}}{{vy}}fnum,x
%vy − {{p−1}}fnum,x

%e − {{vx}}
)

[[%]]

+

(
−{{%p}}{{vx}}fnum,x

% + {{%p}}fnum,x
%vx − {{%}}

)
[[vx]] +

(
−{{%p}}{{vy}}fnum,x

% + {{%p}}fnum,x
%vy

)
[[vy]]

+

(
1

γ − 1

1

{{p−1}}
log

fnum,x
% − {{%}}

{{v2
x}}+ {{v2

y}}
2

fnum,x
% + {{%}}{{vx}}fnum,x

%vx

+ {{%}}{{vy}}fnum,x
%vy − {{%}}fnum,x

%e

)
[[p−1]],

(59)

0 =

(
γ

γ − 1

1

{{%}}log

fnum,y
% −

{{v2
x}}+ {{v2

y}}
2

{{p−1}}fnum,y
% + {{p−1}}{{vx}}fnum,y

%vx

+ {{p−1}}{{vy}}fnum,y
%vy − {{p−1}}fnum,y

%e − {{vy}}
)

[[%]]

+

(
−{{%p}}{{vx}}fnum,y

% + {{%p}}fnum,y
%vx

)
[[vx]] +

(
−{{%p}}{{vy}}fnum,y

% + {{%p}}fnum,y
%vy − {{%}}

)
[[vy]]

+

(
1

γ − 1

1

{{p−1}}
log

fnum,y
% − {{%}}

{{v2
x}}+ {{v2

y}}
2

fnum,y
% + {{%}}{{vx}}fnum,y

%vx

+ {{%}}{{vy}}fnum,y
%vy − {{%}}fnum,y

%e

)
[[p−1]].

(60)
Thus, the fluxes

fnum,x



fnum,x
% = (γ − 1)

 γ

{{%}}log

− {{p−1}}
{{p−1}}

log{{%}}

−1

{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{%/p}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

 1

γ − 1

1

{{p−1}}
log{{%}}

+ {{vx}}2 + {{vy}}2 −
{{v2

x}}+ {{v2
y}}

2

 fnum,x
% +

{{%}}{{vx}}
{{%/p}} ,

fnum,y



fnum,y
% = (γ − 1)

 γ

{{%}}log

− {{p−1}}
{{p−1}}

log{{%}}

−1

{{vy}},

fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{%/p}} ,

fnum,y
%e =

 1

γ − 1

1

{{p−1}}
log{{%}}

+ {{vx}}2 + {{vy}}2 −
{{v2

x}}+ {{v2
y}}

2

 fnum,y
% +

{{%}}{{vy}}
{{%/p}} ,

(61)
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can be seen to be entropy conservative and consistent. Additionally, they are kinetic energy

preserving with numerical pressure flux pnum =
{{%}}
{{%/p}} .

Again, similarly to the flux (45) of Ismail and Roe [15] and Roe [22], the pressure influences
the numerical density flux, leading to some problems as explained by Derigs, Winters, Gassner,
and Walch [6], see also Remark 6.2 and the numerical tests in section 7.

4.6 Using %, v, p as Variables

Using the variables %, v, p, the flux potentials and the entropy variables (5) can be written as

ψx = %vx, ψy = %vy, (62)

w =

(
γ

γ − 1
− s

γ − 1
− %v2

2p
,
%vx
p
,
%vy
p
, −%

p

)T
, s = log

p

%γ
= log p− γ log %. (63)

In order to handle the terms 1
p , a new mean value has to be used. Since

[[ 1a ]] =
1

a+
− 1

a−
=
a− − a+

a+a−
, (64)

the geometric mean
{{a}}geo :=

√
a+a−, (65)

fulfils

[[ 1a ]] = − 1

{{a}}2geo

[[a]]. (66)

One variant to write the jumps is

[[w1]] =− 1

γ − 1
[[s]]− 1

2[[%v2

p ]] =
1

γ − 1
[[− log p+ γ log %]]− 1

2[[%v2

p ]]
=− 1

γ − 1

1

{{p}}log

[[p]] +
γ

γ − 1

1

{{%}}log

[[%]]− {{%p}}{{vx}}[[vx]]

− {{%p}}{{vy}}[[vy]] + {{%}}
{{v2

x}}+ {{v2
y}}

2{{p}}2geo

[[p]]−
{{v2

x}}+ {{v2
y}}

2
{{p−1}}[[%]],

[[w2]] =[[%vxp ]] = {{%p}}[[vx]]− {{%}}{{vx}}
{{p}}2geo

[[p]] + {{p−1}}{{vx}}[[%]],

[[w3]] =[[%vyp ]] = {{%p}}[[vy]]− {{%}}{{vy}}{{p}}2geo

[[p]] + {{p−1}}{{vy}}[[%]],

[[w4]] =− [[%p ]] =
{{%}}
{{p}}2geo

[[p]]− {{p−1}}[[%]],

[[ψ]] =[[%v]] = {{%}}[[v]] + {{v}}[[%]].

(67)
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Therefore, the entropy conservation conditions (33) can be written as

0 =

(
γ

γ − 1

1

{{%}}log

fnum,x
% −

{{v2
x}}+ {{v2

y}}
2

{{p−1}}fnum,x
% + {{p−1}}{{vx}}fnum,x

%vx

+ {{p−1}}{{vy}}fnum,x
%vy − {{p−1}}fnum,x

%e − {{vx}}
)

[[%]]

+

(
−{{%p}}{{vx}}fnum,x

% + {{%p}}fnum,x
%vx − {{%}}

)
[[vx]] +

(
−{{%p}}{{vy}}fnum,x

% + {{%p}}fnum,x
%vy

)
[[vy]]

+

(
− 1

γ − 1

1

{{p}}log

fnum,x
% + {{%}}

{{v2
x}}+ {{v2

y}}
2{{p}}2geo

fnum,x
% − {{%}}{{vx}}

{{p}}2geo

fnum,x
%vx

− {{%}}{{vy}}
{{p}}2geo

fnum,x
%vy +

{{%}}
{{p}}2geo

fnum,x
%e

)
[[p]],

(68)

0 =

(
γ

γ − 1

1

{{%}}log

fnum,y
% −

{{v2
x}}+ {{v2

y}}
2

{{p−1}}fnum,y
% + {{p−1}}{{vx}}fnum,y

%vx

+ {{p−1}}{{vy}}fnum,y
%vy − {{p−1}}fnum,y

%e − {{vy}}
)

[[%]]

+

(
−{{%p}}{{vx}}fnum,y

% + {{%p}}fnum,y
%vx

)
[[vx]] +

(
−{{%p}}{{vy}}fnum,y

% + {{%p}}fnum,y
%vy − {{%}}

)
[[vy]]

+

(
− 1

γ − 1

1

{{p}}log

fnum,y
% + {{%}}

{{v2
x}}+ {{v2

y}}
2{{p}}2geo

fnum,y
% − {{%}}{{vx}}

{{p}}2geo

fnum,y
%vx

− {{%}}{{vy}}
{{p}}2geo

fnum,y
%vy +

{{%}}
{{p}}2geo

fnum,y
%e

)
[[p]].

(69)
Thus, the fluxes

fnum,x



fnum,x
% = (γ − 1)

 γ

{{%}}log

−
{{p−1}}{{p}}2geo

{{%}}{{p}}log

−1

{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{%/p}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

 1

γ − 1

{{p}}2geo

{{%}}{{p}}log

+ {{vx}}2 + {{vy}}2 −
{{v2

x}}+ {{v2
y}}

2

 fnum,x
% +

{{%}}{{v}}
{{%/p}} ,

fnum,y



fnum,y
% = (γ − 1)

 γ

{{%}}log

−
{{p−1}}{{p}}2geo

{{%}}{{p}}log

−1

{{vy}},

fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{%/p}} ,

fnum,y
%e =

 1

γ − 1

{{p}}2geo

{{%}}{{p}}log

+ {{vx}}2 + {{vy}}2 −
{{v2

x}}+ {{v2
y}}

2

 fnum,y
% +

{{%}}{{v}}
{{%/p}} ,

(70)
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can be seen to be entropy conservative and consistent. Additionally, they are kinetic energy

preserving with numerical pressure flux pnum =
{{%}}
{{%/p}} .

As before, the pressure influences the numerical density flux, leading to some problems as
explained by Derigs, Winters, Gassner, and Walch [6], see also Remark 6.2 and the numerical
tests in section 7.

4.7 Using %, v, T as Variables

Using the variables %, v, and RT = p
% , the flux potentials and the entropy variables (5) can be

written as

ψx = %vx, ψy = %vy, (71)

w =

(
γ

γ − 1
− s

γ − 1
− v2

2RT
,
vx
RT

,
vy
RT

,− 1

RT

)T
, s = log

p

%γ
= logRT − (γ − 1) log %. (72)

4.7.1 Variant 1

One way to write the jumps is

[[w1]] =− 1

γ − 1
[[s]]− 1

2
[[ v2

RT
]] = − 1

γ − 1
[[ logRT ]] + [[ log %]]− 1

2
[[ v2

RT
]]

=− 1

γ − 1

1

{{RT}}log

[[RT ]] +
1

{{%}}log

[[%]]− {{ 1

RT }}{{vx}}[[vx]]− {{ 1

RT }}{{vy}}[[vy]]
+
{{v2

x}}+ {{v2
y}}

2{{RT}}2geo

[[RT ]],

[[w2]] =[[ vxRT ]] = {{ 1

RT }}[[vx]]− {{vx}}
{{RT}}2geo

[[RT ]],

[[w3]] =[[ vyRT ]] = {{ 1

RT }}[[vy]]− {{vy}}
{{RT}}2geo

[[RT ]],

[[w4]] =− [[ 1

RT ]] =
1

{{RT}}2geo

[[RT ]],

[[ψx]] =[[%vx]] = {{%}}[[vx]] + {{vx}}[[%]],

[[ψy]] =[[%vy]] = {{%}}[[vy]] + {{vy}}[[%]].

(73)
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Therefore, the entropy conservation conditions (33) can be written as

0 =

(
1

{{%}}log

fnum,x
% − {{vx}}

)
[[%]] +

(
−{{ 1

RT }}{{vx}}fnum,x
% + {{ 1

RT }}fnum,x
%vx − {{%}}

)
[[vx]]

+

(
−{{ 1

RT }}{{vy}}fnum,x
% + {{ 1

RT }}fnum,x
%vy

)
[[vy]]

+

(
− 1

γ − 1

1

{{RT}}log

fnum,x
% +

{{v2
x}}+ {{v2

y}}
2{{RT}}2geo

fnum,x
% − {{vx}}

{{RT}}2geo

fnum,x
%vx

− {{vy}}
{{RT}}2geo

fnum,x
%vy +

1

{{RT}}2geo

fnum,x
%e

)
[[RT ]],

0 =

(
1

{{%}}log

fnum,y
% − {{vy}}

)
[[%]] +

(
−{{ 1

RT }}{{vx}}fnum,y
% + {{ 1

RT }}fnum,y
%vx

)
[[vx]]

+

(
−{{ 1

RT }}{{vy}}fnum,y
% + {{ 1

RT }}fnum,y
%vy − {{%}}

)
[[vy]]

+

(
− 1

γ − 1

1

{{RT}}log

fnum,y
% +

{{v2
x}}+ {{v2

y}}
2{{RT}}2geo

fnum,y
% − {{vx}}

{{RT}}2geo

fnum,y
%vx

− {{vy}}
{{RT}}2geo

fnum,y
%vy +

1

{{RT}}2geo

fnum,y
%e

)
[[RT ]].

(74)

Thus, the fluxes

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{1/RT}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

 1

γ − 1

{{RT}}2geo

{{RT}}log

−
{{v2

x}}+ {{v2
y}}

2

 fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},
fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{1/RT}} ,

fnum,y
%e =

 1

γ − 1

{{RT}}2geo

{{RT}}log

−
{{v2

x}}+ {{v2
y}}

2

 fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy ,

(75)
can be seen to be entropy conservative and consistent. Additionally, they are kinetic energy

preserving with numerical pressure flux pnum =
{{%}}
{{1/RT}} , i.e. the same as for the entropy

conservative and kinetic energy preserving flux (52) proposed by Chandrashekar [3]. Moreover,
the density flux fnum

% is the same. However, the energy fluxes fnum
%e are different.
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4.7.2 Variant 2

Similarly to the derivation of (55), choosing another possibility to split the jump

[[v2
x/y

RT
]] ={{vx/yRT }}[[vx/y]] + {{vx/y}}[[vx/yRT ]]

={{vx/yRT }}[[vx/y]] + {{ 1

RT }}{{vx/y}}[[vx/y]]− {{vx/y}}
2

{{RT}}2geo

[[RT ]],

(76)

the entropy conservation conditions (33) can be written as

0 =

(
1

{{%}}log

fnum,x
% − {{vx}}

)
[[%]]

+

(
−1

2{{ vxRT }}fnum,x
% − 1

2{{ 1

RT }}{{vx}}fnum,x
% + {{ 1

RT }}fnum,x
%vx − {{%}}

)
[[vx]]

+

(
−1

2{{ vyRT }}fnum,x
% − 1

2{{ 1

RT }}{{vy}}fnum,x
% + {{ 1

RT }}fnum,x
%vy

)
[[vy]]

+

(
− 1

γ − 1

1

{{RT}}log

fnum,x
% +

{{vx}}2 + {{v2
y}}

2{{RT}}2geo

fnum,x
% − {{vx}}

{{RT}}2geo

fnum,x
%vx

− {{vy}}
{{RT}}2geo

fnum,x
%vy +

1

{{RT}}2geo

fnum,x
%e

)
[[RT ]],

(77)

0 =

(
1

{{%}}log

fnum,y
% − {{vy}}

)
[[%]]

+

(
−1

2{{ vxRT }}fnum,y
% − 1

2{{ 1

RT }}{{vx}}fnum,y
% + {{ 1

RT }}fnum,y
%vx

)
[[vx]]

+

(
−1

2{{ vyRT }}fnum,y
% − 1

2{{ 1

RT }}{{vy}}fnum,y
% + {{ 1

RT }}fnum,y
%vy − {{%}}

)
[[vy]]

+

(
− 1

γ − 1

1

{{RT}}log

fnum,y
% +

{{vx}}2 + {{v2
y}}

2{{RT}}2geo

fnum,y
% − {{vx}}

{{RT}}2geo

fnum,y
%vx

− {{vy}}
{{RT}}2geo

fnum,y
%vy +

1

{{RT}}2geo

fnum,y
%e

)
[[RT ]].

(78)
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Thus, the fluxes

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx =

{{vx/RT}}+ {{1/RT}}{{vx}}
2{{1/RT}} fnum,x

% +
{{%}}
{{1/RT}} ,

fnum,x
%vy =

{{vy/RT}}+ {{1/RT}}{{vy}}
2{{1/RT}} fnum,x

% ,

fnum,x
%e =

 1

γ − 1

{{RT}}2geo

{{RT}}log

− {{vx}}
2 + {{vy}}2

2

 fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},

fnum,y
%vx =

{{vx/RT}}+ {{1/RT}}{{vx}}
2{{1/RT}} fnum,y

% ,

fnum,y
%vy =

{{vy/RT}}+ {{1/RT}}{{vy}}
2{{1/RT}} fnum,y

% +
{{%}}
{{1/RT}} ,

fnum,y
%e =

 1

γ − 1

{{RT}}2geo

{{RT}}log

− {{vx}}
2 + {{vy}}2

2

 fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy ,

(79)
can be seen to be entropy conservative. Again, since the property “kinetic energy preserving” is
not well-defined, they could possibly be considered as kinetic energy preserving, cf. Remark 4.1.

