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Abstract This paper deals with some numerical issues about the rational approx-
imation to fractional differential operators provided by the Padé approximants. In
particular, the attention is focused on the fractional Laplacian and on the Caputo’s
derivative which, in this context, occur into the definition of anomalous diffusion
problems and of time fractional differential equations (FDEs), respectively. The pa-
per provides the algorithms for an efficient implementation of the IMEX schemes
for semi-discrete anomalous diffusion problems and of the short-memory-FBDF
methods for Caputo’s FDEs.
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1 Introduction

Let A ∈ Rn×n be a sparse and banded matrix that represents the finite difference
approximation of a differential operator with given initial and/or boundary con-
ditions. In some situations of practical interest the matrix fractional power Aα,
α > 0, if well-defined, can be used to construct numerical methods for equations

This work was partially supported by GNCS-INdAM, University of Pisa (grant PRA 2017 05)
and FRA-University of Trieste.

L. Aceto
Dipartimento di Matematica, Università di Pisa
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involving fractional derivatives. For instance, denoting by h a suitable stepsize and
taking

A = h−1 · bidiag(1,−1),

which represents the uniform backward difference approximation of the first deriva-
tive, it is known that Aα represents the Grünwald-Letnikov fractional derivative
of order α ∈ (0, 1) (see, for instance, [16,19,20]). Another simple example is given
by

A = h−2 · tridiag(−1, 2,−1),

in which Aα, α ∈ (1/2, 1], is assumed to be a uniform finite difference approx-
imation of the one-dimensional fractional Laplacian operator of order 2α with
homogeneous Dirichlet boundary conditions (see [14,15]). In this view, any nu-
merical scheme able to compute the matrix fractional powers can be potentially
used to define a method for fractional equations. Nevertheless, when working with
fractional powers, it must be kept in mind that raising to a fractional number
destroys the sparsity structure of the underlying integer order approximation. As
consequence the corresponding solver may be extremely expensive for large values
of n. In order to face this problem, in [3,4,18] the authors have studied rational
approximations to Aα, that is,

Aα ≈ [qk(A)]−1 pk(A), (1)

where pk, qk ∈ Πk, the set of polynomials of degree less or equal than k. Assuming
that k � n, the action of Aα is then approximated through the action of sparse
matrices. We remark that each “short memory” approach, in which Aα is simply
replaced by its m-banded version, for a given m fixed in some way, represents a
special case of (1) in which k = m and qk(z) = 1.

Obviously the choice of k in (1) plays a crucial role and depends on many fac-
tors, such as the operator, the differential problem, the properties of the rational
form pk/qk. On the other side, its value is responsible for the overall computational
cost. Beside this classical matter between accuracy and cost, there is another com-
putational problem that may appear when working with rational approximations,
that is, the conditioning of pk(A) and qk(A). Since these two matrices will be
involved in the linear algebra tasks required by the differential solver, it is funda-
mental that their condition numbers are not responsible for inaccuracy, otherwise
there will be an a-priori barrier for the choice of k.

In this paper we deal with a particular rational approximation (1), used in [3,
4], that arises from a standard integral representation of Aα for α ∈ (0, 1). This
rational approximation, that is essentially a scaled Padé form, is quite accurate
but the conditioning of pk(A) and qk(A) becomes quickly (with respect to k) very
large if A represents a differential operator. We remark that the error analysis
given in [3, Theorem 3.6] (and also the one in [18, Theorem 6] based on a related
approach) for the approximation of the Caputo’s fractional derivative reveals that
the choice of k is strictly related to the number of discretization points (that is,
the size of A). The same holds for the approximation of the fractional Laplacian.
In this case, from [4, Theorem 3 and Corollary 4] we have that an error of type

O
(

exp
(
−4k 4

√
λmin/λmax

))
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can be predicted, where λmin and λmax are respectively the smallest and the largest
eigenvalue of a given discretization of the Laplacian. Of course, 4

√
λmin/λmax → 0

improving the quality of the discretization.
The above arguments substantially states that using these kind of approxima-

tion a suitable value of k may be rather large in principle so that any integrator that
involves pk(A) and qk(A) may result highly inaccurate because of the conditioning.
In order to approach this problem, and hence to fix the computational drawback
of the integrators used in [3,4], here we use a simple but reliable strategy that
allows to keep the conditioning under control. The basic idea is to reorganize the
algorithm of any integrator based on the approximation (1) in order that all linear
algebra tasks only (iteratively) involve matrices of the type (A+ ·I). Just to pro-
vide an elementary example, if one needs to solve Amx = b, where A is moderately
ill-conditioned and m > 1, it is rather clear that the computation of Am should be
avoided in favor of the sequential solution Ay1 = b, Ay2 = y1, . . . , Ax = ym−1

(see e.g. [22]). While the idea is simple, its application may be nontrivial and
quite technical, depending on the method employed to the differential problem to
solve. In this paper we focus our attention on methods for the anomalous diffusion
and Caputo’s type fractional differential equations (FDEs). In particular we pro-
vide the computational details for an efficient implementation of some IVP solvers
for semi-discrete anomalous diffusion problems and for the well-known Fractional
BDFs (FBDFs).

