Skip to main content
Log in

A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This manuscript presents a discontinuous Galerkin-based numerical method for solving fluid–structure interaction problems involving incompressible, viscous fluids. The fluid and structure are fully coupled via two sets of coupling conditions. The numerical approach is based on a high-order discontinuous Galerkin (with Interior Penalty) method, which is combined with the Arbitrary Lagrangian–Eulerian approach to deal with the motion of the fluid domain, which is not known a priori. Two strongly coupled partitioned schemes are considered to resolve the interaction between fluid and structure: the Dirichlet–Neumann and the Robin–Neumann schemes. The proposed numerical method is tested on a series of benchmark problems, and is applied to a fluid–structure interaction problem describing the flow of blood in a patient-specific aortic abdominal aneurysm before and after the insertion of a prosthesis known as stent graft. The proposed numerical approach provides sharp resolution of jump discontinuities in the pressure and normal stress across fluid–structure and structure–structure interfaces. It also provides a unified framework for solving fluid–structure interaction problems involving nonlinear structures, which may develop shock wave solutions that can be resolved using a unified discontinuous Galerkin-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astorino, M., Chouly, F., Fernández Varela, M.A.: Robin based semi-implicit coupling in fluid–structure interaction. SIAM J. Sci. Comput. 31, 4041–4065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baaijens, F.P.T.: A fictitious domain/mortar element method for fluid–structure interaction. Int. J. Numer. Methods Fluids 35, 743–761 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Badia, S., Quaini, A., Quarteroni, A.: Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng. 197(49–50), 4216–4232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Badia, S., Quaini, A., Quarteroni, A.: Splitting methods based on algebraic factorization for fluid–structure interaction. SIAM J. Sci. Comput. 30(4), 1778–1805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids. J. Comput. Phys. 269, 108–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Banks, J., Henshaw, W., Schwendeman, D.: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells. J. Comput. Phys. 268, 399–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basting, S., Quaini, A., Glowinski, R., Canic, S.: An extended ale method for fluid–structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayraktar, E., Mierka, O., Turek, S.: Benchmark computations of 3d laminar flow around a cylinder with cfx, openfoam and featflow. Int. J. Comput. Sci. Eng. 7, 253–266 (2012)

    Article  Google Scholar 

  12. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluidstructure interaction analysis with applications to arterial blood flow. Comput. Mech. 38, 310–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R., Isaksen, J.G.: A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput. Mech. 46, 3–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bukac, M., Canic, S.: Longitudinal displacement in viscoelastic arteries: a novel fluid–structure interaction computational model, and experimental validation. J. Math. Biosci. Eng. 10(2), 258–388 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Bukac, M., Canic, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74(8), 577–604 (2014)

    Article  MathSciNet  Google Scholar 

  16. Bukac, M., Canic, S., Glowinski, R., Tambaca, J., Quaini, A.: Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bukac, M., Canic, S., Muha, B.: A partitioned scheme for fluid–composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bukac, M., Muha, B.: Stability and convergence analysis of the kinematically coupled scheme for fluid–structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Canic, S., Muha, B., Bukac, M.: Fluid–structure interaction in hemodynamics: modeling, analysis, and numerical simulation. In: Bodnar, T., Galdi, G.P., Necasova, S. (eds.) Fluid–Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics. Birkhauser, Basel (2014)

    Google Scholar 

  20. Canić, S., Muha, B., Bukač, M.: Stability of the kinematically coupled \(\beta \)-scheme for fluid–structure interaction problems in hemodynamics. J. Numer. Anal. Model. 12(1), 54–80 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Canic, S., Tambača, J., Guidoboni, G., Mikelić, A., Hartley, Craig J., Rosenstrauch, Doreen: Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67(1), 164–193 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cervera, M., Codina, R., Galindo, M.: On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems. Eng. Comput. 13(6), 4–30 (1996)

    Article  MATH  Google Scholar 

  24. Cesenek, J., Feistauer, M., Kosik, A.: An arbitrary Lagrangian Eulerian discontinuous Galerkin method for simulations of flows over variable geometries. J. Fluids Struct. 26, 312–329 (2010)