4.8 Using %, v, g−1(%/p) as Variables

As can be seen in the previous subsections, there are many entropy conservative and kinetic
energy preserving numerical fluxes in the sense described at the beginning of section 4, obtained
using the general procedure described there. However, they are different and will thus have
advantages or disadvantages compared to each other. Looking at the entropy variables (5)

w =

(
γ

γ − 1
− s

γ − 1
− %v2

2p
,
%vx
p
,
%vy
p
,−%

p

)T
, s = log

p

%γ
, (80)

it can be seen that the term %
p has a crucial role. If the variables %, v, χ are chosen (where χ

is some third variable), and the expression %
p = g(χ) depends only on this third variable χ, a

kinetic energy preserving flux can be constructed using a density flux depending only on %, v.
Indeed, writing the jumps as

[[w1]] =− 1

γ − 1
[[s]]− 1

2[[%pv2]] = [[ log %]] +
1

γ − 1[[ log
%

p ]]− 1

2[[%pv2]]
=

1

{{%}}log

[[%]] +
1

γ − 1[[ log
%

p ]]−
{{v2

x}}+ {{v2
y}}

2 [[%p ]]− {{%p}}{{vx}}[[vx]]− {{%p}}{{vy}}[[vy]],
[[w2]] =[[%pvx]] = {{%p}}[[vx]] + {{vx}}[[%p ]],
[[w3]] =[[%pvy]] = {{%p}}[[vy]] + {{vy}}[[%p ]],
[[w4]] =− [[%p ]],
[[ψx]] =[[%vx]] = {{%}}[[vx]] + {{vx}}[[%]],

[[ψy]] =[[%vy]] = {{%}}[[vy]] + {{vy}}[[%]],

(81)
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the entropy conservation conditions [[w]] · fnum,x/y − [[ψx/y]] = 0 (33) become

0 =

(
1

{{%}}log

fnum,x
% − {{vx}}

)
[[%]] +

(
−{{%p}}{{vx}}fnum,x

% + {{%p}}fnum,x
%vx − {{%}}

)
[[vx]]

+

(
−{{%p}}{{vy}}fnum,x

% + {{%p}}fnum,x
%vy

)
[[vy]]

+

(
1

γ − 1[[ log
%

p ]]fnum,x
% −

{{v2
x}}+ {{v2

y}}
2 [[%p ]]fnum,x

% + {{vx}}[[%p ]]fnum,x
%vx

+ {{vy}}[[%p ]]fnum,x
%vy − [[%p ]]fnum,x

%e

)
,

0 =

(
1

{{%}}log

fnum,y
% − {{vy}}

)
[[%]] +

(
−{{%p}}{{vx}}fnum,y

% + {{%p}}fnum,y
%vx

)
[[vx]]

+

(
−{{%p}}{{vy}}fnum,y

% + {{%p}}fnum,y
%vy − {{%}}

)
[[vy]]

+

(
1

γ − 1[[ log
%

p ]]fnum,y
% −

{{v2
x}}+ {{v2

y}}
2 [[%p ]]fnum,y

% + {{vx}}[[%p ]]fnum,y
%vx

+ {{vy}}[[%p ]]fnum,y
%vy − [[%p ]]fnum,y

%e

)
.

(82)

Thus, the density and momentum fluxes

fnum,x


fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{%/p}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,y


fnum,y
% = {{%}}log{{vy}},
fnum,y
%vy = {{vy}}fnum,x

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{%/p}} ,

(83)

set the two terms to zero. These fluxes are the same as in (52) and (75), i.e. the same as

the ones used by Chandrashekar [3]. However, depending on the expression of [[ log %
p ]], different

energy fluxes can be constructed, resulting in entropy conservative and kinetic energy preserving
schemes.

Choosing χ = β ∝ %
p , Chandrashekar [3] set [[ log %

p ]] = 1

{{χ}}
log

[[χ]] and derived his EC and

KEP flux (52). Choosing χ = RT =
(
%
p

)−1
and setting [[ log %

p ]] = − 1

{{χ}}
log

[[χ]], the flux (75) has

been derived in section 4.7.

4.8.1 Variant 1

More generally, choosing r ∈ R \ {0}, and setting %
p = χr, the jumps become

[[ log
%

p ]] = [[ logχr]] = r[[ logχ]] =
r

{{χ}}log

[[χ]], [[%p ]] = [[χr]] =
χr+ − χr−
χ+ − χ−

[[χ]], (84)

where the mean value

{{χ}}x 7→xr :=

(
1

r

χr+ − χr−
χ+ − χ−

)1/(r−1)

(85)
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can be introduced to yield
[[χr]] = r{{χ}}r−1

x 7→xr [[χ]]. (86)

Thus, the arithmetic mean (36) becomes {{a}} = {{a}}x 7→x2 and the geometric mean (65) becomes
{{a}}geo = {{a}}x 7→1/x.

Using this mean value, entropy conservative, kinetic energy preserving, and consistent nu-
merical fluxes are

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{%/p}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

 1

γ − 1

1

{{χ}}r−1
x 7→xr{{χ}}log

−
{{v2

x}}+ {{v2
y}}

2

 fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},
fnum,y
%vy = {{vy}}fnum,x

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{%/p}} ,

fnum,y
%e =

 1

γ − 1

1

{{χ}}r−1
x 7→xr{{χ}}log

−
{{v2

x}}+ {{v2
y}}

2

 fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy .

(87)

Of course, some numerically stable procedure to compute {{χ}}r−1
x7→xr = 1

r

χr+−χr−
χ+−χ− has to be derived.

4.8.2 Variant 2

The choice %
p = expχ results in

[[ log
%

p ]] = [[ log expχ]] = [[χ]], [[%p ]] = [[ expχ]] =
expχ+ − expχ−

χ+ − χ−
[[χ]], (88)

where the mean value

{{χ}}x 7→expx := log
expχ+ − expχ−

χ+ − χ−
(89)

can be introduced to yield

[[ expχ]] = exp
(
{{χ}}x 7→expx

)
[[χ]]. (90)

Using this mean value, an entropy conservative, kinetic energy preserving, and consistent
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numerical flux is

fnum,x



fnum,x
% = {{%}}log{{vx}},

fnum,x
%vx = {{vx}}fnum,x

% +
{{%}}
{{%/p}} ,

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%e =

 1

γ − 1

1

exp{{χ}}x7→expx

−
{{v2

x}}+ {{v2
y}}

2

 fnum,x
% + {{vx}}fnum,x

%vx + {{vy}}fnum,x
%vy ,

fnum,y



fnum,y
% = {{%}}log{{vy}},
fnum,y
%vy = {{vy}}fnum,x

% ,

fnum,y
%vy = {{vy}}fnum,y

% +
{{%}}
{{%/p}} ,

fnum,y
%e =

 1

γ − 1

1

exp{{χ}}x 7→expx

−
{{v2

x}}+ {{v2
y}}

2

 fnum,y
% + {{vx}}fnum,y

%vx + {{vy}}fnum,y
%vy .

(91)
Again, some numerically stable procedure to compute exp{{χ}}x 7→expx = expχ+−expχ−

χ+−χ− has to be
derived.

4.9 Using Other Variables

Of course, some other sets of variables can be used to derive entropy conservative numerical
fluxes similar to the previous sections. However, since there is no clear intuition which choice of
variables might be “good”, this is not carried out in detail here. As noted by Derigs, Winters,
Gassner, and Walch [6], an influence of the pressure in the numerical density flux should be
avoided, see also Remark 6.2 and the numerical tests in section 7.

5 Reversing the Role of Energy and Entropy

As proposed in [5] and used in [2, Section 2.4.6] to derive an approximate Riemann solver based
on the Suliciu relaxation approach, the role of energy and entropy for the Euler equations can
be reversed, i.e. a conservation law for the entropy and an inequality for the energy can be
considered, cf. [7]. Then, the system reads

∂t


%
%vx
%vy
%s


︸ ︷︷ ︸

=u

+ ∂x


%vx

%v2
x + p
%vxvy
%svx


︸ ︷︷ ︸

=fx(u)

+ ∂y


%vy
%vxvy
%v2
y + p

%svy


︸ ︷︷ ︸

=fy(u)

= 0,
(92)

and the ’entropy’ condition becomes

∂t (%e)︸︷︷︸
=U

+∂x
(
(%e+ p)vx

)︸ ︷︷ ︸
=Fx

+∂y
(
(%e+ p)vy

)︸ ︷︷ ︸
=Fy

≤ 0. (93)

Since smooth solutions satisfy (93) with equality, they are also smooth solutions of the Euler
equations (1) with equality in the usual entropy condition (4). In the same spirit, an ’entropy’
conserving numerical flux for (92), (93) is an entropy conserving flux for (1), (4) and vice versa.

Remark 5.1. This reversion of the energy and the entropy is very specific to the Euler equa-
tions. Exchanging some conserved quantity with the entropy will in general not result in a
convex “entropy” with such nice properties as used here.
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In order to express the energy %e = 1
2%v

2 + %ε as a function of the new conserved variables
%, %v, %s, the pressure p = (γ− 1)%ε can be inserted into the specific entropy s = log p

%γ to yield

%ε =
%γ

γ − 1
exp s. (94)

Thus, the energy can be written as

%e =
1

2

(%v)2

%
+

1

γ − 1
%γ exp

(
%s

%

)
. (95)

Therefore, the new ’entropy’ variables are

w =
∂(%e)

∂(%, %vx, %vy, %s)
=


−1

2
(%v)2

%2
+ γ

γ−1%
γ−1 exp

(
%s
%

)
− 1

γ−1%
γ %s
%2

exp
(
%s
%

)
%vx
%
%vy
%

1
γ−1%

γ−1 exp
(
%s
%

)


=


−1

2v
2 + γ

γ−1%
γ−1 exp(s)− 1

γ−1%
γ−1s exp(s)

vx
vy

1
γ−1%

γ−1 exp(s)

 .

(96)

The new ’entropy’ fluxes are

Fx =(%e+ p)vx =
1

2
%v2vx + γ%εvx =

1

2
%v2vx +

γ

γ − 1
%γvx exp(s),

Fy =(%e+ p)vy =
1

2
%v2vy + γ%εvy =

1

2
%v2vy +

γ

γ − 1
%γvy exp(s),

(97)

so that the new flux potentials ψx/y fulfilling ∂wψx/y = fx/y
(
u(w)

)
become

ψx/y = w · fx/y − Fx/y =

(
−1

2
v2 +

γ

γ − 1
%γ−1 exp(s)− 1

γ − 1
%γ−1s exp(s)

)
%vx/y

+ vx/y

(
%v2
x/y + %γ exp(s)

)
+ vy/x%vx/yvy/x

+
1

γ − 1
%γ−1 exp(s)%svx/y −

1

2
%v2vx/y −

γ

γ − 1
%γvx/y exp(s)

=%γvx/y exp(s).

(98)

As before, the conditions for ’entropy’ conservation in the semidiscrete setting of Tadmor [25,
26] are [[w]] · fnum,x/y − [[ψx/y]] = 0 (33). The corresponding ’entropy’ fluxes are F num

x/y = {{w}} ·
fnum,x/y − {{ψx/y}}, i.e. the numerical energy fluxes corresponding to an ’entropy’ conservative

flux fnum,x/y for (92) are

fnum,x/y
%e = {{w}} · fnum,x/y − {{ψx/y}}, (99)

with w as in (96) and ψx/y as in (98).
Choosing v as variable and writing the jumps using the product rule (37) as

[[w1]] =− {{vx}}[[vx]]− {{vy}}[[vy]] +
γ

γ − 1
[[%γ−1 exp(s)]]− 1

γ − 1
[[%γ−1s exp(s)]],

[[w2]] =[[vx]],

[[w3]] =[[vy]],

[[w4]] =
1

γ − 1
[[%γ−1 exp(s)]],

[[ψx]] ={{%γ exp(s)}}[[vx]] + {{vx}}[[%γ exp(s)]],

[[ψy]] ={{%γ exp(s)}}[[vy]] + {{vy}}[[%γ exp(s)]],

(100)
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the coefficients of [[vx/y]] in the entropy conditions [[w]] · fnum,x/y − [[ψx/y]] = 0 become

−{{vx}}fnum,x
% + fnum,x

%vx − {{%γ exp(s)}}, −{{vy}}fnum,y
% + fnum,y

%vy − {{%γ exp(s)}}. (101)

Thus, general momentum fluxes for entropy conservative numerical fluxes can be written as

fnum,x

{
fnum,x
%vx = {{vx}}fnum,x

% + {{%γ exp(s)}} = {{vx}}fnum,x
% + {{p}},

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,y

{
fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% + {{%γ exp(s)}} = {{vy}}fnum,y
% + {{p}},

(102)

i.e. in the form proposed by Jameson [16] for a kinetic energy preserving flux (in one space
dimension). Another possibility would be to split the jump of ψx/y in some other way, resulting
in a numerical pressure flux pnum different from {{p}}.

5.1 Using %, v, T as Variables

Using the variables %, v, and RT = p
% = %γ−1 exp(s), the flux potentials ψx/y = %γvx/y exp(s)

(98) and the entropy variables (96) can be written as

ψx/y = %RTvx/y, w =


−1

2v
2 + γ

γ−1RT − 1
γ−1sRT

vx
vy

1
γ−1RT

 , s = logRT − (γ − 1) log %. (103)

5.1.1 Variant 1

Using these variables, the jumps can be written using the chain rules (37) and (39) as

[[w1]] =− 1

2
[[v2]] +

γ

γ − 1
[[RT ]]− 1

γ − 1
[[RT logRT ]] + [[RT log %]]

=− {{vx}}[[vx]]− {{vy}}[[vy]] +
γ

γ − 1
[[RT ]]− 1

γ − 1

{{RT}}
{{RT}}log

[[RT ]]

− 1

γ − 1
{{ logRT}}[[RT ]] + {{ log %}}[[RT ]] +

{{RT}}
{{%}}log

[[%]],

[[w2]] =[[vx]],

[[w3]] =[[vy]],

[[w4]] =
1

γ − 1
[[RT ]],

[[ψx]] ={{%RT}}[[vx]] + {{vx}}[[%RT ]] = {{%RT}}[[vx]] + {{%}}{{vx}}[[RT ]] + {{vx}}{{RT}}[[%]],

[[ψy]] ={{%RT}}[[vy]] + {{vy}}[[%RT ]] = {{%RT}}[[vy]] + {{%}}{{vy}}[[RT ]] + {{vy}}{{RT}}[[%]].