The paper is organized as follows. In Section 2 we recall the basic features about
the rational approximation of fractional operators through the Gauss-Jacobi ap-
proximation of the corresponding integral representation. In Section 3 we present
two algorithms that can be fruitfully employed to solve linear systems involving
commutative products of matrices. In Section 4 we consider the numerical solu-
tion of anomalous diffusion problems by means of implicit-explicit linear multistep
methods implemented with the algorithms of Section 3. Finally, Section 5 is de-
voted to the solution of time fractional differential equations by using a predictor-
corrector implementation of short-memory-FBDF methods.

2 Background on the Padé type rational approximations

From the theory of matrix functions (see [13] for a survey), we know that the
fractional power of matrix can be written as a contour integral

Aα =
A

2πi

∫
Γ

zα−1(zI −A)−1dz, (2)

where Γ is a suitable closed contour of the complex plane not containing the origin
and enclosing the spectrum of A, σ(A), in its interior. A numerical method for the
computation of Aα can be defined by any quadrature approximation of (2), that
leads to a weighted sum of terms of the type (zjI − A)−1, zj ∈ Γ . If σ(A) is
close to the origin then so is Γ , and because of the nature of the integrand a good
approximation requires that many zj are taken close to the origin. As consequence,
the product of the terms (zjI − A)−1, that defines the polynomial qk(A) of (1),
is expected to be very ill-conditioned. This is a general argument, but in what
follows we explain in detail what happens to the rational approximation based on
the Gauss-Jacobi rule. First of all we recall the following result [7].
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Proposition 1 Let A ∈ Rn×n be such that σ(A) ⊂ C\ (−∞, 0]. For α ∈ (0, 1) the
following representation holds

Aα =
A sin(απ)

απ

∫ ∞
0

(ρ1/αI +A)−1dρ. (3)

By considering the change of variable

ρ1/α = τ
1− t
1 + t

, τ > 0, (4)

we can rewrite (3) as

Aα =
2 sin(απ)τα

π
A

∫ 1

−1

(1− t)α−1 (1 + t)−α (τ (1− t) I + (1 + t)A)−1 dt,

which leads to the use of a k-point Gauss-Jacobi rule and hence to a rational
approximation (1). In particular, we have(

A

τ

)α
≈ A

τ

k∑
j=1

2 sin(απ)

π

wj
1 + ϑj

(
1− ϑj
1 + ϑj

I +
A

τ

)−1

, (5)

where wj , ϑj , j = 1, 2, . . . , k, are respectively the weights and nodes of the Gauss-
Jacobi quadrature rule with weight function (1− t)α−1(1 + t)−α.

As remembered in the Introduction, for an error analysis of this formula for
the approximation of Caputo’s fractional derivative and the fractional Laplacian
we refer to [3, Theorem 3.6] and [4, Theorem 3 and Corollary 4], respectively.
Nevertheless, an optimal value of k will finally depend on the accuracy required to
the integrator and hence it will be closely related to the problem, as shown in [4,
Section 5, Subsection 5.1] for the case of IVPs involving the fractional Laplacian
and where a ‘conservative’ hint about the choice of k is given. The situation is even
more complicated when dealing with the Caputo’s derivative. In [3, Section 4.1]
the consistency analysis is given with respect to the quality of the discretization
and it is shown that k can be properly selected by working scalarly. In the present
work, based on the computational experience of our previous, we just want to ex-
plain how to bypass the computational drawback (bottleneck) caused by accuracy
requirements that force k to be large. As for the dependence on α, we remark that
the change of variable (4) forces the singularity to stay in the weight function,
so that the integrand function is analytic in an open subset of the complex plane
containing [−1, 1]. In this sense, the quality of the approximation is substantially
independent of α (cf. the experiments of [3, Section 3.1] and [4, Section 4]).