    Article  Google Scholar 

  25. Charles, L.A., Jeffrey, W.R., Edward, I.B., Robert, A.P.: Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann. Biomed. Eng. 23(1), 29–39 (1995)

    Article  Google Scholar 

  26. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Rhebergen, S.: A spacetime hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid–structure interaction. Math. Model. Numer. Anal. 42(3), 471–492 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid–structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)

    Article  MATH  Google Scholar 

  31. Deparis, S., Fernandez, M.A., Formaggia, L.: Acceleration of a fixed point algorithm for a fluid–structure interaction using transpiration condition. Math. Model. Numer. Anal. 37(4), 601–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Donéa, J.: A Taylor–Galerkin method for convective transport problems. In: Numerical Methods in Laminar and Turbulent Flow (Seattle, Wash., 1983), pp. 941–950. Pineridge, Swansea (1983)

  33. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fang, H., Wang, Z., Lin, Z., Liu, M.: Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels. Phys. Rev. E 65, 051925.1–051925.11 (2002)

    Article  Google Scholar 

  35. Farhat, C., Lesoinne, M.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng. 134, 7190 (1996)

    MATH  Google Scholar 

  36. Fauci, L.J., Dillon, R.: Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Feng, Z.-G., Michaelides, E.E.: The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problem. J. Comp. Phys. 195(2), 602–628 (2004)

    Article  MATH  Google Scholar 

  38. Fernández, M.A., Gerbeau, J.F., Grandmont, C.: A projection algorithm for fluid–structure interaction problems with strong added-mass effect. C. R. Math. 342(4), 279–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fernández, Miguel A.: Incremental displacement-correction schemes for incompressible fluid–structure interaction. Numer. Math. 123(1), 21–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier–Stokes equations. Comput. Fluids 46, 224–230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Figueroa, C., Vignon-Clementel, I., Jansen, K.E., Hughes, T., Taylor, C.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685–5706 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Finol, E.A., Amon, C.H.: Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123(5), 474–84 (2001)

    Article  Google Scholar 

  43. Fogelson, A.L., Guy, R.D.: Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol. 21, 293–334 (2004)

    Article  MATH  Google Scholar 

  44. Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: On the coupling of 3d and 1d Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 19, 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gerbeau, J.F., Vidrascu, M.: A quasi-Newton algorithm based on a reduced model for fluid–structure interactions problems in blood flows. Math. Model. Numer. Anal. 37(4), 631–648 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. In: Regional Conference Series in Applied Mathematics (1977)

  47. Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223, 10–49 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Grandmont, C., Farhat, C., Geuzaine, P.: The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys. 174, 669–694 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Guidoboni, G., Cavallini, N., Glowinski, R., Canic, S., Lapin, S.: A kinematically coupled time-splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22(5), 684–688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  52. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hundertmark-Zaušková, A., Lukáčová-Medvidová, M., Rusnáková, G.: Fluid–structure interaction for shear-dependent non-Newtonian fluids. In: Topics in Mathematical Modeling and Analysis, vol. 7 J. Nečas Cent. Math. Model. Lect. Notes, pp. 109–158. Matfyzpress, Prague (2012)

  54. Israeli, M., Karniadakis, G., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. John, V.: Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44, 777–788 (2004)

    Article  MATH  Google Scholar 

  56. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  57. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 44, No. 1, pp. 5862 (1948)

  58. Krafczyk, M., Cerrolaza, M., Schulz, M., Rank, E.: Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J. Biomech. 31(5), 453–462 (1998)

    Article  Google Scholar 

  59. Krafczyk, M., Tolke, J., Rank, E., Schulz, M.: Two-dimensional simulation of fluid–structure interaction using lattice-Boltzmann methods. Comput. Struct. 79, 2031–2037 (2001)