(104)
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Inserting this in the entropy conditions [[w]] · fnum,x/y − [[ψx/y]] = 0,

0 =

(
{{RT}}
{{%}}log

fnum,x
% − {{vx}}{{RT}}

)
[[%]]

+
(
−{{vx}}fnum,x

% + fnum,x
%vx − {{%RT}}

)
[[vx]] +

(
−{{vy}}fnum,x

% + fnum,x
%vy

)
[[vy]]

+

((
γ

γ − 1
− 1

γ − 1

{{RT}}
{{RT}}log

− 1

γ − 1
{{ logRT}}+ {{ log %}}

)
fnum,x
%

+
1

γ − 1
fnum,x
%s − {{%}}{{vx}}

)
[[RT ]],

0 =

(
{{RT}}
{{%}}log

fnum,y
% − {{vy}}{{RT}}

)
[[%]]

+
(
−{{vx}}fnum,y

% + fnum,y
%vx

)
[[vx]] +

(
−{{vy}}fnum,y

% + fnum,y
%vy − {{%RT}}

)
[[vy]]

+

((
γ

γ − 1
− 1

γ − 1

{{RT}}
{{RT}}log

− 1

γ − 1
{{ logRT}}+ {{ log %}}

)
fnum,y
%

+
1

γ − 1
fnum,y
%s − {{%}}{{vy}}

)
[[RT ]],

(105)

the fluxes

fnum,x



fnum,x
% = {{%}}log{{vx}},
fnum,x
%vx = {{vx}}fnum,x

% + {{%RT}} = {{vx}}fnum,x
% + {{p}},

fnum,x
%vy = {{vy}}fnum,x

% ,

fnum,x
%s =

(
{{RT}}
{{RT}}log

− γ + {{ logRT}} − (γ − 1){{ log %}}
)
fnum,x
% + (γ − 1){{%}}{{vx}},

fnum,x
%e =

−{{v2
x}}+ {{v2

y}}
2

+
γ

γ − 1
{{RT}} − 1

γ − 1
{{sRT}}

 fnum,x
%

+{{vx}}fnum,x
%vx + {{vy}}fnum,x

%vy +
1

γ − 1
{{RT}}fnum,x

%s − {{%RTvx}},

fnum,y



fnum,y
% = {{%}}log{{vy}},
fnum,y
%vx = {{vx}}fnum,y

% ,

fnum,y
%vy = {{vy}}fnum,y

% + {{%RT}} = {{vy}}fnum,y
% + {{p}},

fnum,y
%s =

(
{{RT}}
{{RT}}log

− γ + {{ logRT}} − (γ − 1){{ log %}}
)
fnum,y
% + (γ − 1){{%}}{{vy}},

fnum,y
%e =

−{{v2
x}}+ {{v2

y}}
2

+
γ

γ − 1
{{RT}} − 1

γ − 1
{{sRT}}

 fnum,y
%

+{{vx}}fnum,y
%vx + {{vy}}fnum,y

%vy +
1

γ − 1
{{RT}}fnum,y

%s − {{%RTvy}},
(106)

can be seen to be consistent, entropy conservative, and kinetic energy preserving fluxes for the

Euler equations (1), where the energy fluxes f
num,x/y
%e have been computed as {{w}} · fnum,x/y −

{{ψx/y}}.
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Inserting the numerical fluxes into the definition of the energy fluxes fnum,x
%e , fnum,y

%e yields

fnum,x
%e =

−{{v2
x}}+ {{v2

y}}
2

+
γ

γ − 1
{{RT}} − 1

γ − 1
{{sRT}}

 {{%}}log{{vx}}

+ {{vx}}
(
{{%}}log{{vx}}2 + {{%RT}}

)
+ {{vy}}

(
{{%}}log{{vx}}{{vy}}

)
+

1

γ − 1
{{RT}}

(
{{RT}}
{{RT}}log

− γ + {{ logRT}} − (γ − 1){{ log %}}
)
{{%}}log{{vx}}

+ {{RT}}{{%}}{{vx}} − {{%vxRT}}

={{%}}log{{vx}}

{{vx}}2 + {{vy}}2 −
{{v2

x}}+ {{v2
y}}

2


+ {{%}}{{vx}}{{RT}}+ {{%RT}}{{vx}} − {{%vxRT}}+

1

γ − 1
{{%}}log{{vx}}

{{RT}}2
{{RT}}log

+ {{%}}log{{vx}}
(

1

γ − 1
{{RT}}{{ logRT}} − {{ log %}}{{RT}} − 1

γ − 1
{{sRT}}

)
,

fnum,y
%e =

−{{v2
x}}+ {{v2

y}}
2

+
γ

γ − 1
{{RT}} − 1

γ − 1
{{sRT}}

 {{%}}log{{vy}}

+ {{vx}}
(
{{%}}log{{vx}}{{vy}}

)
+ {{vy}}

(
{{%}}log{{vy}}2 + {{%RT}}

)
+

1

γ − 1
{{RT}}

(
{{RT}}
{{RT}}log

− γ + {{ logRT}} − (γ − 1){{ log %}}
)
{{%}}log{{vy}}

+ {{RT}}{{%}}{{vy}} − {{%vyRT}}

={{%}}log{{vy}}
{{vx}}2 + {{vy}}2 −

{{v2
x}}+ {{v2

y}}
2


+ {{%}}{{vy}}{{RT}}+ {{%RT}}{{vy}} − {{%vyRT}}+

1

γ − 1
{{%}}log{{vy}}

{{RT}}2
{{RT}}log

+ {{%}}log{{vy}}
(

1

γ − 1
{{RT}}{{ logRT}} − {{ log %}}{{RT}} − 1

γ − 1
{{sRT}}

)
.

(107)

Here, the first two lines of the results are consistent approximations of the fluxes 1
2%v

2vx/y+ γ
γ−1p

with additional terms that are consistent with zero, since s = logRT − (γ − 1) log %.

5.2 Other Variables

As in section 4, other choices of variables are possible, e.g. %, v, χ with p
% = g(χ). However, this

approach is not further pursued here, since there does not seem to be a clear intuition, which
choice is preferable.

6 Numerical Surface Fluxes / Riemann Solvers

The numerical fluxes fnum used in the surface terms (12) of the semidiscretisation (10) are an
important ingredient for stability and robustness of the method. In a first order finite volume
setting, they determine the method completely. Here, some choices of these numerical fluxes
will be presented and compared. Since they are used in the surface terms, they are frequently
called surface fluxes in order to distinguish them from the volume fluxes fvol used in the volume
terms (11) of the semidiscretisation (10).
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6.1 Adding Dissipation to Entropy Conservative Fluxes

Similarly to the local Lax-Friedrichs flux

fnum
LLF (u−, u+) =

f(u+) + f(u−)

2
− λ

2
(u+ − u−), (108)

an entropy stable flux can be constructed as an entropy conservative central flux plus an addi-
tional dissipation term.

The simplest choice is to add a local Lax-Friedrichs type dissipation of the form −λ
2 [[u]]. The

resulting flux is entropy stable, since multiplication with the jump of the entropy variables
results in

−λ
2

[[w]] · [[u]] =− λ

2
[[w]] ·

∫ 1

0

∂u

∂w

(
w− + σ(w+ − w−)

)
· (w+ − w−) dσ

=− λ

2
[[w]] ·

∫ 1

0

∂u

∂w

(
w− + σ(w+ − w−)

)
dσ · [[w]],

(109)

and ∂u
∂w =

(
∂w
∂u

)−1
is positive definite, since w = ∂uU and the entropy U is convex.

Another construction uses a dissipation term of the form −1
2

∣∣f ′(u)
∣∣ [[u]] ≈ −1

2

∣∣f ′(u)
∣∣ ∂wu · [[w]].

Using the scaling of the eigenvectors proposed by Barth [1, Theorem 4] results in
∣∣f ′(u)

∣∣ =
R|Λ|R−1 and ∂wu = RRT , where Λ contains the eigenvalues of f ′(u) on the diagonal. Thus,
−
∣∣f ′(u)

∣∣ [[u]] ≈ −R|Λ|RT · [[w]] and the matrix R|Λ|RT is positive definite.
Using this form, choosing |Λ| = λ I and some intermediate value H = RRT = ∂wu results in a

scalar dissipation term (SD) −λ
2H[[w]]. A matrix dissipation term (MD) is obtained by setting

|Λ| = diag
(
|λi|
)
.

Of course, the matrices H,R,|Λ| have to be evaluated at some suitable intermediate values.
Derigs et al. [6, 28] investigated this problem for ideal MHD and the Euler equations using
the entropy conservative flux (52) of [3] and derived scalar and matrix dissipation operators
of the forms described above. Additionally, they proposed to use the convex combination

−Ξλ
2H[[w]]− (1− Ξ)1

2R|Λ|RT · [[w]], where Ξ =
∣∣∣p+−p−p++p−

∣∣∣ 12 is the indicator of the shock strength

also used in [3].

6.2 Preserving Positivity of the Density

The Euler equations are valid for positive density % and pressure p. In order to be robust, the
numerical flux fnum should preserve these invariant regions of the Euler equations in a first
order finite volume update procedure using an explicit Euler step in time

u+
i = ui −

∆t

∆x

(
fnum(ui, ui+1)− fnum(ui−1, ui)

)
. (110)

Extensions of this property to higher order methods can be constructed using the framework
of Zhang and Shu [30]. As described inter alia in [31, Remark 2.4], the (local) Lax-Friedrichs
flux preserves positivity of both density and pressure. Here, the entropy conservative numerical
fluxes described in sections 4 and 5 are investigated. The main result concerning positivity of
the density is

Theorem 6.1. Suppose that the numerical density flux fnum
% can be written as fnum

% = % ·{{v}}−
λ
2 [[%]], where λ ≥ max

{
|vi| ,|vi+1|

}
and % is some mean value satisfying % ≤ {{%}}, i.e.

%(%i, %i+1) ∈
[

min {%i, %i+1} ,max {%i, %i+1}
]
, %(%i, %i+1) ≤ %i + %i+1

2
. (111)

Then the first order FV scheme (110) preserves the non-negativity of the density % under the
CFL condition

∆t ≤ ∆x

2λ
. (112)
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Remark 6.1. Note that the CFL condition (112) does not depend explicitly on the densities
and that it does not require a vanishing time step ∆t for %→ 0.

Corollary 6.1. If the numerical density flux fnum
% = {{%}}log{{v}} − λ

2 [[%]] is used with λ ≥
max

{
|vi| ,|vi+1|

}
, the first order FV scheme (110) preserves the non-negativity of the density %

under the CFL condition (112).

Proof of Corollary 6.1. The logarithmic mean fulfils the conditions of Theorem 6.1, especially
{{%}}log ≤ {{%}} [4].

Remark 6.2. Due to Corollary 6.1, if the entropy conservative fluxes described in sections 4
and 5 containing no contribution of the pressure in the density flux are used with dissipation of
LLF type in the variable %, the first order FV scheme (110) preserves the non-negativity of the
density % under the CFL condition (112). This is also fulfilled for the scalar dissipation operator
SD of [6]. Contrary, the entropy conservative fluxes containing an influence of the pressure in
the density flux do not fulfil the conditions of Theorem 6.1. This agrees with physical intuition,
since the pressure has no influence on the density flux in the Euler equations (1) [6].

Proof of Theorem 6.1. The FV step (110) for the density can be separated into two parts as

%+
i =

(
1

2
%i −

∆t

∆x
fnum
% (ui, ui+1)

)
+

(
1

2
%i +

∆t

∆x
fnum
% (ui−1, ui)

)
. (113)

Since both can be handled similarly, only the first one will be analysed. Inserting the numerical
density flux, the mean value % can be written as a convex combination % = α%i + (1 − α)%i+1,
α ∈ [0, 1]. Thus, the first term becomes

1

2
%i −

∆t

∆x

(
%{{v}} − λ

2
[[%]]

)
=%i

(
1

2
− λ

2

∆t

∆x
− α{{v}}∆t

∆x

)
+ %i+1

∆t

∆x

(
λ

2
− (1− α){{v}}

)
.

(114)

Using %i, %i+1 ≥ 0 and λ ≥ max
{
|vi| ,|vi+1|

}
,

1

2
%i −

∆t

∆x

(
%{{v}} − λ

2
[[%]]

)
≥ %i

(
1

2
−
(

1

2
+ α

)
λ∆t

∆x

)
+ %i+1

λ∆t

∆x

(
α− 1

2

)
. (115)

Two cases can be considered.

1. %i ≥ %i+1. In this case, α ≤ 1
2 , since % ≤ {{%}}. Thus, the second term on the right hand

side of (115) can be bounded as

%i+1
λ∆t

∆x

(
α− 1

2

)
≥ %i

λ∆t

∆x

(
α− 1

2

)
. (116)

2. %i ≤ %i+1. In this case, α ≥ 1
2 , since % ≤ {{%}}. Again, the second term on the right hand

side of (115) can be bounded via (116).

In both cases, the term with %i+1 in (115) can be estimated via %i, yielding

1

2
%i −

∆t

∆x

(
%{{v}} − λ

2
[[%]]

)
≥ %i

(
1

2
−
(

1

2
+ α

)
λ∆t

∆x

)
+ %i

λ∆t

∆x

(
α− 1

2

)
= %i

(
1

2
− λ∆t

∆x

)
.

(117)

This is non-negative under the CFL condition (112).
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6.3 Preserving Positivity of the Pressure

Preserving the positivity of the pressure / internal energy is more complicated than the cor-
responding property of the density. For the (local) Lax-Friedrichs flux, it can be proven as
described inter alia in [31, Remark 2.4]. Further investigations have to be conducted for the
case of the numerical fluxes considered here.

As a general procedure, the reversed roles of entropy and energy as in section 5 can be used
to get entropy stable fluxes that preserve the positivity of the internal energy as described by
Bouchut [2]. This corresponds to a computation of the pressure via the entropy, which has also
been used in [7] in an a posteriori manner. However, this direction of further research will not
be pursued here.

6.4 Suliciu Relaxation Solver

The Suliciu relaxation solver described in [2, Section 2.4] for the two-dimensional Euler equations
in x direction can be summed up as follows. At first, intermediate wave speeds are computed
via

if p+ ≥ p−,


c−
%−

=

√
γ
p−
%−

+
γ + 1

2
max

{
p+ − p−

%+

√
γp+/%+

+ vx− − vx+, 0

}
,

c+
%+

=

√
γ
p+

%+
+
γ + 1

2
max

{
p− − p+

c−
+ vx− − vx+, 0

}
,

(118)

if p+ ≤ p−,


c+
%+

=

√
γ
p+

%+
+
γ + 1

2
max

{
p− − p+

%−
√
γp−/%−

+ vx− − vx+, 0

}
,

c−
%−

=

√
γ
p−
%−

+
γ + 1

2
max

{
p+ − p−
c+

+ vx− − vx+, 0

}
.

Then, intermediate values are computed using c± = %±
c±
%±

as

p∗− =p∗+ =
c+p− + c−p+ − c−c+(vx+ − vx−)

c− + c+
,

1

%∗+
=

1

%+
+
c−(vx+ − vx−) + p+ − p−

c+(c− + c+)
,

v∗x− =v∗x+ =
c−vx− + c+vx+ + p− − p+

c− + c+
, ε∗− =ε− +

(p∗−)2 − p2
−

2c2−
,

1

%∗−
=

1

%−
+
c+(vx+ − vx−) + p− − p+

c−(c− + c+)
, ε∗+ =ε+ +

(p∗+)2 − p2
+

2c2+
.

(119)
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Finally, the numerical fluxes are given by (fnum,y analogously)


fnum
%

fnum
%vx

fnum
%vy

fnum
%e

 =




%−vx−

%−v
2
x− + p−

%−vx−vy,−(
1
2%−v

2
x− + 1

2%−v
2
y− + %−ε− + p−

)
vx−

 ,

if 0 ≤ vx− −
c−
%−

,
%∗−v

∗
x−

%∗−(v∗x−)2 + p∗−
%∗−v

∗
x−vy,−(

1
2%

∗
−(v∗x−)2 + 1

2%
∗
−(v∗y−)2 + %∗−ε

∗
− + p∗−

)
v∗x−

 ,

if vx− −
c−
%−

< 0 ≤ v∗x− ≡ v∗x+,
%∗+v

∗
x+

%∗+(v∗x+)2 + p∗+
%∗+v

∗
x+vy,+(

1
2%

∗
+(v∗x+)2 + 1

2%
∗
+(v∗y+)2 + %∗+ε

∗
+ + p∗+

)
v∗x+

 ,

if v∗x− ≡ v∗x+ < 0 ≤ vx+ +
c+
%+
,

%+vx+

%+v
2
x+ + p+

%+vx+vy,+(
1
2%+v

2
x+ + 1

2%+v
2
y+ + %+ε+ + p+

)
vx+

 ,

else.

(120)

This flux is entropy stable and positivity preserving for % and p, with corresponding CFL
condition

∆t

∆x
max

{∣∣∣∣vx− − c−
%−

∣∣∣∣ ,∣∣∣∣vx+ +
c+

%+

∣∣∣∣} ≤ 1

2
. (121)

Additionally, it satisfies the maximum principle on the specific entropy s and resolves stationary
contact discontinuities with vx ≡ 0, p ≡ const exactly.

7 Numerical Tests

In this section, some numerical experiments using the methods described in the previous sections
will be conducted. Unless stated otherwise, the ratio of specific heats is set to γ = 1.4 and
the three stage, third-order, strong stability preserving Runge-Kutta method of Gottlieb and
Shu [13] will be used as time integration method. If a one-dimensional Riemann problem is
considered, the exact solution is computed as described in [27, Section 4].