In [9, Lemma 4.4] it has been proved that the k-point Gauss-Jacobi quadrature
corresponds to the (k−1, k)-Padé approximant of (z/τ)α−1 centered at 1, hereafter
denoted by Rk−1,k(z/τ ; 1). In this sense, the approximation (5) can be written as(

A

τ

)α
≈ A

τ
Rk−1,k

(
A

τ
; 1

)
. (6)

We also remember that Rk−1,k(z/τ ; 1) can be expressed in terms of hypergeomet-
ric functions using the result given in [10, Theorem 4.1]

Rk−1,k

( z
τ

; 1
)

=
2F1 (1− k, 1− α− k; 1− 2k; 1− z/τ)

2F1 (−k, α− k; 1− 2k; 1− z/τ)
.
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Denoting with P(β,γ)
` the Jacobi polynomial of degree ` and using [21, eq. 142,

p. 464] and the symmetry of such polynomials, we can equivalently write

Rk−1,k

( z
τ

; 1
)

=
(1− z/τ)k−1 P(1−α,α)

k−1

(
1+z/τ
1−z/τ

)
(1− z/τ)k P(α−1,−α)

k

(
1+z/τ
1−z/τ

) .
We remark that the nodes of the Gauss-Jacobi rule ϑj , j = 1, 2, . . . , k, are in fact

the roots of P(α−1,−α)
k (ξ).

Proposition 2 Let ϑj be the j-th root of P(α−1,−α)
k (ξ) and ζr be the r-th root of

P(1−α,α)
k−1 (ξ) . Setting

ηj = τ
1− ϑj
1 + ϑj

≡ τ ϑ̄j , j = 1, 2, . . . , k, (7)

εr = τ
1− ζr
1 + ζr

≡ τ ζ̄r, r = 1, 2, . . . , k − 1, (8)

we have

Rk−1,k

( z
τ

; 1
)

= c τ

k−1∏
r=1

(z + εr)
k∏
j=1

(z + ηj)
−1 , (9)

with

c =
ηk
τ

(
k−α
k−1

)(
k+α−1

k

) k−1∏
j=1

ηj
εj
. (10)

Proof According to the change of variable

ξ =
1 + z/τ

1− z/τ ,

and by (7)-(8), we can write

(1− z/τ)k P(α−1,−α)
k

(
1 + z/τ

1− z/τ

)
= c̄

k∏
j=1

( z
τ

+ ϑ̄j
)
,

(1− z/τ)k−1 P(1−α,α)
k−1

(
1 + z/τ

1− z/τ

)
= ĉ

k−1∏
r=1

( z
τ

+ ζ̄r
)
,

with c̄ and ĉ suitable constants. These can be immediately determined by taking

into account that for a Jacobi polynomial P(β,γ)
` it holds

P(β,γ)
` (1) =

(
`+ β

`

)
.

In particular,

c̄ =

(
k + α− 1

k

) k∏
j=1

ϑ̄j

−1

, ĉ =

(
k − α
k − 1

)(
k−1∏
r=1

ζ̄r

)−1

,

from which the statement follows. ut
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Therefore, by using (9)-(10) the (k− 1, k)-Padé approximant of (A/τ)α−1 can
be expressed by (

A

τ

)α−1

≈ c τ
k−1∏
r=1

(A+ εrI)
k∏
j=1

(A+ ηjI)−1 .

Denoting by

M =
k∏
j=1

Mj , Mj = A+ ηjI, (11)

N = cτα
k∏
j=1

Nj , Nj = A+ εjI, εk = 0, (12)

the rational approximation of Aα takes the following form (see (1))

Aα ≈M−1N. (13)

It is worth noting that since ηj > 0 for each j, if σ(A) ⊂ C+ then σ(Mj) ⊂ C+.
Similar remarks can be done for the matrix Nj . Nevertheless, if σ(A) is closed to
the origin both M and N are expected to be severely ill-conditioned for growing
values of k. Indeed, increasing k we have an increasing number of Gauss-Jacobi
nodes close to 1 and therefore, by (7) and (8), an increasing number of ηj and εr
close to zero. Just to provide a numerical example, in Figure 1 we compare the
Euclidean condition number of Aα, κ(Aα), with the one of the two matrices M
and N with respect to k, that can be exactly computed knowing λmin and λmax

(the smallest and the largest eigenvalue of A, respectively) by

κ(M) =
k∏
j=1

λmax + ηj
λmin + ηj

, κ(N) =
λmax

λmin

k−1∏
j=1

λmax + εj
λmin + εj

. (14)

In this case we have considered A = tridiag(−1, 2,−1), α = 1.2, 1.8 and τ =√
λminλmax (see (4)). This value of τ has been showed to be the one that opti-

mizes the asymptotic convergence factor of the approximation (5) when A is a
symmetric positive definite matrix, cf. [4]. Moreover, using the Matlab function
jacpts implemented in Chebfun by Hale and Townsend [12], we have computed
the values ϑj and ζr which allow to obtain ηj and εr by (7) and (8).

