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Abstract It is shown that the computational efficiency of the discrete least-squares

(DLS) approximation of solutions of stochastic elliptic PDEs is improved by incor-

porating a reduced-basis method into the DLS framework. In particular, we consider

stochastic elliptic PDEs with an affine dependence on the random variable. The goal

is to recover the entire solution map from the parameter space to the finite element

space. To this end, first, a reduced-basis solution using a weak greedy algorithm is

constructed, then a DLS approximation is determined by evaluating the reduced-basis

approximation instead of the full finite element approximation. The main advantage

of the new approach is that one only need apply the DLS operator to the coefficients

of the reduced-basis expansion, resulting in huge savings in both the storage of the

DLS coefficients and the online cost of evaluating the DLS approximation. In addi-

tion, the recently developed quasi-optimal polynomial space is also adopted in the

new approach, resulting in superior convergence rates for a wider class of problems

than previous analyzed. Numerical experiments are provided that illustrate the theo-

retical results.
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1 Introduction

Mathematical models are used to understand and predict the behavior of complex

systems arising in applications. Common input data for these type of models include

forcing terms, boundary conditions, model coefficients, and the computational do-

main itself. Often, for any number of reasons there is a degree of uncertainty involved

with these inputs. In order to obtain an accurate model one must incorporate such un-

certainties into the governing equations and quantify their effect on model outputs

of interest. In this paper, we focus on systems that can be modeled by elliptic partial

differential equations (PDEs) with random input data that has an affine dependence

on the random variables. In particular, we consider cases for which that data is pa-

rameterized, i.e., the random coefficients/fields in the PDEs are functions of a finite

number of random parameters. This means that the PDE solution, denoted by u(x,yyy),
can be viewed a function of an N-dimensional vector random parameters, denoted by

yyy = (y1, . . . ,yN)
⊤. Our goal is to recover the entire solution map yyy → u(x,yyy) from the

parameter space to the solution space.

It is well known that commonly used Monte Carlo methods are not feasible op-

tions for this task because they can only be used to compute limited types of statistics.

Sparse polynomial approximations [12–14,18,19,24], including stochastic Galerkin,

stochastic collocation, discrete least-squares (DLS), and compressive sensing meth-

ods, etc. These methods take advantages of the smoothness of the solution map

yyy → u(x,yyy) to reduce the complexity of approximating that map in high-dimensional

parameter space. The purpose of building sparse approximations (surrogates) is to

enable fast evaluations of the surrogates, e.g., when conducting uncertainty quantifi-

cation (UQ) tasks. However, existing sparse approximation techniques only focus on

complexity reduction with respect to the parameter dependence, and largely ignore

the huge cost (in evaluating the surrogates) arising from the finite element discretiza-

tion. Specifically, denote by J the degrees of freedom of the finite element discretiza-

tion and by M the dimension of the sparse polynomial space. To approximate the

entire solution map yyy → u(x,yyy), we have to build a polynomial approximation for

each of the J finite element coefficients so that the final sparse approximation re-

quires an M × J dense matrix to store all the coefficients. When J is large, as it is in

practical applications, the required storage may well not be affordable. Moreover, the

complexity of each evaluation of the sparse approximation will be roughly of O(JM),
which is considered as a perhaps prohibitive cost, given that computing accurate sta-

tistical information may require a very large number of such evaluations.

To overcome the above challenges, we propose to incorporate the well-studied

reduced-basis technique [6, 7, 20, 25] into the sparse polynomial approximation. Al-

though we focus on improving discrete least-squares methods, our approach can also

be potentially generalized to the other aforementioned approaches. The main idea

is to construct a reduced-basis solution using a greedy algorithm [6] to reduce the

number of coefficients that are dependent on the parameter vector yyy and then apply

the DLS operator only to the coefficients of the reduced-basis approximation. For

example, if the dimension K of the reduced-basis space is such that K ≪ J, then

the DLS coefficients can be stored in an M ×K matrix that is much smaller than

the straightforward DLS case. Moreover, with respect to computational complexity,
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our approach requires only O(K(M + J)) operations to perform matrix-vector pro-

ductions for each evaluation of the DLS approximation, which is also significantly

smaller to the O(MJ) operations required for the straightforward DLS approxima-

tion.

The plan for the rest of the paper is as follows. In Section 2, we introduce the

mathematical setting and assumptions needed throughout the rest of the paper. In

Section 3.1, we introduce quasi-optimal polynomial spaces and, in Section 3.2, we

discuss the formulation of the least-squares problem in Hilbert spaces using the quasi-

optimal polynomial space introduced in Section 3.1. Then, in Section 4, we intro-

duce the reduced-basis method and discuss its incorporation into the least-squares

framework. In Section 5, we discuss the computational complexity of the discrete

least-squares method as well as the reduced-basis method and provide the results of

numerical experiments that illustrate our findings.