7.1 Isentropic Vortex

At first, the isentropic vortex problem of Shu [23, Problem 8 in section 5.1] will be used to test
the methods for a smooth solution. The initial condition is given by


%0

%vx,0
%vy,0
%e0

 =


%∞
(
RT0
RT∞

)1/(γ−1)

%0vx,0
%0vy,0

%
v2x,0+v2y,0

2 + p0
γ−1

 , (122)

where

vx,0 = vx,∞ + δvx, vy,0 = vy,∞ + δvy, p0 = %0RT0, RT0 = RT∞ + δRT, (123)
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and

δvx(x, y) = −y β
2π

exp

(
1− x2 − y2

2r

)
, δvy(x, y) = x

β

2π
exp

(
1− x2 − y2

2r

)
, (124)

δRT (x, y) = −γ − 1

γ

β

8π2
exp

(
1− x2 − y2

r

)
. (125)

The parameters have been chosen as

%∞ = 1, vx,∞ = 1, vy,∞ = 0, RT∞ = 1, β = 5, r =
1

4
. (126)

The solution is computed on the domain [−5, 5]2 during the time interval [0, 10]. Thus, the

perturbation is of the order of magnitude exp
(

1−52

2r

)
≈ 10−21 at the boundary and should be

approximately negligible for 64 bit floating point values. Therefore, the isentropic vortex should
be advected with the free stream velocity and reach its initial position at t = 10.

The Suliciu relaxation solver has been used as numerical flux and several volume fluxes have
been used for the subcell flux differencing form:

• Central: The central flux {{f}} resulting in a standard nodal DG method as described by
Gassner, Winters, and Kopriva [12].

• Morinishi: The flux resulting in the split form of Morinishi [18] as described by Gassner,
Winters, and Kopriva [12].

• Ducros: The flux resulting in the split form of Ducros, Laporte, Souleres, Guinot, Moinat,
and Caruelle [8] as described by Gassner, Winters, and Kopriva [12].

• KG: The flux resulting in the split form of Kennedy and Gruber [17] as described by
Gassner, Winters, and Kopriva [12].

• Pirozzoli: The flux resulting in the split form of Pirozzoli [19] as described by Gassner,
Winters, and Kopriva [12].

• IR: The entropy conservative flux (45) of Roe [22] and Ismail and Roe [15].

• Ch: The entropy conservative flux (52) of Chandrashekar [3].

• %, v, β (2): The flux (55).

• %, v, 1
p : The flux (61).

• %, v, p: The flux (70).

• %, v, T (1): The flux (75).

• %, v, T (2): The flux (79).

• %, v, T (rev): The flux (106).

The errors (computed via the mass matrix M , i.e. Lobatto quadrature) in the density for
varying polynomial degrees p on a mesh using 10×10 elements are shown in Table 1. As can be
seen there, there is not much variance in the error for p = 1. For p ∈ {2, 3}, there are variations
up to approximately 15% [e.g. p = 2, Ducros, Morinishi and p = 3, Ducros, %, v, T (rev)]. There
does not seem to be any advantage of the entropy stable formulations compared to the other
ones in this test case, similar to the results of Gassner, Winters, and Kopriva [12] for the Taylor
Green vortex.

7.2 Sod’s Shock Tube: Subcell Flux Differencing

In this section, the classical shock tube of Sod [24] will be used to test the semidiscretisations
(10) using the volume terms (11) and the surface terms (12). The initial condition is given in
primitive variables by

%0(x) =

{
1, x < 1

2 ,

0.125, else,
, v0(x) = 0, p0(x) =

{
1, x < 1

2 ,

0.1, else,
(127)
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Table 1: Errors for the isentropic vortex problem (122) using 10 × 10 elements of varying polynomial
degrees p, several volume fluxes and the Suliciu relaxation solver as numerical flux.

Central Morinishi Ducros KG Pirozzoli IR Ch
p

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

1 1.20e−1 1.21e−1 1.20e−1 1.20e−1 1.20e−1 1.20e−1 1.21e−1
2 4.28e−2 4.36e−2 3.79e−2 3.83e−2 3.83e−2 3.93e−2 4.11e−2
3 1.73e−2 1.81e−2 1.60e−2 1.62e−2 1.62e−2 1.64e−2 1.80e−2

%, v, β (2) %, v, 1
p %, v, p %, v, T (1) %, v, T (2) %, V, T (rev)

p
∥∥err%

∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

∥∥err%
∥∥
M

1 1.21e−1 1.21e−1 1.21e−1 1.21e−1 1.20e−1 1.20e−1
2 4.13e−2 4.11e−2 4.11e−2 4.11e−2 3.93e−2 4.12e−2
3 1.81e−2 1.79e−2 1.79e−2 1.80e−2 1.64e−2 1.89e−2

and the conservative variables are computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The solution
is computed on the domain [−0.5, 1.5] from t = 0 until t = 0.25 using 3000 time steps.

The error of the numerical solution for the density % is calculated using Lobatto quadrature,
i.e. the diagonal mass matrix M of the SBP operator, for varying numbers of elements N and
polynomial degrees p. The results using the Suliciu relaxation solver and the local Lax-Friedrichs
flux as numerical flux are shown in Tables 2 and 3, respectively.

There is some variance across the results for different volume fluxes up to approximately 25%
[e.g. for p = 1, N = 10, (%, v, p) vs. %, v, T (rev)]. However, there is no clear bias towards one
volume flux across all combinations of the polynomial degree p and the number of elements N
[e.g. for p = 1 and N = 320, (%, v, p) has a smaller error than %, v, T (rev)].

Contrary, comparing the numerical surface fluxes, there is some clear bias. Although the local
Lax-Friedrichs flux yields a smaller error in some cases [e.g. p = 1, N = 10, (%, v, p)], the Suliciu
relaxation solver results in smaller errors if the resolution is good enough. Therefore, it can be
considered superior to the LLF flux in this test case.

Additionally, the volume fluxes recovering the central form as well as the split forms of
Morinishi [18], Ducros, Laporte, Souleres, Guinot, Moinat, and Caruelle [8], Kennedy and
Gruber [17], and Pirozzoli [19] have been used. The relevant results are shown in the Tables
4 (Suliciu) and 5 (LLF). As can be seen there, the central flux and the splitting of Morinishi
[18] are unstable. The splitting of Ducros, Laporte, Souleres, Guinot, Moinat, and Caruelle [8]
crashes for polynomial degree p = 5 whereas the other splittings remain stable. There is not
much variance in the error for the stable calculations.

As for the entropy conservative volume fluxes, the Suliciu relaxation solver yields less error if
the resolution is good enough.

33



T
ab

le
2:

E
rr

or
s

an
d

ex
p

er
im

en
ta

l
or

d
er

of
co

n
ve

rg
en

ce
(E

O
C

)
fo

r
va

ry
in

g
p

o
ly

n
o
m

ia
l

d
eg

re
es
p

a
n

d
n
u

m
b

er
o
f

el
em

en
ts
N

fo
r

th
e

S
o
d

sh
o
ck

tu
b

e
p

ro
b

le
m

(1
2
7
)

u
si

n
g

th
e

S
u

li
ci

u
re

la
x
at

io
n

so
lv

er
as

n
u

m
er

ic
al

fl
u

x
an

d
en

tr
op

y
co

n
se

rv
in

g
v
o
lu

m
e

fl
u

x
es

.

IR
C

h
%
,v
,β

(2
)

%
,v
,

1 p
%
,v
,p

%
,v
,T

(1
)

%
,v
,T

(2
)

%
,V
,T

(r
ev

)

p
N

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

1
10

1.
07

e−
1

1.
06

e−
1

1.
07

e−
1

1.
3
7
e−

1
1.

3
7
e−

1
1.

0
6
e−

1
1.

0
6
e−

1
1.

0
3
e−

1
20

6.
90

e−
2

0.
64

6.
85

e−
2

0.
63

7.
07

e−
2

0.
6
0

6.
9
4
e−

2
0.

9
8

6.
9
4
e−

2
0.

9
8

6.
8
5
e−

2
0.

6
3

6.
8
7
e−

2
0.

6
2

6.
8
3
e−

2
0.

6
0

40
4.

79
e−

2
0.

53
4.

83
e−

2
0.

51
5.

15
e−

2
0.

4
6

4.
3
8
e−

2
0.

6
6

4.
3
8
e−

2
0.

6
6

4.
8
3
e−

2
0.

5
1

4.
8
6
e−

2
0.

5
0

4.
7
9
e−

2
0.

5
1

80
3.

54
e−

2
0.

43
3.

62
e−

2
0.

42
3.

76
e−

2
0.

4
5

3.
3
8
e−

2
0.

3
8

3.
3
8
e−

2
0.

3
8

3.
6
2
e−

2
0.

4
2

3.
6
1
e−

2
0.

4
3

3.
6
4
e−

2
0.

4
0

16
0

2.
64

e−
2

0.
42

2.
67

e−
2

0.
44

2.
79

e−
2

0.
4
3

2.
5
5
e−

2
0.

4
0

2.
5
5
e−

2
0.

4
0

2.
6
7
e−

2
0.

4
4

2.
6
9
e−

2
0.

4
2

2.
7
0
e−

2
0.

4
3

32
0

1.
98

e−
2

0.
42

1.
98

e−
2

0.
43

2.
01

e−
2

0.
4
7

1.
9
1
e−

2
0.

4
2

1.
9
1
e−

2
0.

4
2

1.
9
8
e−

2
0.

4
3

1.
9
9
e−

2
0.

4
4

2.
0
3
e−

2
0.

4
1

2
10

6.
37

e−
2

6.
26

e−
2

6.
28

e−
2

6.
3
9
e−

2
6.

3
9
e−

2
6.

2
6
e−

2
6.

3
1
e−

2
6.

5
1
e−

2
20

3.
37

e−
2

0.
92

3.
34

e−
2

0.
91

3.
35

e−
2

0.
9
0

3.
6
0
e−

2
0.

8
3

3.
6
0
e−

2
0.

8
3

3.
3
4
e−

2
0.

9
1

3.
3
2
e−

2
0.

9
2

3.
3
0
e−

2
0.

9
8

40
2.

84
e−

2
0.

24
2.

86
e−

2
0.

22
2.

88
e−

2
0.

2
2

2.
7
7
e−

2
0.

3
8

2.
7
7
e−

2
0.

3
8

2.
8
6
e−

2
0.

2
2

2.
8
5
e−

2
0.

2
2

2.
8
6
e−

2
0.

2
1

80
2.

14
e−

2
0.

41
2.

12
e−

2
0.

43
2.

14
e−

2
0.

4
3

2.
0
9
e−

2
0.

4
0

2.
0
9
e−

2
0.

4
0

2.
1
2
e−

2
0.

4
3

2.
1
3
e−

2
0.

4
2

2.
1
3
e−

2
0.

4
3

16
0

1.
23

e−
2

0.
80

1.
22

e−
2

0.
81

1.
22

e−
2

0.
8
1

1.
2
1
e−

2
0.

7
9

1.
2
1
e−

2
0.

7
9

1.
2
2
e−

2
0.

8
1

1.
2
2
e−

2
0.

8
0

1.
2
6
e−

2
0.

7
6

32
0

6.
65

e−
3

0.
88

6.
61

e−
3

0.
88

6.
66

e−
3

0.
8
8

6.
8
1
e−

3
0.

8
3

6.
8
1
e−

3
0.

8
3

6.
6
1
e−

3
0.

8
8

6.
6
0
e−

3
0.

8
9

6.
7
0
e−

3
0.

9
1

3
10

3.
30

e−
2

3.
33

e−
2

3.
35

e−
2

3.
6
9
e−

2
3.

6
9
e−

2
3.

3
3
e−

2
3.

2
4
e−

2
3.

1
8
e−

2
20

2.
93

e−
2

0.
17

2.
91

e−
2

0.
19

2.
92

e−
2

0.
2
0

2.
8
4
e−

2
0.

3
8

2.
8
4
e−

2
0.

3
8

2.
9
1
e−

2
0.

1
9

2.
8
7
e−

2
0.

1
8

2.
9
1
e−

2
0.

1
2

40
2.

14
e−

2
0.

46
2.

10
e−

2
0.

47
2.

14
e−

2
0.

4
5

2.
2
5
e−

2
0.

3
4

2.
2
5
e−

2
0.

3
4

2.
1
0
e−

2
0.

4
7

2.
1
1
e−

2
0.

4
4

2.
0
7
e−

2
0.

4
9

80
1.

08
e−

2
0.

98
1.

09
e−

2
0.

95
1.

11
e−

2
0.

9
5

1.
1
6
e−

2
0.

9
6

1.
1
6
e−

2
0.

9
6

1.
0
9
e−

2
0.

9
5

1.
0
9
e−

2
0.

9
5

1.
0
3
e−

2
1.

0
1

16
0

6.
48

e−
3

0.
74

6.
45

e−
3

0.
76

6.
51

e−
3

0.
7
7

7.
1
0
e−

3
0.

7
1

7.
1
0
e−

3
0.

7
1

6.
4
5
e−

3
0.

7
6

6.
4
2
e−

3
0.

7
7

6.
6
8
e−

3
0.

6
2

32
0

5.
00

e−
3

0.
38

4.
97

e−
3

0.
38

4.
98

e−
3

0.
3
9

5.
3
2
e−

3
0.

4
2

5.
3
2
e−

3
0.

4
2

4.
9
7
e−

3
0.

3
8

4.
9
3
e−

3
0.

3
8

5.
1
5
e−

3
0.

3
7

4
10

3.
98

e−
2

3.
97

e−
2

4.
01

e−
2

4.
1
8
e−

2
4.

1
8
e−

2
3.

9
7
e−

2
3.

9
4
e−

2
3.

7
0
e−

2
20

1.
32

e−
2

1.
59

1.
29

e−
2

1.
63

1.
29

e−
2

1.
6
4

1.
4
6
e−

2
1.

5
2

1.
4
6
e−

2
1.

5
2

1.
2
9
e−

2
1.

6
3

1.
2
7
e−

2
1.

6
3

1.
3
5
e−

2
1.

4
5

40
1.

06
e−

2
0.

32
1.

03
e−

2
0.

32
1.

02
e−

2
0.

3
3

1.
1
8
e−

2
0.

3
1

1.
1
8
e−

2
0.

3
1

1.
0
3
e−

2
0.

3
2

1.
0
5
e−

2
0.

2
9

1.
1
4
e−

2
0.

2
5

80
1.

30
e−

2
−

0.
30

1.
27

e−
2
−

0.
30

1.
28

e−
2
−

0.
3
2

1.
2
7
e−

2
−

0.
1
0

1.
2
7
e−

2
−

0.
1
0

1.
2
7
e−

2
−

0
.3

0
1.

2
6
e−

2
−

0
.2

7
1.

2
7
e−

2
−

0
.1

6
16

0
7.

10
e−

3
0.

88
6.

95
e−

3
0.

87
6.

95
e−

3
0.

8
8

7.
4
7
e−

3
0.

7
6

7.
4
7
e−

3
0.

7
6

6.
9
5
e−

3
0.

8
7

6.
9
7
e−

3
0.

8
6

7.
3
8
e−

3
0.

7
8

32
0

4.
59

e−
3

0.
63

4.
49

e−
3

0.
63

4.
46

e−
3

0.
6
4

4.
9
0
e−

3
0.

6
1

4.
9
0
e−

3
0.

6
1

4.
4
9
e−

3
0.

6
3

4.
4
8
e−

3
0.

6
4

4.
8
5
e−

3
0.

6
1

5
10

2.
97

e−
2

2.
87

e−
2

2.
88

e−
2

2.
8
7
e−

2
2.

8
7
e−

2
2.

8
7
e−

2
2.

8
6
e−

2
2.

7
0
e−

2
20

2.
24

e−
2

0.
41

2.
19

e−
2

0.
39

2.
24

e−
2

0.
3
6

2.
4
7
e−

2
0.