3 The basic algorithms

We start this section with a simple strategy to approximate the matrix-vector
multiplication Aαb. By (13), we need to solve efficiently

Mx = Nb. (15)

The following Algorithm 1 solves linear systems of the type

lk(A)y = rk(A)c,
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Fig. 1 Comparison between the Euclidean condition numbers of M and N computed by (14),
and the one of Aα, for α = 1.2, 1.8.

Algorithm 1

1: set y(0) = c
2: for j = 1 to k
3: dj = ρj − λj
4: solve (A+ λjI)v

(j) = y(j−1)

5: y(j) = y(j−1) + djv
(j)

6: end for

where

lk(A) =
k∏
j=1

(A+ λjI), rk(A) =
k∏
j=1

(A+ ρjI).

Therefore, for (15) one can use Algorithm 1. The algorithm is really simple
but allows to work always with a shift of the matrix A without forming explicity
M and N . In this sense it is also possible to consider a preconditioned version in
which the preconditioner is computed only once (see e.g. [5]).

In order to show the efficiency of the algorithm, in Figure 2 we consider the
comparison with both the Cholesky and the Conjugate Gradient method applied
to (15), that is, with M as coefficient matrix, again for A = tridiag(−1, 2,−1).
In Algorithm 1, the subsystems Mjv

(j) = y(j−1) are solved with the Cholesky
method. The bottleneck determined by the ill-conditioning of M, and overtaken
by the algorithm, is quite clear. We have taken again τ =

√
λminλmax.

We remark that, in general terms, the computation of Aαb is not an easy task
if A is large. Excluding the use of a direct approach (see [13]) one typically resort to
a Krylov projection. Since zα has a branch point, the convergence of the standard
Krylov method (based on the construction of the Krylov subspaces generated by
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Fig. 2 Computed errors ‖y(k) − z‖∞, z = Aαb, for different values of k, where y(k) is the
numerical solution of (15). We compare the results of Algorithm 1 with the Cholesky and the
Conjugate Gradient method (CG) applied directly to (15). In the experiment α = 1.8, n = 200,
and b represents the uniform discretization of x(1− x) in [0, 1].

A and b) may be extremely slow even if no inversion is required. On the other side
the convergence can be accelerated using a rational Krylov method [17], that, at
each iteration, requires the solution of a linear system with A shifted, as well as
Algorithm 1.

As we shall see later, when constructing integrators for fractional differential
equations using the factorization (13) it is possible to encounter linear equations
of the type

(M + ωN)x = Nb or (M + ωN)x = Mb, ω > 0. (16)

We have (see (11) and (12))

M + ωN =
k∏
j=1

(A+ ηjI) + ωcτα
k∏
j=1

(A+ εjI). (17)

Setting {a0, a1, . . . , ak−1} and {b0, b1, . . . , bk−1} such that

M = a0I + . . .+ ak−1A
k−1 +Ak, N = cτα(b0I + . . .+ bk−1A

k−1 +Ak), (18)

and ω̂ = ωcτα, we obtain

1

1 + ω̂
(M + ωN) =

1

1 + ω̂

k−1∑
j=0

(aj + ω̂bj)A
j + (1 + ω̂)Ak


=

k−1∑
j=0

aj + ω̂bj
1 + ω̂

Aj +Ak =

k−1∑
j=0

cjA
j +Ak. (19)
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Finally, whenever the roots of such polynomial, denoted by (−σj), have been
computed, we have

M + ωN = (1 + ω̂)
k∏
j=1

(A+ σjI). (20)

Obviously, the above expression allows to solve (16) through Algorithm 1. The
basic steps can be summarized by Algorithm 2.

Algorithm 2

1: compute aj , bj , j = 0, . . . , k − 1, the coefficients in (18)
2: set ω̂ = ωcτα

3: evaluate cj =
aj + ω̂bj

1 + ω̂
, j = 0, . . . , k − 1

4: compute (−σj), the roots of the polynomial in (19)
5: solve (16) using (20) and Algorithm 1

4 Anomalous diffusion

Consider the following fractional in space reaction-diffusion differential equation

∂u(x, t)

∂t
= −κα (−∆)αu(x, t) + f(x, t, u), x ∈ Ω ⊂ IRd, t ∈ (0, T ), (21)

subject to homogeneous Dirichlet boundary conditions

u(x, t)|Ω̂ = 0, Ω̂ = IRd \Ω,

and the initial condition

u(x, 0) = u0(x).

The symmetric space fractional derivative−(−∆)α of order 2α, α ∈ (1/2, 1], can be
defined through the spectral decomposition of the homogeneous Dirichlet Laplace
operator (−∆), [15, Definition 2].

We consider the spatial discretization of (21) by taking a uniform mesh of
stepsize h and using the matrix transfer technique proposed in [14,15] by Ilić et
al.