2 Problem setting

Let D denote a bounded Lipschitz domain in Rd , d ∈ {1,2,3}, with boundary ∂D.

We consider the parameterized elliptic partial differential problem

{

−∇ ·
(
a(x,yyy)∇u(x,yyy)

)
= f (x) ∀(x,yyy) ∈ D×Γ

u(x,yyy) = 0 ∀(x,yyy) ∈ ∂D×Γ
(1)

for the unknown function u(x,yyy), where f (x) and a(x,yyy) are given functions and yyy

denotes a vector of parameters. In the stochastic setting, we have that yyy is a random

variable distributed according to a joint probability density function (PDF) ρ(yyy).
Although the case of a countably infinite number of random variables is of inter-

est in some applications, here we assume, as is often the case, that the randomness

present in a stochastic PDE can be approximated well in terms of a finite number

of random variables. Therefore, we assume that the parameterized diffusion coeffi-

cient a(x,yyy) depends on a finite number N of random variables denoted by the vector

yyy = (y1, . . . ,yN)
⊤ ∈ Γ ⊂ R

N , where Γ denotes a parameter domain.

Here, we specialize to the case for which the components of yyy are independent

and identically distributed random variables so that Γ is a hyper-rectangle in RN and

ρ(yyy) = Π N
n=1ρn(yn) is a product of N one-dimensional PDFs. Without loss of gener-

ality, we can then assume that Γ = [−1,1]N. We note that although the assumption

that the random variables are i.i.d. may appear restrictive, in practice, a wide range of

problems can still be addressed. As discussed in [3], problems with non-independent

random variables can be addressed via the introduction of auxiliary density functions.

We make several assumptions. First, we assume that there exist constants 0 <
amin < amax < ∞ such that

amin < a(x,y)< amax ∀x ∈ D, a.s. for yyy ∈ Γ . (2)

Let Y = L2
ρ(Γ ) denote the space of square integrable functions on Γ with respect to

the weight ρ(yyy). We also have the standard Sobolev space X = H1
0 (D) equipped with
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the norm ‖v‖X = (
∫

D ∇v ·∇vdx)1/2; X ′ = H−1(D) denotes the corresponding dual

space. Then, a weak formulation of (1) is, given f ∈ X ′, to find u ∈ X ⊗Y such that

∫

Γ

∫

D
a(x,yyy)∇u(x,yyy) ·∇v(x,yyy)ρ(yyy)dxdyyy

=

∫

Γ

∫

D
f (x)v(x,yyy)ρ(yyy)dxdyyy ∀v ∈ X ⊗Y,

(3)

where X ⊗Y := L2
ρ(Γ ;X) := {u :

∫

Γ ‖u(·,yyy)‖2
X ρ(yyy)dyyy < ∞}. By (2) and the Lax-

Milgram theorem, there exists a unique solution of (3) for any f ∈X ′ and that solution

satisfies the bound

‖u‖X⊗Y ≤ 1

amin

‖ f‖X ′ . (4)

Our final assumptions about the coefficient a(x,yyy) is affine dependence on the

random variables, i.e., it can be written in the form

a(x,yyy) = a0(x)+
N

∑
n=1

ak(x)yk (5)

for some an(x), n∈{0, . . . ,N}. A coefficient of this form could be a truncated Karhunen-

Loève (KL) expansion. The affine dependence is necessary to achieve satisfactory

efficiency in constructing a reduced basis using greedy algorithms. We also note that

this assumption implies the complex continuation of a(x,yyy), represented as the map

a(x,yyy) : CN → L∞(D), is an L∞(D)-valued holomorphic function on CN . This allows

for the use of the quasi-optimal polynomial space introduced in Section 3.1.

For spatial discretization, we use standard finite element methods. Let X fe
h ⊂ X

denote a standard finite element space of dimension J and let {φ j(x)}J
j=1 denote a

basis for X fe
h that consists of piecewise-continuous polynomials defined with respect

to a regular triangulation Th of D, where h > 0 denotes the maximum mesh spac-

ing. For any yyy ∈ Γ , the finite element approximation uh(x,yyy) ∈ X fe
h is determined by

solving

A(uh(yyy),v;yyy) = ( f ,v) ∀v ∈ X fe
h , (6)

where A(u,v) :=
∫

D a(x,yyy)∇u(x,yyy) ·∇v(x,yyy)dx is the bilinear form corresponding to

the operator in (3) and (·, ·) denotes the L2(D) inner product. Then, for any yyy ∈Γ , we

have, for sufficient small h and for a constant CS whose value is independent of h and

yyy, the error estimate

‖u− uh‖X ≤CShα . (7)

The convergence rate α depends on the spatial regularity of u and the degree of

the polynomial used. For a detailed treatment of finite element error analyses, see,

e.g., [8].
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3 Discrete least-squares approximation

In this section, we recall the formulation and theoretical results about random dis-

crete L2 approximations of solutions of the parameterized PDE problem (1). This

presentation is brief and only discusses the DLS approximation for Hilbert-valued

functions. For a more general and comprehensive analysis, see, e.g., [13,22]. For the

sake of further simplifying the exposition, we assume that the random variables are

uniformly distributed on [−1,1] so that ρn =
1
2

for n = 1, . . . ,N.