2
2

2.
4
7
e−

2
0.

2
2

2.
1
9
e−

2
0.

3
9

2.
2
1
e−

2
0.

3
7

2.
0
5
e−

2
0.

4
0

40
1.

10
e−

2
1.

02
1.

10
e−

2
0.

99
1.

15
e−

2
0.

9
6

1.
2
8
e−

2
0.

9
5

1.
2
8
e−

2
0.

9
5

1.
1
0
e−

2
0.

9
9

1.
1
1
e−

2
0.

9
9

1.
0
3
e−

2
0.

9
9

80
6.

34
e−

3
0.

79
6.

22
e−

3
0.

82
6.

36
e−

3
0.

8
6

7.
3
9
e−

3
0.

7
9

7.
3
9
e−

3
0.

7
9

6.
2
2
e−

3
0.

8
2

6.
2
4
e−

3
0.

8
3

6.
4
8
e−

3
0.

6
7

16
0

5.
56

e−
3

0.
19

5.
39

e−
3

0.
21

5.
43

e−
3

0.
2
3

6.
1
0
e−

3
0.

2
8

6.
1
0
e−

3
0.

2
8

5.
3
9
e−

3
0.

2
1

5.
4
6
e−

3
0.

1
9

5.
7
3
e−

3
0.

1
8

32
0

4.
66

e−
3

0.
26

4.
43

e−
3

0.
28

4.
37

e−
3

0.
3
1

4.
9
2
e−

3
0.

3
1

4.
9
2
e−

3
0.

3
1

4.
4
3
e−

3
0.

2
8

4.
5
0
e−

3
0.

2
8

4.
9
6
e−

3
0.

2
1

34



T
ab

le
3:

E
rr

or
s

an
d

ex
p

er
im

en
ta

l
or

d
er

of
co

n
ve

rg
en

ce
(E

O
C

)
fo

r
va

ry
in

g
p

o
ly

n
o
m

ia
l

d
eg

re
es
p

a
n

d
n
u

m
b

er
o
f

el
em

en
ts
N

fo
r

th
e

S
o
d

sh
o
ck

tu
b

e
p

ro
b

le
m

(1
2
7
)

u
si

n
g

th
e

lo
ca

l
L

ax
-F

ri
ed

ri
ch

s
n
u
m

er
ic

al
fl

u
x

an
d

en
tr

op
y

co
n

se
rv

in
g

v
o
lu

m
e

fl
u

x
es

.

IR
C

h
%
,v
,β

(2
)

%
,v
,

1 p
%
,v
,p

%
,v
,T

(1
)

%
,v
,T

(2
)

%
,V
,T

(r
ev

)

p
N

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

∥ ∥ err %
∥ ∥ M

E
O

C
∥ ∥ err %

∥ ∥ M
E

O
C

1
10

1.
02

e−
1

1.
02

e−
1

1.
02

e−
1

1.
2
2
e−

1
1.

2
2
e−

1
1.

0
2
e−

1
1.

0
3
e−

1
1.

0
4
e−

1
20

6.
94

e−
2

0.
55

6.
87

e−
2

0.
58

6.
94

e−
2

0.
5
6

7.
2
5
e−

2
0.

7
5

7.
2
5
e−

2
0.

7
5

6.
8
7
e−

2
0.

5
8

6.
9
6
e−

2
0.

5
6

7.
1
8
e−

2
0.

5
3

40
5.

13
e−

2
0.

44
5.

22
e−

2
0.

40
5.

50
e−

2
0.

3
4

4.
6
1
e−

2
0.

6
5

4.
6
1
e−

2
0.

6
5

5.
2
2
e−

2
0.

4
0

5.
1
4
e−

2
0.

4
4

5.
0
0
e−

2
0.

5
2

80
3.

75
e−

2
0.

45
3.

81
e−

2
0.

45
4.

00
e−

2
0.

4
6

3.
5
3
e−

2
0.

3
8

3.
5
3
e−

2
0.

3
8

3.
8
1
e−

2
0.

4
5

3.
8
2
e−

2
0.

4
3

3.
8
2
e−

2
0.

3
9

16
0

2.
83

e−
2

0.
40

2.
86

e−
2

0.
41

3.
05

e−
2

0.
3
9

2.
6
0
e−

2
0.

4
4

2.
6
0
e−

2
0.

4
4

2.
8
6
e−

2
0.

4
1

2.
9
0
e−

2
0.

4
0

2.
9
0
e−

2
0.

4
0

32
0

2.
10

e−
2

0.
43

2.
10

e−
2

0.
44

2.
19

e−
2

0.
4
8

1.
9
4
e−

2
0.

4
2

1.
9
4
e−

2
0.

4
2

2.
1
0
e−

2
0.

4
4

2.
1
3
e−

2
0.

4
4

2.
1
7
e−

2
0.

4
2

2
10

6.
45

e−
2

6.
30

e−
2

6.
26

e−
2

6.
3
2
e−

2
6.

3
2
e−

2
6.

3
0
e−

2
6.

3
7
e−

2
6.

7
6
e−

2
20

3.
66

e−
2

0.
82

3.
65

e−
2

0.
79

3.
61

e−
2

0.
7
9

3.
8
5
e−

2
0.

7
1

3.
8
5
e−

2
0.

7
1

3.
6
5
e−

2
0.

7
9

3.
5
8
e−

2
0.

8
3

3.
5
2
e−

2
0.

9
4

40
3.

01
e−

2
0.

29
3.

04
e−

2
0.

26
3.

04
e−

2
0.

2
5

2.
9
2
e−

2
0.

4
0

2.
9
2
e−

2
0.

4
0

3.
0
4
e−

2
0.

2
6

3.
0
1
e−

2
0.

2
5

3.
0
1
e−

2
0.

2
3

80
2.

19
e−

2
0.

46
2.

18
e−

2
0.

48
2.

18
e−

2
0.

4
8

2.
1
9
e−

2
0.

4
2

2.
1
9
e−

2
0.

4
2

2.
1
8
e−

2
0.

4
8

2.
1
6
e−

2
0.

4
8

2.
1
6
e−

2
0.

4
7

16
0

1.
29

e−
2

0.
76

1.
29

e−
2

0.
76

1.
29

e−
2

0.
7
6

1.
2
7
e−

2
0.

7
9

1.
2
7
e−

2
0.

7
9

1.
2
9
e−

2
0.

7
6

1.
2
9
e−

2
0.

7
5

1.
3
3
e−

2
0.

7
0

32
0

6.
91

e−
3

0.
90

6.
89

e−
3

0.
90

6.
90

e−
3

0.
9
0

7.
1
2
e−

3
0.

8
3

7.
1
2
e−

3
0.

8
3

6.
8
9
e−

3
0.

9
0

6.
8
7
e−

3
0.

9
1

6.
9
8
e−

3
0.

9
3

3
10

3.
48

e−
2

3.
48

e−
2

3.
50

e−
2

3.
7
9
e−

2
3.

7
9
e−

2
3.

4
8
e−

2
3.

4
1
e−

2
3.

3
0
e−

2
20

3.
10

e−
2

0.
17

3.
09

e−
2

0.
17

3.
07

e−
2

0.
1
9

3.
2
1
e−

2
0.

2
4

3.
2
1
e−

2
0.

2
4

3.
0
9
e−

2
0.

1
7

3.
0
2
e−

2
0.

1
8

3.
0
4
e−

2
0.

1
2

40
2.

19
e−

2
0.

50
2.

16
e−

2
0.

52
2.

17
e−

2
0.

5
1

2.
8
5
e−

2
0.

1
7

2.
8
5
e−

2
0.

1
7

2.
1
6
e−

2
0.

5
2

2.
1
3
e−

2
0.

5
0

2.
0
9
e−

2
0.

5
4

80
1.

16
e−

2
0.

91
1.

17
e−

2
0.

89
1.

16
e−

2
0.

9
0

2.
1
6
e−

2
0.

4
0

2.
1
6
e−

2
0.

4
0

1.
1
7
e−

2
0.

8
9

1.
1
4
e−

2
0.

9
0

1.
0
9
e−

2
0.

9
4

16
0

7.
23

e−
3

0.
69

7.
09

e−
3

0.
72

6.
93

e−
3

0.
7
4

2.
0
0
e−

2
0.

1
1

2.
0
0
e−

2
0.

1
1

7.
0
9
e−

3
0.

7
2

6.
8
7
e−

3
0.

7
3

7.
6
7
e−

3
0.

5
0

32
0

5.
77

e−
3

0.
32

5.
63

e−
3

0.
33

5.
50

e−
3

0.
3
3

1.
6
0
e−

2
0.

3
2

1.
6
0
e−

2
0.

3
2

5.
6
3
e−

3
0.

3
3

5.
5
2
e−

3
0.

3
2

6.
3
6
e−

3
0.

2
7

4
10

4.
03

e−
2

4.
03

e−
2

4.
04

e−
2

4.
2
4
e−

2
4.

2
4
e−

2
4.

0
3
e−

2
3.

9
8
e−

2
3.

7
9
e−

2
20

1.
43

e−
2

1.
50

1.
40

e−
2

1.
52

1.
35

e−
2

1.
5
9

1.
9
6
e−

2
1.

1
1

1.
9
6
e−

2
1.

1
1

1.
4
0
e−

2
1.

5
2

1.
3
2
e−

2
1.

6
0

1.
3
7
e−

2
1.

4
7

40
1.

05
e−

2
0.

44
1.

01
e−

2
0.

47
1.

00
e−

2
0.

4
3

2.
4
0
e−

2
−

0.
2
9

2.
4
0
e−

2
−

0.
2
9

1.
0
1
e−

2
0.

4
7

1.
0
2
e−

2
0.

3
6

1.
1
6
e−

2
0.

2
4

80
1.

30
e−

2
−

0.
30

1.
28

e−
2
−

0.
34

1.
29

e−
2
−

0.
3
6

3.
4
8
e−

2
−

0.
5
4

3.
4
8
e−

2
−

0.
5
4

1.
2
8
e−

2
−

0
.3

4
1.

2
7
e−

2
−

0
.3

1
1.

2
5
e−

2
−

0
.1

0
16

0
7.

43
e−

3
0.

81
7.

28
e−

3
0.

81
7.

27
e−

3
0.

8
2

2.
5
8
e−

2
0.

4
3

2.
5
8
e−

2
0.

4
3

7.
2
8
e−

3
0.

8
1

7.
3
2
e−

3
0.

7
9

7.
8
7
e−

3
0.

6
7

32
0

4.
90

e−
3

0.
60

4.
78

e−
3

0.
61

4.
71

e−
3

0.
6
3

1.
7
7
e−

2
0.

5
5

1.
7
7
e−

2
0.

5
5

4.
7
8
e−

3
0.

6
1

4.
8
0
e−

3
0.

6
1

5.
4
9
e−

3
0.

5
2

5
10

3.
02

e−
2

2.
93

e−
2

2.
94

e−
2

3.
0
2
e−

2
3.

0
2
e−

2
2.

9
3
e−

2
2.

9
1
e−

2
2.

7
3
e−

2
20

2.
31

e−
2

0.
39

2.
26

e−
2

0.
37

2.
27

e−
2

0.
3
7

3.
0
5
e−

2
−

0.
0
2

3.
0
5
e−

2
−

0.
0
2

2.
2
6
e−

2
0.

3
7

2.
2
4
e−

2
0.

3
8

2.
1
1
e−

2
0.

3
7

40
1.

20
e−

2
0.

95
1.

17
e−

2
0.

96
1.

20
e−

2
0.

9
2

3.
2
4
e−

2
−

0.
0
9

3.
2
4
e−

2
−

0.
0
9

1.
1
7
e−

2
0.

9
6

1.
1
9
e−

2
0.

9
1

1.
0
8
e−

2
0.

9
6

80
7.

29
e−

3
0.

71
6.

82
e−

3
0.

78
6.

78
e−

3
0.

8
2

2.
8
5
e−

2
0.

1
8

2.
8
5
e−

2
0.

1
8

6.
8
2
e−

3
0.

7
8

7.
0
8
e−

3
0.

7
5

7.
1
4
e−

3
0.

6
0

16
0

6.
48

e−
3

0.
17

6.
04

e−
3

0.
18

6.
01

e−
3

0.
1
7

1.
8
1
e−

2
0.

6
6

1.
8
1
e−

2
0.

6
6

6.
0
4
e−

3
0.

1
8

6.
3
4
e−

3
0.

1
6

6.
5
0
e−

3
0.

1
4

32
0

5.
41

e−
3

0.
26

4.
92

e−
3

0.
29

4.
82

e−
3

0.
3
2

1.
2
0
e−

2
0.

5
9

1.
2
0
e−

2
0.

5
9

4.
9
2
e−

3
0.

2
9

5.
2
2
e−

3
0.

2
8

5.
6
6
e−

3
0.

2
0

35



Table 4: Errors and experimental order of convergence (EOC) for varying polynomial degrees p and
number of elements N for the Sod shock tube problem (127) using the Suliciu relaxation solver
as numerical flux and ”simple” volume fluxes.

Central Morinishi Ducros KG Pirozzoli
p N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

1 10 ∗ ∗ 1.04e−1 1.05e−1 1.06e−1
20 ∗ ∗ ∗ ∗ 6.66e−2 0.65 6.64e−2 0.66 6.68e−2 0.66
40 ∗ ∗ ∗ ∗ 4.20e−2 0.67 4.51e−2 0.56 4.59e−2 0.54
80 ∗ ∗ ∗ ∗ 3.26e−2 0.36 3.48e−2 0.37 3.50e−2 0.39

160 ∗ ∗ ∗ ∗ 2.45e−2 0.41 2.59e−2 0.43 2.58e−2 0.44
320 ∗ ∗ ∗ ∗ 1.86e−2 0.40 1.95e−2 0.41 1.95e−2 0.40

2 10 ∗ 8.74e−2 6.38e−2 6.40e−2 6.39e−2
20 ∗ ∗ ∗ ∗ 3.36e−2 0.93 3.41e−2 0.91 3.41e−2 0.91
40 ∗ ∗ ∗ ∗ 2.56e−2 0.39 2.66e−2 0.36 2.69e−2 0.34
80 ∗ ∗ ∗ ∗ 1.93e−2 0.41 2.00e−2 0.41 2.00e−2 0.43

160 ∗ ∗ ∗ ∗ 1.18e−2 0.71 1.22e−2 0.71 1.24e−2 0.69
320 ∗ ∗ ∗ ∗ 6.32e−3 0.90 6.47e−3 0.91 6.55e−3 0.92

3 10 ∗ ∗ 3.29e−2 3.30e−2 3.33e−2
20 ∗ ∗ ∗ ∗ 2.51e−2 0.39 2.56e−2 0.36 2.60e−2 0.36
40 ∗ ∗ ∗ ∗ 1.74e−2 0.52 1.93e−2 0.41 1.93e−2 0.43
80 ∗ ∗ ∗ ∗ 9.93e−3 0.81 9.89e−3 0.97 9.79e−3 0.98

160 ∗ ∗ ∗ ∗ 6.05e−3 0.72 5.97e−3 0.73 6.04e−3 0.70
320 ∗ ∗ ∗ ∗ 5.03e−3 0.27 4.83e−3 0.31 4.85e−3 0.32

4 10 ∗ ∗ 3.48e−2 3.62e−2 3.63e−2
20 ∗ ∗ ∗ ∗ 1.35e−2 1.37 1.26e−2 1.52 1.27e−2 1.51
40 ∗ ∗ ∗ ∗ 1.21e−2 0.15 1.17e−2 0.11 1.17e−2 0.12
80 ∗ ∗ ∗ ∗ 1.03e−2 0.23 1.13e−2 0.05 1.15e−2 0.03

160 ∗ ∗ ∗ ∗ 7.13e−3 0.53 7.04e−3 0.68 7.15e−3 0.68
320 ∗ ∗ ∗ ∗ 5.17e−3 0.46 4.77e−3 0.56 4.74e−3 0.59

5 10 ∗ ∗ ∗ 2.53e−2 2.59e−2
20 ∗ ∗ ∗ ∗ ∗ ∗ 1.92e−2 0.40 1.92e−2 0.43
40 ∗ ∗ ∗ ∗ ∗ ∗ 9.55e−3 1.00 9.40e−3 1.03
80 ∗ ∗ ∗ ∗ ∗ ∗ 6.47e−3 0.56 6.47e−3 0.54

160 ∗ ∗ ∗ ∗ ∗ ∗ 5.68e−3 0.19 5.68e−3 0.19
320 ∗ ∗ ∗ ∗ ∗ ∗ 5.24e−3 0.12 5.19e−3 0.13
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Table 5: Errors and experimental order of convergence (EOC) for varying polynomial degrees p and
number of elements N for the Sod shock tube problem (127) using the local Lax-Friedrichs
numerical flux and ”simple” volume fluxes.