−(−∆)αu ≈ − 1

h2α
Aαu, (22)

where h−2A is the approximate matrix representation of the standard Laplacian
obtained by using any finite difference method.

Hence, by (22), the matrix transfer technique transforms the fractional reaction-
diffusion problem into the system of first-order differential equations

dy

dt
= − κα

h2α
Aαy + f(t, y), t ∈ (0, T ], (23)

y(0) = y0,

with the usual meaning for y = y(t) and f(t, y).
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Working as in Section 2, we approximate the solution of (23) by solving

dw

dt
= − κα

h2α
M−1Nw + f(t, w), t ∈ (0, T ], (24)

w(0) = y0,

where M and N are defined accordingly to (11)-(12).
Below we show an implementation of some multistep IVP solvers for (24)

discretizing in time with a uniform stepsize δ, i.e., tj = jδ, j ≥ 0. Because of the
stiff nature of the problem we consider implicit schemes but at the same time we
always assume to handle explicitly the nonlinear forcing term f(t, w), that is, we
consider IMEX (implicit-explicit) integrators.

4.1 Implicit-explicit linear multistep methods

A generic m-step implicit-explicit linear multistep method for (24) can be written
as

m∑
i=0

αiwj−i+1 = δ
m∑
i=0

βi
(
− κα
h2α

M−1Nwj−i+1

)
+δ

m∑
i=1

γif(tj−i+1, wj−i+1), (25)

where wj ≈ w(tj), and where the set of coefficients {(αi, βi, γi)}i=0,...,m , γ0 = 0,
needs to be suitably defined to ensure proper linear stability properties and to
achieve a certain order of convergence (see [1,2] for a complete analysis). Setting

s = κα
δ

h2α
,

and

Γ1 =
m∑
i=1

αiwj−i+1, Γ2 =
m∑
i=1

βiwj−i+1, Γ3 = δ
m∑
i=1

γif(tj−i+1, wj−i+1),

after some manipulations of (25) one obtains

(α0M + β0sN)

(
wj+1 +

Γ1 − Γ3

α0

)
= sN

(
β0
α0

(Γ1 − Γ3)− Γ2

)
. (26)

In this way wj+1 can be computed using Algorithm 2. We remark that for classical
implicit multistep methods α0β0 > 0 so that the matrix pencil α0M + β0sN
remains positive definite.

Example 1 In order to work with an IMEX Adams type method, we just need to
couple an Adams-Moulton (αi, βi) and an Adams-Bashforth (αi, γi) of equal order.
For an IMEX BDF method of order p = m ≤ 6 the coefficients {(αi, βi)}i=0,...,p

are the ones of the classical p-step BDF that are coupled with the coefficients
{γi}i=1,...,p satisfying (see [2,8])

γ1ζ
p−1 + . . .+ γp−1ζ + γp = ζp − (ζ − 1)p .
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4.2 Numerical examples

We start with the one-dimensional case. We consider the spatial domain Ω =
(−1, 1), u0(x) = (1− x2)−1+α/2 and

f(x, t, u) = γ (t+ 1)γ−1(1− x2)−1+α/2.

The exact solution is given by

u(x, t) = (t+ 1)γ(1− x2)−1+α/2.

In our experiments, we select the model parameters κα = 0.1 and α = 1.2. We
discretize the spatial domain with a uniform mesh having stepsize h = 2/501 and
we consider the standard 3-point central difference discretization of the Laplacian
h−2A = h−2tridiag(−1, 2,−1). We solve (23) and (24) with the IMEX Adams
methods of order 2 (Figures 3 and 4) and of order 4 (Figures 5 and 6) in the time
interval [0, 1], using the time-step δ = 10−3. Below we recall the coefficients of the
methods:

• second-order IMEX Adams:

(α0, α1, α2) = (1,−1, 0), (β0, β1, β2) =
1

2
(1, 1, 0), (γ0, γ1, γ2) =

1

2
(0, 3, 1);

• forth-order IMEX Adams:

(α0, α1, α2, α3, α4) = (1,−1, 0, 0, 0), (β0, β1, β2, β3, β4) =
1

24
(9, 19,−5, 1, 0),

(γ0, γ1, γ2, γ3, γ4) =
1

24
(0, 55,−59, 37,−9).

We have a double aim. The first one is to show that the use of Algorithm 2
for solving (26) can improve the results attainable with the Cholesky decomposi-
tion naively applied to α0M + β0sN. We refer to the first approach by “iterated
Cholesky” while we denote the second one by “standard Cholesky”. To this aim
we take as benchmark the numerical solution of (23) in which Aα is computed to
the machine precision, that is, the classical matrix transfer technique. Figures 3
and 5 refer to this comparison. The second aim is to compare the results of these
three methods with the exact solution, and this is done in Figures 4 and 6. In all
pictures we consider the numerical solution at t = 1.

