Skip to main content
Log in

Compact Alternating Direction Implicit Scheme for Integro-Differential Equations of Parabolic Type

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a fast and efficient numerical method to solve a class of parabolic integro-differential equations with weakly singular kernels, compact difference approach for spatial discretization and alternating direction implicit method in time, combined with second-order fractional quadrature rule suggested by Lubich approximating the integral term. The \(L^2\) stability and convergence are derived. Two numerical examples with known exact solution are given to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pani, A.K., Fairweather, G., Fernandes, R.I.: ADI orthogonal spline collocation methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 30, 248–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  3. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Longman Scientific and Technical, London (1987)

    MATH  Google Scholar 

  4. Friedman, A., Shinbrot, M.: Volterra integral equations in Banach space. Trans. Am. Math. Soc. 126, 131–179 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heard, M.L.: An abstract parabolic Volterra integrodifferential equation. SIAM J. Math. Anal. 13, 81–105 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  7. Sloan, I.H., Thomee, V.: Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 23, 1052–1061 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yanik, E.G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12, 785–809 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, Y.P., Thomee, V., Wahlbin, L.B.: Ritz–Volterra projections to finite element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 2, 1047–1070 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, D.: On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel, I: smooth initial data. Appl. Math. Comput. 58, 1–27 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Chen, C.M., Thomée, V., Wahlbin, L.B.: Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math. Comput. 58, 587–602 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Larsson, S., Thomee, V., Wahlbin, L.B.: Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin methods. Math. Comput. 67, 45–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu, D.: Finite element methods for the nonlinear integro-differential equations. Appl. Math. Comput. 58, 241–273 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA J. Numer. Anal. 30, 555–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mclean, W., Thomee, V.: Numerical solution of an evolution equation with a positive type memory term. J. Aust. Math. Soc. Ser. B 35, 23–70 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, H., Xu, D.: A second-order fully discrete difference scheme for a partial integro-differential equation (in Chinese). Math. Numer. Sin. 28, 141–154 (2006)

    MathSciNet  Google Scholar 

  20. Chen, H., Xu, D.: A compact difference scheme for an evolution equation with a weakly singular kernel. Numer. Math. Theor. Meth. Appl. 5, 559–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of elliptic and parabolic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  Google Scholar 

  22. Liao, H., Sun, Z.: Maximum error estimates of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MATH  Google Scholar 

  23. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, L., Xu, D.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, L., Xu, D.: Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J. Comput. Phys. 236, 157–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, H., Xu, D., Peng, Y.: An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation. Int. J. Comput. Math. 20, 2178–2197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 187–199 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lubich, C.: On convolution quadrature and Hille-Philips operational calculus. Appl. Numer. Math. 9, 704–719 (1992)

    Article  Google Scholar 

  30. Sun, Z.Z.: The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations. Science Press, Beijing (2009)

    Google Scholar 

  31. Zhang, Y., Sun, Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the referees for many helpful suggestions. The project supported by National Natural Science Foundation of China (Grant No. 11671131), Construct Program of the Key Discipline in Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijie Qiao.

Additional information

Leijie Qiao and Da Xu have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Xu, D. Compact Alternating Direction Implicit Scheme for Integro-Differential Equations of Parabolic Type. J Sci Comput 76, 565–582 (2018). https://doi.org/10.1007/s10915-017-0630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0630-5

Keywords

Navigation