Central Morinishi Ducros KG Pirozzoli
p N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

1 10 ∗ ∗ 1.03e−1 1.02e−1 1.02e−1
20 ∗ ∗ ∗ ∗ 6.74e−2 0.61 6.75e−2 0.60 6.75e−2 0.60
40 ∗ ∗ ∗ ∗ 4.38e−2 0.62 4.82e−2 0.49 4.94e−2 0.45
80 ∗ ∗ ∗ ∗ 3.38e−2 0.37 3.63e−2 0.41 3.68e−2 0.42

160 ∗ ∗ ∗ ∗ 2.60e−2 0.38 2.76e−2 0.39 2.77e−2 0.41
320 ∗ ∗ ∗ ∗ ∗ ∗ 2.09e−2 0.40 2.08e−2 0.41

2 10 8.35e−2 5.87e−2 6.60e−2 6.54e−2 6.46e−2
20 ∗ ∗ ∗ ∗ 3.42e−2 0.95 3.52e−2 0.90 3.53e−2 0.87
40 ∗ ∗ ∗ ∗ 2.67e−2 0.36 2.78e−2 0.34 2.82e−2 0.33
80 ∗ ∗ ∗ ∗ 1.93e−2 0.47 2.02e−2 0.47 2.02e−2 0.48

160 ∗ ∗ ∗ ∗ 1.24e−2 0.65 1.27e−2 0.66 1.29e−2 0.65
320 ∗ ∗ ∗ ∗ 6.54e−3 0.92 6.66e−3 0.94 6.73e−3 0.94

3 10 ∗ ∗ 3.31e−2 3.44e−2 3.50e−2
20 ∗ ∗ ∗ ∗ 2.58e−2 0.36 2.72e−2 0.34 2.78e−2 0.34
40 ∗ ∗ ∗ ∗ 1.74e−2 0.57 1.93e−2 0.50 1.93e−2 0.52
80 ∗ ∗ ∗ ∗ 1.05e−2 0.74 1.04e−2 0.88 1.04e−2 0.89

160 ∗ ∗ ∗ ∗ 6.91e−3 0.60 6.57e−3 0.67 6.63e−3 0.65
320 ∗ ∗ ∗ ∗ 6.08e−3 0.19 5.58e−3 0.24 5.59e−3 0.25

4 10 ∗ ∗ 3.49e−2 3.68e−2 3.70e−2
20 ∗ ∗ ∗ ∗ 1.27e−2 1.46 1.23e−2 1.58 1.26e−2 1.56
40 ∗ ∗ ∗ ∗ 1.18e−2 0.11 1.13e−2 0.13 1.14e−2 0.15
80 ∗ ∗ ∗ ∗ 1.02e−2 0.21 1.13e−2 0.00 1.15e−2 −0.01

160 ∗ ∗ ∗ ∗ 7.43e−3 0.46 7.49e−3 0.59 7.57e−3 0.60
320 ∗ ∗ ∗ ∗ 5.47e−3 0.44 5.22e−3 0.52 5.15e−3 0.56

5 10 ∗ ∗ ∗ 2.57e−2 2.65e−2
20 ∗ ∗ ∗ ∗ ∗ ∗ 1.93e−2 0.41 1.93e−2 0.46
40 ∗ ∗ ∗ ∗ ∗ ∗ 1.11e−2 0.80 1.08e−2 0.84
80 ∗ ∗ ∗ ∗ ∗ ∗ 7.68e−3 0.54 7.53e−3 0.52

160 ∗ ∗ ∗ ∗ ∗ ∗ 6.94e−3 0.15 6.82e−3 0.14
320 ∗ ∗ ∗ ∗ ∗ ∗ 6.35e−3 0.13 6.18e−3 0.14
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7.3 Modified Version of Sod’s Shock Tube: Subcell Flux Differencing

In this section, the modified version of the shock tube of Sod [24] as described by Toro [27,
Section 6.4, Test 1] will be used to test the semidiscretisations (10) using the volume terms (11)
and the surface terms (12). The initial condition is given in primitive variables by

%0(x) =

{
1, x < 3

10 ,

0.125 else,
, v0(x) =

{
0.75, x < 3

10 ,

0 else,
, p0(x) =

{
1, x < 3

10 ,

0.1, else,
(128)

and the conservative variables are again computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The
solution is computed on the domain [0, 1] from t = 0 until t = 0.2 using 15 000 steps and the
error is computed as in section 7.2.

The results using the Suliciu relaxation solver and the local Lax-Friedrichs flux for varying
polynomial degrees p and number of elements N are shown in Table 6 and 7, respectively. Again,
there are some variances across the volume fluxes of up to 33% [e.g. p = 4, N = 10, (%, v, p) vs.
(%, v, β(2))] but no flux seems to be clearly superior. As in the previous test case in section 7.2,
the Suliciu solver performs better than the LLF flux – at least, if the resolution is good enough.

As in the previous section 7.2, the volume fluxes recovering the central form as well as the split
forms of Morinishi [18], Ducros, Laporte, Souleres, Guinot, Moinat, and Caruelle [8], Kennedy
and Gruber [17], and Pirozzoli [19] have been used. The relevant results are shown in the Tables
8 (Suliciu) and 9 (LLF).

Contrary to the results of the unmodified shock tube of Sod, all calculations are stable for
low resolution. The splitting of Morinishi [18] blows up at first if the Suliciu solver is used,
while the central flux crashes at first for the LLF flux. Moreover, even the splittings of Kennedy
and Gruber [17] and Pirozzoli [19] that remained stable in the previous section 7.2 blow up for
higher polynomial degrees.
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Table 8: Errors and experimental order of convergence (EOC) for varying polynomial degrees p and
number of elements N for the modified Sod shock tube problem (128) using the Suliciu relaxation
solver as numerical flux and ”simple” volume fluxes.

Central Morinishi Ducros KG Pirozzoli
p N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

1 10 1.42e−1 1.42e−1 1.34e−1 1.33e−1 1.33e−1
20 7.46e−2 0.93 8.55e−2 0.74 7.21e−2 0.89 7.41e−2 0.85 7.48e−2 0.83
40 6.63e−2 0.17 1.05e−1 −0.29 5.71e−2 0.34 6.07e−2 0.29 6.17e−2 0.28
80 6.00e−2 0.14 ∗ ∗ 4.49e−2 0.35 4.79e−2 0.34 4.86e−2 0.34

160 5.25e−2 0.19 ∗ ∗ 3.10e−2 0.53 3.35e−2 0.52 3.42e−2 0.51
320 4.86e−2 0.11 ∗ ∗ 2.14e−2 0.53 2.34e−2 0.52 2.40e−2 0.51

2 10 ∗ 8.38e−2 7.83e−2 8.03e−2 8.02e−2
20 ∗ ∗ 4.62e−2 0.86 4.97e−2 0.66 5.10e−2 0.66 5.20e−2 0.63
40 ∗ ∗ 4.17e−2 0.15 4.00e−2 0.31 4.20e−2 0.28 4.21e−2 0.30
80 ∗ ∗ 2.73e−2 0.61 2.10e−2 0.93 2.14e−2 0.98 2.18e−2 0.95

160 ∗ ∗ ∗ ∗ 2.05e−2 0.04 2.09e−2 0.03 2.11e−2 0.04
320 ∗ ∗ ∗ ∗ 1.27e−2 0.69 1.41e−2 0.57 1.45e−2 0.54

3 10 ∗ ∗ ∗ ∗ 6.02e−2
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
320 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 10 ∗ ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
320 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 10 ∗ ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
320 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 9: Errors and experimental order of convergence (EOC) for varying polynomial degrees p and
number of elements N for the modified Sod shock tube problem (128) using the local Lax-
Friedrichs numerical flux and ”simple” volume fluxes.

Central Morinishi Ducros KG Pirozzoli
p N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

1 10 1.44e−1 1.45e−1 1.35e−1 1.34e−1 1.34e−1
20 7.30e−2 0.98 8.23e−2 0.81 6.95e−2 0.96 7.18e−2 0.90 7.23e−2 0.89
40 6.68e−2 0.13 9.44e−2 −0.20 5.91e−2 0.23 6.30e−2 0.19 6.44e−2 0.17
80 6.08e−2 0.13 ∗ ∗ 4.62e−2 0.36 4.94e−2 0.35 5.04e−2 0.35

160 5.16e−2 0.24 ∗ ∗ 3.22e−2 0.52 3.48e−2 0.50 3.58e−2 0.49
320 4.72e−2 0.13 ∗ ∗ 2.25e−2 0.52 2.46e−2 0.50 2.53e−2 0.50

2 10 8.42e−2 8.46e−2 8.62e−2 8.67e−2 8.67e−2
20 5.08e−2 0.73 5.23e−2 0.69 5.36e−2 0.68 5.43e−2 0.68 5.50e−2 0.66
40 3.78e−2 0.42 4.92e−2 0.09 3.99e−2 0.43 4.20e−2 0.37 4.22e−2 0.38
80 2.30e−2 0.72 ∗ ∗ 2.25e−2 0.82 2.21e−2 0.93 2.25e−2 0.90

160 2.14e−2 0.10 ∗ ∗ 2.11e−2 0.10 2.08e−2 0.09 2.10e−2 0.10
320 1.43e−2 0.59 ∗ ∗ 1.32e−2 0.67 1.40e−2 0.56 1.44e−2 0.54

3 10 ∗ ∗ ∗ 6.11e−2 6.22e−2
20 ∗ ∗ ∗ ∗ ∗ ∗ 4.53e−2 0.43 4.58e−2 0.44
40 ∗ ∗ ∗ ∗ ∗ ∗ 2.48e−2 0.87 2.51e−2 0.87
80 ∗ ∗ ∗ ∗ ∗ ∗ 2.28e−2 0.12 2.29e−2 0.13

160 ∗ ∗ ∗ ∗ ∗ ∗ 1.52e−2 0.58 1.55e−2 0.57
320 ∗ ∗ ∗ ∗ ∗ ∗ 1.16e−2 0.39 1.17e−2 0.40

4 10 ∗ ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
320 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 10 ∗ ∗ ∗ ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
40 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
80 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

160 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
320 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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7.4 Sod’s Shock Tube: Finite Volume Setting

Here, the classical shock tube of Sod [24] with initial condition (127) of section 7.2 will be used
again, but in the context of first order finite volume methods.

The entropy conservative flux (52) of Chandrashekar [3] has been used with the scalar dis-
sipation (SD) of Derigs, Winters, Gassner, and Walch [6], the matrix (MD) and hybrid (HD)
dissipation of Winters, Derigs, Gassner, and Walch [28] and the local Lax-Friedrichs (LLF)
dissipation operator. The last one has also been used for the other entropy conservative fluxes.
Additionally, the classical LLF flux and Suliciu relaxation solver of Bouchut [2] are tested.

The results are shown in Table 10. Here, the matrix dissipation (MD) and the Suliciu solver
perform equally good and yield less error than the other fluxes. Additionally, there is nearly no
variance across the solvers using the LLF or scalar dissipation operator.

Table 10: Errors and experimental order of convergence (EOC) for varying number of elements N for the
Sod shock tube problem (127) using several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.62e−2 3.97e−2 4.22e−2 4.62e−2
200 3.75e−2 0.30 3.04e−2 0.38 3.23e−2 0.38 3.75e−2 0.30
400 2.80e−2 0.42 2.19e−2 0.47 2.31e−2 0.49 2.80e−2 0.42
800 2.08e−2 0.43 1.62e−2 0.43 1.69e−2 0.45 2.08e−2 0.43

1600 1.56e−2 0.42 1.23e−2 0.40 1.26e−2 0.42 1.56e−2 0.42
3200 1.18e−2 0.40 9.33e−3 0.40 9.49e−3 0.41 1.18e−2 0.40
6400 9.24e−3 0.35 7.35e−3 0.34 7.42e−3 0.36 9.24e−3 0.35

12800 7.22e−3 0.36 5.60e−3 0.39 5.64e−3 0.40 7.22e−3 0.36

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.62e−2 4.61e−2 4.61e−2 4.62e−2
200 3.75e−2 0.30 3.74e−2 0.30 3.74e−2 0.30 3.75e−2 0.30
400 2.80e−2 0.42 2.80e−2 0.42 2.80e−2 0.42 2.80e−2 0.42
800 2.08e−2 0.43 2.08e−2 0.43 2.08e−2 0.43 2.08e−2 0.43

1600 1.56e−2 0.42 1.56e−2 0.42 1.56e−2 0.42 1.56e−2 0.42
3200 1.18e−2 0.40 1.18e−2 0.40 1.18e−2 0.40 1.18e−2 0.40
6400 9.24e−3 0.35 9.24e−3 0.35 9.24e−3 0.35 9.24e−3 0.35

12800 7.22e−3 0.36 7.22e−3 0.36 7.22e−3 0.36 7.22e−3 0.36

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.62e−2 4.63e−2 4.58e−2 3.95e−2
200 3.75e−2 0.30 3.76e−2 0.30 3.72e−2 0.30 3.03e−2 0.38
400 2.80e−2 0.42 2.80e−2 0.42 2.79e−2 0.42 2.19e−2 0.47
800 2.08e−2 0.43 2.08e−2 0.43 2.07e−2 0.43 1.63e−2 0.43

1600 1.56e−2 0.42 1.56e−2 0.42 1.56e−2 0.41 1.23e−2 0.40
3200 1.18e−2 0.40 1.18e−2 0.40 1.18e−2 0.40 9.36e−3 0.39
6400 9.24e−3 0.35 9.24e−3 0.35 9.25e−3 0.35 7.36e−3 0.35

12800 7.22e−3 0.36 7.22e−3 0.36 7.23e−3 0.36 5.63e−3 0.39

7.5 Modified Version of Sod’s Shock Tube: Finite Volume Setting

Similar to the previous section, the modified Sod shock tube problem of section 7.3 is used to
test the finite volume fluxes. The results are shown in Table 11. Again, the matrix dissipation
and the Suliciu solver perform equally good and are superior to the other fluxes. As in section
7.4, there is nearly no variance across the methods with matrix / LLF dissipation.
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Table 11: Errors and experimental order of convergence (EOC) for varying number of elements N for the
modified Sod shock tube problem (128) using several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 5.55e−2 4.03e−2 4.59e−2 5.55e−2
200 4.67e−2 0.25 3.31e−2 0.28 3.61e−2 0.35 4.67e−2 0.25
400 3.70e−2 0.34 2.65e−2 0.32 2.80e−2 0.37 3.70e−2 0.34
800 2.90e−2 0.35 2.14e−2 0.31 2.21e−2 0.34 2.90e−2 0.35

1600 2.23e−2 0.38 1.68e−2 0.35 1.72e−2 0.37 2.23e−2 0.38
3200 1.76e−2 0.34 1.37e−2 0.29 1.39e−2 0.31 1.76e−2 0.34
6400 1.39e−2 0.34 1.10e−2 0.32 1.11e−2 0.32 1.39e−2 0.34

12800 1.10e−2 0.34 8.51e−3 0.37 8.57e−3 0.37 1.10e−2 0.34

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 5.55e−2 5.53e−2 5.53e−2 5.55e−2
200 4.67e−2 0.25 4.67e−2 0.25 4.67e−2 0.25 4.67e−2 0.25
400 3.70e−2 0.34 3.70e−2 0.33 3.70e−2 0.33 3.70e−2 0.34
800 2.90e−2 0.35 2.90e−2 0.35 2.90e−2 0.35 2.90e−2 0.35

1600 2.23e−2 0.38 2.23e−2 0.38 2.23e−2 0.38 2.23e−2 0.38
3200 1.76e−2 0.34 1.76e−2 0.34 1.76e−2 0.34 1.76e−2 0.34
6400 1.39e−2 0.34 1.39e−2 0.34 1.39e−2 0.34 1.39e−2 0.34

12800 1.10e−2 0.34 1.10e−2 0.34 1.10e−2 0.34 1.10e−2 0.34

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 5.55e−2 5.55e−2 5.58e−2 4.13e−2
200 4.67e−2 0.25 4.67e−2 0.25 4.69e−2 0.25 3.34e−2 0.31
400 3.70e−2 0.34 3.70e−2 0.34 3.71e−2 0.34 2.66e−2 0.33
800 2.90e−2 0.35 2.90e−2 0.35 2.91e−2 0.35 2.15e−2 0.31

1600 2.23e−2 0.38 2.23e−2 0.38 2.24e−2 0.38 1.69e−2 0.35
3200 1.76e−2 0.34 1.76e−2 0.34 1.76e−2 0.34 1.38e−2 0.29
6400 1.39e−2 0.34 1.39e−2 0.34 1.40e−2 0.34 1.11e−2 0.32

12800 1.10e−2 0.34 1.10e−2 0.34 1.10e−2 0.34 8.61e−3 0.36
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7.6 Near Vacuum Rarefaction

In this section, the rarefaction waves near vacuum as described by Toro [27, Section 4.3.3, Test
2] will be used to test the methods. The initial condition is given in primitive variables by

%0(x) = 1, v0(x) =

{
−2, x < 1

2 ,

2, else,
, p0(x) = 0.4, (129)

and the conservative variables are again computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The
solution is computed on the domain [0, 1] from t = 0 until t = 0.15.