In each figure we plot three pictures in order to consider an increasingly accu-
rate rational approximation to Aα given by (6). In this sense we take k = 7, 14, 21.
Figures 3 and 5 show that the improvement of this approximation is only possible
when working with the iterated Cholesky because of the extremely large condition-
ing of α0M+β0sN for growing k. On the other side Figures 4 and 6 reveal that by
choosing k large enough the rational approximation implemented with the iterated
Cholesky yields essentially the same results of the matrix transfer technique.

Concerning some hints about a suitable a-priori choice of k, the analysis given
in [4, §5.1] applies to the present case. This analysis however requires some nu-
merical estimates about the error of the rational approximation (13), given in that
paper, that we do not report in the present one. Of course a good choice of k can
substantially reduce the overall computational cost but our aim here is just to
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Fig. 3 Pointwise error at t = 1 of the iterated (dash-dotted line) and the standard Cholesky
(dashed line) method with respect to the reference solution given by the matrix transfer tech-
nique. The time-stepping is performed by the IMEX Adams method of order 2.
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Fig. 4 Pointwise error at t = 1 of the iterated (dash-dotted line) and the standard Cholesky
(dashed line) method, and the matrix transfer approach (solid line), with respect to the exact
solution. The time-stepping is performed by the IMEX Adams method of order 2.
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Fig. 5 Pointwise error at t = 1 of the iterated (dash-dotted line) and the standard Cholesky
(dashed line) method with respect to the reference solution given by the matrix transfer tech-
nique. The time-stepping is performed by the IMEX Adams method of order 4.
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Fig. 6 Pointwise error at t = 1 of the iterated (dash-dotted line) and the standard Cholesky
(dashed line) method, and the matrix transfer approach (solid line), with respect to the exact
solution. The time-stepping is performed by the IMEX Adams method of order 4.
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show that for the accuracy we are not forced to keep k small in order to preserve
the conditioning.

Now we consider (21) in two space dimensions. We set Ω = (0, 1) × (0, 1),
u0(x1, x2) = 0, and

f(x1, x2, t, u) = t2α
κα
16

4∑
j=1

(1 + µαj )vj + 2αt2α−1 sin3(πx1) sin3(πx2)− καu,

where

v1 = 9 sin(πx1) sin(πx2), µ1 = 2π2,

v2 = −3 sin(πx1) sin(3πx2), µ2 = 10π2,

v3 = −3 sin(3πx1) sin(πx2), µ3 = 10π2,

v4 = sin(3πx1) sin(3πx2), µ4 = 18π2.

The exact solution to this problem is

u(x1, x2, t) = t2α sin3(πx1) sin3(πx2).

In our experiments we select κα = 10 and α = 1.2. We use n = 70 points in
each spatial domain direction and we approximate the two-dimensional Laplacian
using the 5-point stencil finite-difference method. We solve (23) and (24) with the
IMEX Adams methods of order 4 in the time interval [0, 0.1], using the time-step
δ = 10−2. The numerical solution provided by the rational approach based on
the Gauss-Jacobi rule with k = 14, 21, 28, the matrix transfer technique and the
exact solution are drawn at t = 0.1. The results are reported in Figures 7 and 8.
As one can see from these two pictures, comments similar to those made in the
one-dimensional case can also be done in this case.

5 Caputo’s FDEs

Let α0, α1, . . . , α` be the ` + 1 coefficients of a BDF of order `, with 1 ≤ ` ≤ 6,
which discretizes the derivative operator (see [11] Chapter III.1 for a background).
Let moreover

A` =



α0 0 0
... α0 0

α`
. . . 0

0
. . .

. . . 0
0 α` · · · α0


∈ R(n+1)×(n+1), (27)

whose spectrum, σ(A`), consists of the point α0 > 0.
In this situation, Aα` e1, e1 = (1, 0, . . . , 0)T , α ∈ (0, 1), contains the whole set

of coefficients of the corresponding Fractional BDF (FBDF) for solving FDEs (see
e.g. [19] for an exhaustive overview) of the type

0D
α
t y(t) = g(t, y(t)), t ∈ (0, T ], (28)
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Fig. 7 Step-by-step maximum error at t = 0.1 of the iterated (dash-dotted line) and the
standard Cholesky (dashed line) method with respect to the reference solution given by the
matrix transfer technique. The time-stepping is performed by the IMEX Adams method of
order 4.
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Fig. 8 Step-by-step maximum error at t = 0.1 of the iterated (dash-dotted line) and the
standard Cholesky (dashed line) method, and the matrix transfer approach (solid line), with
respect to the exact solution. The time-stepping is performed by the IMEX Adams method of
order 4.
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where 0D
α
t denotes the Caputo’s fractional derivative operator, and where we

assume to consider a uniform discretization of the time domain tj = jδ, j =
0, 1, . . . , n, δ = T/n. FBDFs of order ` ≥ 2 have been introduced in [16], and ex-
tend the Grünwald-Letnikov discretization of the fractional derivative (see again
[19]). We remark that the j-th entry of Aα` e1 is just the j-th coefficient of the
Taylor expansion of the generating function of the method