    Article  Google Scholar 

  60. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational Mechanics 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  61. Lim, S., Peskin, C.S.: Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput. 25, 2066–2083 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lomtev, I., Kirby, R.M., Karniadakis, G.E.: A discontinuous Galerkin ALE method for compressible viscous flows in moving domains. J. Comput. Phys. 155, 128–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Matthies, H., Steindorf, J.: Numerical efficiency of different partitioned methods for fluid–structure interaction. Z. Angew. Math. Mech. 2(80), 557–558 (2000)

    MATH  Google Scholar 

  64. Miller, L.A., Peskin, C.S.: A computational fluid dynamics study of ’clap and fling’ in the smallest insects. J. Exp. Biol. 208(2), 195–212 (2005)

    Article  Google Scholar 

  65. Mok, D.P., Wall, W.A.: Partitioned analysis schemes for transient interaction of incompressible flows and nonlinear flexible structures. In: Wall, W.A., Bletzinger, K.U., Schweizerhof, K. (eds.) Trends in Computational Structural Mechanics. CIMNE, Barcelona (2001)

    Google Scholar 

  66. Nobile, F.: Numerical approximation of fluid–structure interaction problems with application to hemodynamics. Ph.D. thesis EPFL (2001)

  67. Nobile, F., Vergara, C.: An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30, 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Ouriel, K., Green, R.M., Donayre, C., Shortell, C.K., Elliott, J., DeWeese, J.A.: An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J. Vasc. Surg. 15, 12–20 (1992)

    Article  Google Scholar 

  69. Peattie, R.A., Asbury, C.L., Bluth, E.I., Ruberti, J.W.: Steady flow in models of abdominal aortic aneurysms. part I: investigation of the velocity patterns. J. Ultrasound Med. 15(10), 679–88 (1996)

    Article  Google Scholar 

  70. Peattie, R.A., Bluth, E.I.: Experimental study of pulsatile flows in models of abdominal aortic aneurysms. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 1 (1998)

  71. Persson, P.O., Bonet, J., Peraire, J.: Discontinuous Galerkin solution of the Navier–Stokes equations on deformable domains. Comput. Methods Appl. Mech. Eng. 198, 1585–1595 (2009)

    Article  MATH  Google Scholar 

  72. Peskin, C., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  73. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  74. Piatkowski, M., Müthing, S., Bastian, P.: A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier–Stokes equations. arXiv:1612.00657v1 [math.NA] (2016)

  75. Quaini, A.: Algorithms for fluid–structure interaction problems arising in hemodynamics. Ph.D. thesis EPFL (2009)

  76. Quaini, A., Quarteroni, A.: A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17, 957–985 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  77. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  78. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems. Models Methods. Comput. Vis. Sci. 2, 163–197 (2000)

    Article  MATH  Google Scholar 

  79. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)

    MATH  Google Scholar 

  80. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  81. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag (1996)

  82. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)

    Article  MATH  Google Scholar 

  83. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J. Comput. Phys. 222, 391–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  84. Soudah, E., Ng, F.Y.K., Loong, T., Bordone, M., Pua, U., Narayanan, S.: CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput. Math. Methods Med. Article ID 472564 (2013)

  85. van Loon, R., Anderson, P., de Hart, J., Baaijens, F.: A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int. J. Numer. Methods Fluids 46, 533–544 (2004)

    Article  MATH  Google Scholar 

  86. Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  87. Zhao, S.Z., Xu, X.Y., Collins, M.W.: The numerical analysis of fluid–solid interactions for blood flow in arterial structures part 2: development of coupled fluid–solid algorithms. Proc. Inst. Mech. Eng. Part H 212, 241–252 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported in part by the National Science Foundation under Grants DMS-1613757 (Canic), DMS-1318763 (Canic and Wang), DMS-1311709 (Canic), DMS-1263572 (Canic, Quaini and Wang), DMS-1109189 (Canic and Quaini), DMS-1620384 (Quaini). The authors acknowledge the use of the Maxwell and Opuntia Clusters and the support from the Center of Advanced Computing and Data Systems at the University of Houston to carry out the research presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Quaini, A. & Čanić, S. A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures. J Sci Comput 76, 481–520 (2018). https://doi.org/10.1007/s10915-017-0629-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0629-y

Keywords

Navigation