Using the same finite volume methods as in section 7.4, the results are shown in Table 12.
Across the varying number of elements N , no flux is clearly superior.

Table 12: Errors and experimental order of convergence (EOC) for varying number of elements N for the
near vacuum rarefaction problem (129) using several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 8.83e−2 7.94e−2 7.98e−2 8.84e−2
200 5.66e−2 0.64 5.67e−2 0.49 5.62e−2 0.51 5.66e−2 0.64
400 4.01e−2 0.50 4.18e−2 0.44 4.14e−2 0.44 4.01e−2 0.50
800 2.91e−2 0.46 2.99e−2 0.48 2.98e−2 0.47 2.91e−2 0.46

1600 2.02e−2 0.52 2.05e−2 0.54 2.05e−2 0.54 2.03e−2 0.52
3200 1.32e−2 0.61 1.33e−2 0.62 1.33e−2 0.62 1.33e−2 0.61
6400 8.04e−3 0.72 8.08e−3 0.72 8.06e−3 0.72 8.04e−3 0.72

12800 4.25e−3 0.92 4.22e−3 0.94 4.20e−3 0.94 4.26e−3 0.92

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 8.80e−2 8.87e−2 8.87e−2 8.84e−2
200 5.65e−2 0.64 5.68e−2 0.64 5.68e−2 0.64 5.66e−2 0.64
400 4.01e−2 0.49 4.04e−2 0.49 4.04e−2 0.49 4.01e−2 0.50
800 2.91e−2 0.46 2.93e−2 0.46 2.93e−2 0.46 2.91e−2 0.46

1600 2.03e−2 0.52 2.03e−2 0.53 2.03e−2 0.53 2.03e−2 0.52
3200 1.32e−2 0.61 1.33e−2 0.61 1.33e−2 0.61 1.33e−2 0.61
6400 8.04e−3 0.72 8.07e−3 0.72 8.07e−3 0.72 8.04e−3 0.72

12800 4.25e−3 0.92 4.29e−3 0.91 4.29e−3 0.91 4.26e−3 0.92

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 8.80e−2 8.84e−2 8.07e−2 7.72e−2
200 5.63e−2 0.64 5.67e−2 0.64 5.52e−2 0.55 5.55e−2 0.47
400 3.99e−2 0.50 4.02e−2 0.50 4.00e−2 0.46 4.10e−2 0.44
800 2.90e−2 0.46 2.92e−2 0.46 2.89e−2 0.47 2.95e−2 0.48

1600 2.02e−2 0.52 2.03e−2 0.52 2.01e−2 0.53 2.02e−2 0.54
3200 1.32e−2 0.61 1.33e−2 0.61 1.31e−2 0.61 1.32e−2 0.62
6400 8.02e−3 0.72 8.05e−3 0.72 7.92e−3 0.73 7.98e−3 0.72

12800 4.23e−3 0.92 4.26e−3 0.92 4.05e−3 0.97 4.12e−3 0.95

7.7 Left Half of the Blast Wave Problem of Woodward and Colella

In this section, the left half of the blast wave problem of Woodward and Colella [29, Section
IV.a] as described by Toro [27, Section 4.3.3, Test 3] is considered. In primitive variables, it is
given by

%0(x) = 1, v0(x) = 0, p0(x) =

{
1000, x < 1

2 ,

0.01, else,
(130)
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and the conservative variables are again computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The
solution is computed on the domain [0, 1] from t = 0 until t = 0.012 using the finite volume
methods described in section 7.4.

The results are shown in table 13. The simulations using the fluxes with variables %, v and p
or 1

p crashed since they left the invariant region for the Euler equations. As described by Derigs,
Winters, Gassner, and Walch [6], the reason is the appearance of the pressure in the density
flux as in the entropy conservative flux of Roe [22].

The Suliciu solver and the matrix dissipation (MD) yielded similar errors until the last one
crashed using 12 800 elements. There is a bit more variance across the other fluxes than in the
previous sections 7.4, 7.5 and 7.6. However, in the end, the Suliciu relaxation solver performs
better than the others.

Table 13: Errors and experimental order of convergence (EOC) for varying number of elements N for the
left half (130) of the blast wave problem of Woodward and Colella [29] using several numerical
fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.35e−1 7.09e−1 7.03e−1 7.35e−1
200 6.60e−1 0.16 6.33e−1 0.16 6.24e−1 0.17 6.59e−1 0.16
400 5.32e−1 0.31 4.92e−1 0.36 4.89e−1 0.35 5.32e−1 0.31
800 4.33e−1 0.30 3.92e−1 0.33 3.91e−1 0.32 4.33e−1 0.30

1600 3.51e−1 0.30 3.12e−1 0.33 3.12e−1 0.33 3.51e−1 0.30
3200 2.91e−1 0.27 2.58e−1 0.27 2.57e−1 0.28 2.91e−1 0.27
6400 2.38e−1 0.29 2.06e−1 0.32 2.07e−1 0.31 2.38e−1 0.29

12800 1.92e−1 0.31 ∗ 1.62e−1 0.36 1.92e−1 0.31

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.34e−1 ∗ ∗ 7.35e−1
200 6.59e−1 0.16 ∗ ∗ 6.59e−1 0.16
400 5.32e−1 0.31 ∗ ∗ 5.32e−1 0.31
800 4.33e−1 0.30 ∗ ∗ 4.33e−1 0.30

1600 3.51e−1 0.30 ∗ ∗ 3.51e−1 0.30
3200 2.91e−1 0.27 ∗ ∗ 2.91e−1 0.27
6400 2.38e−1 0.29 ∗ ∗ 2.38e−1 0.29

12800 1.92e−1 0.31 ∗ ∗ 1.92e−1 0.31

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.34e−1 7.37e−1 7.42e−1 7.14e−1
200 6.59e−1 0.16 6.60e−1 0.16 6.64e−1 0.16 6.34e−1 0.17
400 5.32e−1 0.31 5.33e−1 0.31 5.37e−1 0.31 4.95e−1 0.36
800 4.33e−1 0.30 4.33e−1 0.30 4.36e−1 0.30 3.95e−1 0.33

1600 3.51e−1 0.30 3.51e−1 0.30 3.53e−1 0.30 3.15e−1 0.33
3200 2.91e−1 0.27 2.91e−1 0.27 2.92e−1 0.27 2.59e−1 0.28
6400 2.38e−1 0.29 2.38e−1 0.29 2.39e−1 0.29 2.08e−1 0.31

12800 1.92e−1 0.31 1.92e−1 0.31 1.93e−1 0.31 1.64e−1 0.35

7.8 Slowly Moving Contact Discontinuity

In this section, initial condition of the previous test case is used, but with a non-vanishing initial
velocity, resulting in a slowly moving contact discontinuity as described by Toro [27, Section
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6.4, Test 5]. The initial condition is given in primitive variables by

%0(x) = 1, v0(x) = −19.59745, p0(x) =

{
1000, x < 4

5 ,

0.01, else,
(131)

and the conservative variables are again computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The
solution is computed on the domain [0, 1] from t = 0 until t = 0.012 using the finite volume
methods of section 7.4.

The results are shown in Table 14. As in the previous section 7.7, the fluxes using the pressure
in the density flux are unstable. The scalar and LLF dissipation fluxes yield similar errors with
some variances across the methods, but the Suliciu solver is superior. In most cases, it is also
better than the scalar dissipation (SD).

Table 14: Errors and experimental order of convergence (EOC) for varying number of elements N for the
slowly moving contact discontinuity (131) using several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.84e−1 4.82e−1 6.48e−1 7.85e−1
200 6.64e−1 0.24 6.69e−1 −0.47 4.52e−1 0.52 6.65e−1 0.24
400 5.77e−1 0.20 2.38e−1 1.49 4.10e−1 0.14 5.77e−1 0.20
800 4.38e−1 0.40 3.41e−1 −0.52 2.47e−1 0.73 4.38e−1 0.40

1600 3.51e−1 0.32 2.32e−1 0.56 1.67e−1 0.57 3.51e−1 0.32
3200 2.97e−1 0.24 1.02e−1 1.18 1.40e−1 0.25 2.97e−1 0.24
6400 2.36e−1 0.33 1.14e−1 −0.16 8.15e−2 0.78 2.36e−1 0.33

12800 1.99e−1 0.25 8.59e−2 0.41 6.57e−2 0.31 1.99e−1 0.25

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.86e−1 ∗ ∗ 7.85e−1
200 6.65e−1 0.24 ∗ ∗ 6.65e−1 0.24
400 5.76e−1 0.21 ∗ ∗ 5.77e−1 0.20
800 4.38e−1 0.40 ∗ ∗ 4.38e−1 0.40

1600 3.51e−1 0.32 ∗ ∗ 3.51e−1 0.32
3200 2.97e−1 0.24 ∗ ∗ 2.97e−1 0.24
6400 2.36e−1 0.33 ∗ ∗ 2.36e−1 0.33

12800 1.99e−1 0.25 ∗ ∗ 1.99e−1 0.25

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.86e−1 7.91e−1 7.96e−1 5.08e−1
200 6.65e−1 0.24 6.66e−1 0.25 6.77e−1 0.23 2.80e−1 0.86
400 5.77e−1 0.21 5.77e−1 0.21 5.84e−1 0.21 2.85e−1 −0.03
800 4.38e−1 0.40 4.38e−1 0.40 4.45e−1 0.39 1.45e−1 0.97

1600 3.51e−1 0.32 3.51e−1 0.32 3.55e−1 0.33 9.77e−2 0.57
3200 2.97e−1 0.24 2.97e−1 0.24 2.99e−1 0.24 9.03e−2 0.11
6400 2.36e−1 0.33 2.36e−1 0.33 2.37e−1 0.33 4.81e−2 0.91

12800 1.99e−1 0.25 1.99e−1 0.25 1.99e−1 0.25 3.95e−2 0.29

7.9 Right Half of the Blast Wave Problem of Woodward and Colella

In this section, the right half of the blast wave problem of Woodward and Colella [29, Section
IV.a] as described by Toro [27, Section 4.3.3, Test 4] is considered. In primitive variables, it is
given by

%0(x) = 1, v0(x) = 0, p0(x) =

{
0.01, x < 1

2 ,

100, else,
(132)
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and the conservative variables are again computed via %v0 = %0v0 and %e0 = 1
2%0v

2
0 + p0

γ−1 . The
solution is computed on the domain [0, 1] from t = 0 until t = 0.035 using again the finite
volume methods described in section 7.4.

The results are shown in Table 15. As before, the fluxes with variables %, v and p or 1
p are

unstable, and the other fluxes yield similar errors, while the matrix dissipation and Suliciu solver
perform a bit better than the others.

Table 15: Errors and experimental order of convergence (EOC) for varying number of elements N for
the right half (132) of the blast wave problem of Woodward and Colella [29] using several
numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.25e−1 6.90e−1 6.89e−1 7.26e−1
200 6.45e−1 0.17 6.11e−1 0.18 6.05e−1 0.19 6.45e−1 0.17
400 5.26e−1 0.29 4.91e−1 0.32 4.87e−1 0.31 5.26e−1 0.30
800 4.38e−1 0.26 4.02e−1 0.29 3.99e−1 0.29 4.38e−1 0.26

1600 3.58e−1 0.29 3.24e−1 0.31 3.22e−1 0.31 3.57e−1 0.29
3200 2.86e−1 0.32 2.53e−1 0.36 2.53e−1 0.35 2.86e−1 0.32
6400 2.33e−1 0.29 2.02e−1 0.33 2.03e−1 0.32 2.33e−1 0.29

12800 1.88e−1 0.31 1.64e−1 0.30 1.59e−1 0.35 1.88e−1 0.31

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.24e−1 ∗ ∗ 7.26e−1
200 6.44e−1 0.17 ∗ ∗ 6.45e−1 0.17
400 5.25e−1 0.29 ∗ ∗ 5.26e−1 0.30
800 4.38e−1 0.26 ∗ ∗ 4.38e−1 0.26

1600 3.57e−1 0.29 ∗ ∗ 3.57e−1 0.29
3200 2.86e−1 0.32 ∗ ∗ 2.86e−1 0.32
6400 2.33e−1 0.29 ∗ ∗ 2.33e−1 0.29

12800 1.88e−1 0.31 ∗ ∗ 1.88e−1 0.31

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 7.25e−1 7.28e−1 7.35e−1 7.00e−1
200 6.44e−1 0.17 6.46e−1 0.17 6.52e−1 0.17 6.16e−1 0.19
400 5.25e−1 0.29 5.26e−1 0.30 5.30e−1 0.30 4.92e−1 0.32
800 4.38e−1 0.26 4.38e−1 0.26 4.41e−1 0.27 4.03e−1 0.29

1600 3.57e−1 0.29 3.58e−1 0.29 3.59e−1 0.30 3.24e−1 0.31
3200 2.86e−1 0.32 2.86e−1 0.32 2.87e−1 0.32 2.54e−1 0.35
6400 2.33e−1 0.29 2.33e−1 0.29 2.34e−1 0.30 2.04e−1 0.32

12800 1.88e−1 0.31 1.88e−1 0.31 1.89e−1 0.31 1.60e−1 0.35

7.10 Left Half of the Blast Wave Problem of Derigs, Winters, Gassner and Walch

In this section, the left half of the blast wave problem of Derigs, Winters, Gassner, and Walch
[6, Section 6] is considered. In primitive variables, it is given by

%0(x) = 1, v0(x) = 10, p0(x) =

{
1, x < − 1

10 ,

10−6, else.
(133)

Here, γ = 5
3 is used. The solution is computed on the domain [−1, 1] from t = 0 until t =

5.0× 10−2 using the finite volume methods of section 7.4.
The results are shown in Table 16. Designed as a test case to crash the flux of Roe [22], the

fluxes containing pressure influence in the density flux are unstable. However, there is nearly
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no variance across the other fluxes that remain stable, since the problem needs a very high
resolution to capture the solution.