ω
(α)
` (ζ) =

(
α0 + α1ζ + . . .+ α`ζ

`
)α

around ζ = 0.
The discrete problem provided by the FBDFs of order ` applied for solving

(28) can be written in matrix form as follows

(Aα` ⊗ Is)Y + S = δαG(Y ), (29)

where s is the dimension of the FDE, Is is the identity matrix of order s, Y =
(y1, . . . , yn)T ≈ (y(t1), . . . , y(tn))T , G(Y ) = (g(t1, y1), . . . , g(tn, yn))T and S de-
notes a suitable starting phase. When ` = 1,

S = − (Aα1 ⊗ Is) (1⊗ y0) (30)

where y0 ∈ Rs represents the initial value and 1 = (1, 1, . . . , 1)T ∈ Rn.
Using any rational approximation of the form

Aα` ≈ A`
k∑
j=1

γj(A` + ηjI)−1, (31)

the explicit knowledge of the coefficients γj , ηj , j = 1, . . . , k, allows to construct
the polynomials pk, qk ∈ Πk such that

Aα` ≈ [qk(A`)]
−1 pk(A`). (32)

Note that pk(A`) and qk(A`) are still lower triangular matrices of bandwidth equal
to `k, so that the approximation (32) can be used to define an implicit `k-step
formula for FDEs (see [3,18]). To this purpose, the use of the k-point Gauss-Jacobi
rule as described in Section 2 leads to set in (31)

γj =
2 sin(απ)τα

π

wj
1 + ϑj

, ηj = τ
1− ϑj
1 + ϑj

.

Here wj and ϑj denote, respectively, the weights and nodes of the Gauss-Jacobi
quadrature rule with weight function (1−t)α−1(1+t)−α; concerning the parameter
τ, a good choice is

τ =
(7 + `)

2n
k

according to the analysis carried out in [3, Section 3]. Consequently, the polyno-
mials qk occurring in (32) are given by

qk(A`) =

k∏
j=1

(A` + ηjI),
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while the form of the polynomials pk can be deduced from (12).
As already explained in [3] any numerical scheme based on the rational approx-

imation (32) of the fractional derivative leads to a pure short-memory method so
that the history part is not explicitly approximated. In this sense the approach
is completely different from the techniques based on the accurate but cheap com-
putation of this part through an efficient approximation of the underlying kernel
function. For a background on this kind of approaches, we quote the recent work
[6] and the references therein contained. Every theoretical issue about the short-
memory approach here considered (including computational cost, accuracy, con-
sistency, linear stability, length of the formula, dependence on α) has been studied
in [3].

If we replace Aα` by M−1N in (29) accordingly to (32), and we multiply both
side of the resulting equation from the left by M ⊗ Is, we obtain

(N ⊗ Is)Y + (M ⊗ Is)S = δα(M ⊗ Is)G(Y ), (33)

where now Y represents the numerical solution provided by the `k-step method.
The above equation can be equivalently rewritten as

(N ⊗ Is)Y = (M ⊗ Is) (δαG(Y )− S) , (34)

and hence, by (11)-(12), and using the Kronecker product rules, we obtain

k∏
j=1

(Nj ⊗ Is)Y =
k∏
j=1

(Mj ⊗ Is)
(
δα

cτα
G(Y )− 1

cτα
S
)
. (35)

The predictor-corrector approach for (35) can then be implemented. This is
done in the Algorithm 3. We remark that the two linear systems occurring in such
algorithm are in fact solved by k forward substitutions, in which the coefficient
matrices are `-banded. Indeed, for each j = 1, . . . , n, each system represent a
(`k + 1)-term difference equation and using Algorithm 1 we express it through
(`+ 1)-term difference equations of the type

(α0 + εj) zn + α1zn−1 + . . .+ α`zn−` = Φ,

that needs to be solved k times, and where Φ is explicitly known, αj is from (27)
and εj from (12). For this reason, the cost of one time-step of Algorithm 3 is
comparable with the one of `k-step formula (33).

5.1 A numerical example

Consider the following nonlinear problem

0D
α
t u(x, t) =

∂(p(x)u(x, t))

∂x
+Kα

∂2u(x, t)

∂x2
+ ru(x, t)

(
1− u(x, t)

K

)
,

u(0, t) = u(5, t) = 0, t ∈ [0, 1],

u(x, 0) = x2(5− x)2, x ∈ [0, 5].