Contrary to the results of Derigs, Winters, Gassner, and Walch [6] for the MHD equations,
the simple LLF dissipation is enough to stabilise the solution for the Euler equations in this
case and their specially designed dissipation operator does not show any improvement over the
LLF dissipation.

Table 16: Errors and experimental order of convergence (EOC) for varying number of elements N for
the left half (133) of the blast wave problem of Derigs, Winters, Gassner, and Walch [6] using
several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.32e−1 4.33e−1 4.33e−1 4.33e−1
200 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47
400 3.08e−1 0.02 3.07e−1 0.02 3.08e−1 0.02 3.08e−1 0.02
800 2.64e−1 0.22 2.63e−1 0.23 2.63e−1 0.23 2.64e−1 0.22

1600 2.83e−1 −0.10 2.82e−1 −0.10 2.82e−1 −0.10 2.84e−1 −0.10
3200 2.60e−1 0.13 2.58e−1 0.13 2.58e−1 0.13 2.60e−1 0.13
6400 2.24e−1 0.21 2.23e−1 0.21 2.23e−1 0.21 2.24e−1 0.21

12800 1.78e−1 0.33 1.77e−1 0.33 1.77e−1 0.33 1.78e−1 0.33

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.33e−1 ∗ ∗ 4.33e−1
200 3.13e−1 0.47 ∗ ∗ 3.13e−1 0.47
400 3.08e−1 0.02 ∗ ∗ 3.08e−1 0.02
800 2.64e−1 0.22 ∗ ∗ 2.64e−1 0.22

1600 2.83e−1 −0.10 ∗ ∗ 2.84e−1 −0.10
3200 2.60e−1 0.13 ∗ ∗ 2.60e−1 0.13
6400 2.24e−1 0.21 ∗ ∗ 2.24e−1 0.21

12800 1.78e−1 0.33 ∗ ∗ 1.78e−1 0.33

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.33e−1 4.33e−1 4.33e−1 4.33e−1
200 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47
400 3.08e−1 0.02 3.08e−1 0.02 3.09e−1 0.02 3.08e−1 0.02
800 2.64e−1 0.22 2.64e−1 0.22 2.64e−1 0.22 2.63e−1 0.23

1600 2.83e−1 −0.10 2.84e−1 −0.10 2.84e−1 −0.10 2.83e−1 −0.10
3200 2.60e−1 0.13 2.60e−1 0.13 2.60e−1 0.13 2.59e−1 0.13
6400 2.24e−1 0.21 2.24e−1 0.21 2.24e−1 0.21 2.23e−1 0.22

12800 1.78e−1 0.33 1.78e−1 0.33 1.78e−1 0.33 1.77e−1 0.33

7.11 Right Half of the Blast Wave Problem of Derigs, Winters, Gassner and
Walch

In this section, the right half of the blast wave problem of Derigs, Winters, Gassner, and Walch
[6, Section 6] is considered. In primitive variables, it is given by

%0(x) = 1, v0(x) = 10, p0(x) =

{
10−6, x < 1

10 ,

1, else.
(134)

Here, γ = 5
3 is used. The solution is computed on the domain [−1, 1] from t = 0 until t =

5.0× 10−2 using again the same finite volume methods as before.
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The results are shown in Table 17. The results are similar to the left half of this problem
in section 7.10: The pressure influence in the density flux results in unstable schemes while all
other methods yield similar errors and are stable.

Table 17: Errors and experimental order of convergence (EOC) for varying number of elements N for the
right half (134) of the blast wave problem of Derigs, Winters, Gassner, and Walch [6] using
several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.33e−1 4.32e−1 4.33e−1 4.33e−1
200 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47 3.13e−1 0.47
400 3.09e−1 0.02 3.07e−1 0.03 3.08e−1 0.02 3.09e−1 0.02
800 2.64e−1 0.22 2.63e−1 0.23 2.63e−1 0.23 2.64e−1 0.22

1600 2.83e−1 −0.10 2.80e−1 −0.09 2.80e−1 −0.09 2.83e−1 −0.10
3200 2.58e−1 0.13 2.54e−1 0.14 2.55e−1 0.14 2.58e−1 0.13
6400 2.23e−1 0.21 2.18e−1 0.22 2.18e−1 0.22 2.23e−1 0.21

12800 1.79e−1 0.32 1.73e−1 0.33 1.74e−1 0.33 1.79e−1 0.32

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.33e−1 ∗ ∗ 4.33e−1
200 3.14e−1 0.47 ∗ ∗ 3.13e−1 0.47
400 3.09e−1 0.02 ∗ ∗ 3.09e−1 0.02
800 2.64e−1 0.22 ∗ ∗ 2.64e−1 0.22

1600 2.83e−1 −0.10 ∗ ∗ 2.83e−1 −0.10
3200 2.59e−1 0.13 ∗ ∗ 2.58e−1 0.13
6400 2.23e−1 0.21 ∗ ∗ 2.23e−1 0.21

12800 1.79e−1 0.32 ∗ ∗ 1.79e−1 0.32

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 4.33e−1 4.33e−1 4.33e−1 4.32e−1
200 3.14e−1 0.47 3.14e−1 0.47 3.13e−1 0.47 3.13e−1 0.47
400 3.09e−1 0.02 3.09e−1 0.02 3.08e−1 0.02 3.07e−1 0.03
800 2.64e−1 0.22 2.64e−1 0.22 2.64e−1 0.23 2.62e−1 0.23

1600 2.83e−1 −0.10 2.83e−1 −0.10 2.83e−1 −0.10 2.80e−1 −0.09
3200 2.59e−1 0.13 2.58e−1 0.13 2.58e−1 0.13 2.54e−1 0.14
6400 2.23e−1 0.21 2.23e−1 0.21 2.23e−1 0.21 2.18e−1 0.22

12800 1.79e−1 0.32 1.79e−1 0.32 1.79e−1 0.32 1.73e−1 0.33

7.12 Another Blast Wave Problem

In this section, another blast wave problem is considered. In primitive variables, it is given by

%0(x) =
1

10
, v0(x) = 10, p0(x) =

{
10−12, x < −1

2 ,

10−3, else.
(135)

Here, γ = 5
3 is used. The solution is computed on the domain [−1, 1] from t = 0 until t = 0.1

using the same set of FV methods as in the previous test cases.
To the author’s knowledge, this test problem has not been used before, and is designed to

show the importance of positivity preserving for the pressure. As can be seen in the results
shown in Table 18, the new scalar and matrix dissipation operators of Derigs, Winters, Gassner,
and Walch [6] and Winters, Derigs, Gassner, and Walch [28] are not stable for this problem.
Indeed, they result in negative pressures. However, the simple LLF dissipation that has been
reported to be less stable than these dissipation operators by Derigs, Winters, Gassner, and
Walch [6] for the MHD equations remains stable in this test case.
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Of course, the fluxes containing an influence of the pressure in the density flux are unstable.
The remaining fluxes (with LLF dissipation and Suliciu) are all stable and result in the same
error (up to two digits of precision).

As another example demonstrating the positivity preserving issue for the pressure, explicit
Euler FV steps (110) using the entropy conservative flux (52) of Chandrashekar [3] with scalar
and matrix dissipation operators by Derigs, Winters, Gassner, and Walch [6] and Winters,
Derigs, Gassner, and Walch [28] as well as LLF dissipation, respectively, have been performed
with the states%v

p


i−1

=

%v
p


i

=

 0.1
10

1.0× 10−12

 ,

%v
p


i+1

=

 10
10

1.0× 10−6

 . (136)

As can be seen in Figure 1, the pressure becomes negative for both the scalar [ ∆t
∆x / 0.3× 10−12]

and the matrix dissipation [ ∆t
∆x / 0.1× 10−12] operator, while the characteristic speeds on the

left (i−1, i) and right (i+1) hand side are v = 10, ci =
√
γ pi%i =

√
10−11γ, and ci+1 =

√
10−13γ.

Thus, there does not seem to be a reasonable CFL condition for these two fluxes and for this
initial condition. Contrary, the LLF dissipation operator results in a positive pressure.

0 0.2 0.4 0.6 0.8 1

·10−11

−1.5

−1

−0.5

0

·10−11

∆t/∆x

p

Ch + SD
Ch + MD
Ch + LLF

Figure 1: Pressure depending on the step size ration ∆t
∆x for one FV step (110) using a scalar (solid),

matrix (dashed), and LLF (dash-dotted) dissipation operator for the initial condition (136).

7.13 Summary of the Numerical Results

There are three main results of these numerical tests. Firstly, none of the entropy conservative
fluxes not including an influence of the pressure in the density flux seems to be clearly superior
to the others.

Secondly, the entropy conservative volume fluxes result in schemes that are more robust
for discontinuous solutions than the schemes using the other fluxes. Nevertheless, coupling
entropy conservative volume fluxes with dissipative surface fluxes is not sufficient for strong
shocks. Thus, these results should be considered carefully, since no additional shock capturing
mechanisms — which will be needed in practice — have been used.

Finally, enhancing the entropy conservative fluxes not using the pressure in the density flux by
a local Lax-Friedrichs type dissipation −λ

2 [[u]] is more robust concerning positivity of the pressure
than dissipation operators that have been developed for the MHD equations and transferred to
the Euler equations.
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Table 18: Errors and experimental order of convergence (EOC) for varying number of elements N for the
blast wave (135) using several numerical fluxes.

Ch + SD DWGW Ch + MD DWGW Ch + HD DWGW Ch + LLF
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 ∗ ∗ ∗ 1.73e−3
200 ∗ ∗ ∗ 5.82e−3 −1.75
400 ∗ ∗ ∗ 4.66e−3 0.32
800 ∗ ∗ ∗ 2.54e−2 −2.45

1600 ∗ ∗ ∗ 1.83e−2 0.47
3200 ∗ ∗ ∗ 1.83e−2 0.00
6400 ∗ ∗ ∗ 1.82e−2 0.01

12800 ∗ ∗ ∗ 1.78e−2 0.04

%, v, β (2) + LLF %, v, 1
p + LLF %, v, p + LLF %, v, T (1) + LLF

N
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 1.73e−3 ∗ ∗ 1.73e−3
200 5.82e−3 −1.75 ∗ ∗ 5.82e−3 −1.75
400 4.66e−3 0.32 ∗ ∗ 4.66e−3 0.32
800 2.54e−2 −2.45 ∗ ∗ 2.54e−2 −2.45

1600 1.83e−2 0.47 ∗ ∗ 1.83e−2 0.47
3200 1.83e−2 0.00 ∗ ∗ 1.83e−2 0.00
6400 1.82e−2 0.01 ∗ ∗ 1.82e−2 0.01

12800 1.78e−2 0.04 ∗ ∗ 1.78e−2 0.04

%, v, T (2) + LLF %, V, T (rev) + LLF LLF Suliciu
N

∥∥err%
∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC
∥∥err%

∥∥
M

EOC

100 1.73e−3 1.73e−3 1.73e−3 1.73e−3
200 5.82e−3 −1.75 5.82e−3 −1.75 5.82e−3 −1.75 5.82e−3 −1.75
400 4.66e−3 0.32 4.66e−3 0.32 4.66e−3 0.32 4.66e−3 0.32
800 2.54e−2 −2.45 2.54e−2 −2.45 2.54e−2 −2.45 2.54e−2 −2.45

1600 1.83e−2 0.47 1.83e−2 0.47 1.83e−2 0.47 1.83e−2 0.47
3200 1.83e−2 0.00 1.83e−2 0.00 1.83e−2 0.00 1.83e−2 0.00
6400 1.82e−2 0.01 1.82e−2 0.01 1.82e−2 0.01 1.82e−2 0.01

12800 1.78e−2 0.04 1.78e−2 0.04 1.78e−2 0.04 1.78e−2 0.04
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8 Summary and Conclusions

After formulating a general procedure to develop affordable entropy conservative fluxes, several
new numerical fluxes for the Euler equations have been developed in sections 4 and 5 and
compared with existing ones in two kinds of application.

Firstly, the entropy conservative fluxes can be used as building blocks of entropy stable high-
order schemes using the flux differencing form of Fisher and Carpenter [10]. In section 3,
the high order of accuracy of the flux differencing form has been proven for consistent and
symmetric numerical fluxes, extending the known theory of [10]. Moreover, entropy conservation
and stability has been investigated in a framework of generalised SBP operators applicable to
multiple dimensions and simplex elements. This last extension may be possible, but to the
author’s knowledge, there are no SBP operators on simplices in general fulfilling the conditions
used there. Although these may exist, they will probably require more nodes per element and
could therefore be less efficient.

Moreover, numerical tests have been performed using the flux differencing form and several
different volume fluxes. There does not seem to be any clearly superior candidate outperform-
ing the other ones in all cases. Whereas for smooth solutions some not entropy conservative
volume fluxes performed better than their entropy conservative counterparts, this is different
for the considered discontinuous solutions. Here, the entropy conservative volume fluxes yielded
schemes that were more stable, i.e. that did not crash (due to negative density or pressure or
other reasons). Nevertheless, coupling entropy conservative volume fluxes with dissipative sur-
face fluxes is not sufficient for strong shocks. Thus, these results should be considered carefully,
since no additional shock capturing mechanisms — which will be needed in practice — have
been used.

Secondly, entropy conservative numerical fluxes can be used as surface fluxes in flux differ-
encing form / discontinuous Galerkin / finite volume methods. There, they should be enhanced
by additional dissipation operators. In section 6, positivity preservation has been investigated.
It has been proven that most of the entropy conservative fluxes preserve non-negativity of the
density, if they are enhanced with local Lax-Friedrichs type dissipation operators.

Moreover, the (scalar, matrix, and hybrid) dissipation operators of Derigs et al. [6, 28]
have been tested and compared with a simple local Lax-Friedrichs dissipation −λ

2 [[u]] for the
entropy conservative fluxes as well as with the classical LLF flux and the Suliciu relaxation
solver of Bouchut [2]. In some problems, the hybrid and matrix dissipation operators yield
similar results regarding stability and accuracy as the Suliciu solver, but they are less stable in
general, as has been demonstrated in section 7.12. Therefore, the LLF dissipation −λ

2 [[u]] seems
to be advantageous compared to the scalar dissipation operator regarding stability, contrary to
the results of [6] for the MHD equations, where specifically tuned dissipation operators were
more stable than the LLF dissipation.

However, investigating performance of numerical fluxes, the costs have to be considered. Here,
the implementation has not been optimised for every flux in detail, but the Suliciu relaxation
solver is the second cheapest one after the LLF flux. The fluxes relying on an entropy con-
servative baseline flux are significantly more expansive. Thus, the Suliciu relaxation solver of
Bouchut [2] seems to be the best one in this comparison.

There are many open problems. Firstly, the positivity of the pressure using the LLF dissipa-
tion has been observed in all test cases but no analytical proof has been conducted yet. Another
possibility is the addition of dissipation for the variables %, %v, %s followed by a conversion to
the usual conserved variables as described by Bouchut [2, Section 2.4.6].

Moreover, it has still to be investigated thoroughly in what regard the entropy conservative
fluxes as ingredients in the flux differencing framework have advantages compared to the split
forms tested by Gassner et al. [12]. Additionally, it is still unclear, whether there are some
superior entropy conservative fluxes or cheaper ones.

Furthermore, the implications of (semidiscretely) entropy stable schemes have to be investi-
gated. To the authors’ knowledge, there are no general convergence results about high-order
schemes for nonlinear systems of conservation laws in several space dimensions. Entropy stabil-
ity, implying L2 bounds if strict positivity of density and pressure are ensured, alone does not
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suffice to prove convergence, since such L2 bounds cannot prevent oscillations can in general.
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