This is a particular instance of the time fractional Fokker-Planck equation with a
nonlinear source term [23]. In population biology it is used to model the spread of
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Algorithm 3

1: compute − 1
cτα
S

2: set Y (E) = 1⊗ y0
3: for i = 1 to n
4: (predictor) compute Y (1) by solving

k∏
j=1

(Nj ⊗ Is)Y (1) =
k∏
j=1

(Mj ⊗ Is)
(
δα

cτα
G(Y (E))−

1

cτα
S
)

using Algorithm 1

5: update Y (E) = (y
(E)
1 , . . . , y

(E)
i−1, y

(1)
i , . . . , y

(1)
n )T ,

6: (corrector) compute Y (2) by solving

k∏
j=1

(Nj ⊗ Is)Y (2) =

k∏
j=1

(Mj ⊗ Is)
(
δα

cτα
G(Y (E))−

1

cτα
S
)

using Algorithm 1
7: define yi := eTi Y

(2) ≈ y(ti)
8: end for

invasive species: its solution u(x, t) represents the population density at location
x and time t and the nonlinear source term in the equation models the population
growth (in this form it is known as Kolmogorov-Fisher’s growth term). In addition,
r is the intrinsic growth rate of a species and K is the environmental carrying
capacity, representing the maximum sustainable population density.

The application of the classical second-order semidiscretization in space with
stepsize h = 5/(s+ 1) leads to the following initial value problem

0D
α
t y(t) = Jy(t) + g(y(t)), t ∈ (0, 1], y(0) = y0, (36)

where, for each i = 1, 2, . . . , s, (y(t))i ≡ yi(t) ≈ u(ih, t), yi(0) = u(ih, 0), (g(y))i =
ryi(1− yi/K), and J is a tridiagonal matrix whose significant entries are

Jii = p′(xi)−
2Kα
h2

, i = 1, . . . , s,

Ji,i−1 = −p(xi)
2h

+
Kα
h2

, Ji−1,i =
p(xi−1)

2h
+
Kα
h2

, i = 1, . . . , s− 1.

In our experiments, we set α = 0.8, p(x) = −1, r = 0.2, Kα = K = 1 (see [23,
Example 5.4]); for s = 24, we solve (36) over a uniform meshgrid with stepsize
δ = 1/1024 using the following methods, based on the choice of ` = 1:

– FBDF of order 1 (FBDF1), that is, by solving the full recursion (29), in which
the nonlinear problem is solved by the Newton method;

– the k-step method (here ` = 1) that solves (34) as in [3], and again based on
the Newton method, denoted by SM, Short Memory;

– the method based on Algorithm 3, denoted by ISM, Iterated Short Memory.

We remark that the rational approximation used by the short-memory ap-
proaches is attained by defining in (4)

τ = 4k/n,
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Fig. 9 Pointwise error of the k-step methods SM and ISM, for k = 6, 7, 8, with respect to the
reference solution of the FBDF1 at t = 1.

as indicated in [3].
In Figure 9 we take as reference solution the one computed using the FBDF1.

At t = 1, we compare the error of the SM and the ISM on the discrete spatial
domain of the equation, changing the value of k. The right picture clearly shows
the difficulties of the SM method to keep close to the FBDF1 for k = 8 (and also
for k > 8 even if not reported), while the iterated approach does not suffer from
this situation.

In Figure 10 we compare the step-by-step maximum norm of the error of the
three methods with respect to a reference solution computed using the FBDF1
with stepsize δ/10. Keeping in mind that the aim of a short-memory technique
is to simulate as better as possible the behavior of the underlying full recursion,
Figure 10 perfectly shows the potential of the ISM, which is able to improve the
approximation for growing k regardless of the conditioning of the matrix N in (34)
that, on the other side, heavily affects the behavior of the SM.

6 Conclusions

The use of rational approximations to matrix fractional powers represents a promis-
ing strategy for the solution of equations involving fractional operators. Indeed,
good accuracy is attainable with a significant computational savings. In this paper
we have tried to solve a linear algebra problem that were still open, that is, the
severe ill-conditioning of the matrix polynomials involved in the rational approx-
imation. In principle, this matter can be approached by means of quite simple
algorithms, but their use inside the integrators is not straightforward and requires
suitable adaptation of the schemes.
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Fig. 10 Step-by-step error (in logarithmic scale) for the solutions of (36) for the FBDF1 (solid
line), the SM (dashed line) and the ISM (dash-dotted line). For the short memory approaches
we consider k = 5, 6, 8, 9.
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