3.1 Quasi-optimal polynomial spaces

The first step towards building a DLS approximation is to choose an appropriate

polynomial space in Lρ (Γ ). Because we assume a uniform measure, we use Leg-

endre polynomials that are orthogonal with respect to this measure. Letting ννν =
(ν1,ν2, . . . ,νN) ∈ NN

0 denote a multi-index, the multidimensional Legendre polyno-

mials are denoted by Lννν(yyy) =∏N
i=1 Lνn(yn), where Lνn(yn) denotes the L2-normalized

one-dimensional Legendre polynomials [5].

In the construction of polynomial approximations with respect to parameter de-

pendences, one wishes to select a multi-index set ΛM ⊂ {ννν = (ν1,ν2, . . . ,νN) : νn ∈
N0} such that the corresponding polynomial space span{Lννν(yyy),ννν ∈ΛM} yields max-

imal accuracy for a given dimension M. To achieve this, there are two approaches that

have been extensively studied [14,17,18]. The first approach is known as best M-term

approximation. Using a truncated Legendre expansion and using the triangle inequal-

ity, we can express the error of the approximation in the form

∥
∥
∥u(yyy)− ∑

ννν∈ΛM

cνννLννν(yyy)
∥
∥
∥

X⊗Y
≤ ∑

ννν∈ΛM

‖cννν‖X , (8)

where ΛM is chosen such that the error (8) is minimized. This means that the indices

ννν ∈ ΛM correspond to the M largest values of ‖cννν‖X . However, in practice, find-

ing the best index set and polynomial space is an infeasible task because it requires

computation of all the coefficients cννν .

An alternative approach that tends to be less computationally intensive is referred

to as quasi-optimal polynomial approximation [3,26]. Rather than explicitly comput-

ing the coefficients in order to evaluate ‖cννν‖X , we instead compute sharp estimates

for ‖cννν‖X and use these to determine a quasi-optimal index set ΛM . It has been shown

that this method can achieve convergence rates similar to those of the best M-term

approximation.

In order to establish a bound on the coefficients of the Legendre expansion, we

need the following definition concerning uniform ellipticity in polyellipses.

Definition 1 For 0 < δ < amin and ϕϕϕ denoting the sequence {ϕi}N
i=1 with ϕi > 1

∀i, we say the random field a(x, ·) satisfies the (δ ,ϕϕϕ)-polyellipse uniform ellipticity

assumption if it holds that

R(a(x,zzz))≥ δ
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for all x ∈ D and zzz = {zi}N
i=1 contained in the polyellipse

E =
⊗

1≤i≤N

{

zi ∈ C : R(zi) =
ϕi +ϕ−1

i

2
cos(θ ),I (zi) =

ϕi −ϕ−1
i

2
sin(θ ),θ ∈ [0,2π)

}

.

It has been shown [26], for any diffusion coefficient a(x,yyy) satisfying the coercivity

assumption in (2) and having the holomorphic parameter dependence, there always

exists one ϕϕϕ for which this property is satisfied. Now, using this regularity condition,

the holomorphy of the solution with respect to the random parameters follows and

the bound on the coefficients of the L2-normalized Legendre expansion

‖cννν‖X ≤Cϕϕϕ,δ ϕϕϕ−ννν
N

∏
i=1

√

2νi + 1 (9)

holds, where Cϕϕϕ,δ =
|| f ||V ′

δ ∏N
i=1

ℓ(Eϕi
)

4(ϕi−1)
with ℓ(Eϕi

) denoting the perimeter of the el-

lipse Eϕi
. Note that Definition 1 holds for an infinite combination of (δ ,ϕϕϕ) that we

denoted by AAAddd. For a given ννν , the best coefficient bound will then be given by

‖cννν‖X ≤ inf
(δ ,ϕϕϕ)∈AAAddd

Cϕϕϕ,δ ϕϕϕ−ννν
N

∏
i=1

√

2νi + 1.

Solving this minimization problem is in general computationally infeasible. However,

in case the basis functions ak have non-overlapping supports, ϕϕϕ can be determined

easily [3]. Problems with both overlapping support and nonoverlapping support are

explored further in Section 5. We can now state an asymptotic bound for the quasi-

optimal M-term approximation as follows:

Proposition 1 Consider the Legendre series ∑ννν∈Λ cνννLννν for u. Assume that (9) holds

for all ννν ∈ Λ . Let log(ϕn) = λn and ΛM denote the set of indices corresponding to

the M largest bounds in (9) determined by

ΛM =

{

ννν ∈ Λ :
N

∑
n=1

(2λnνn − log(2νn + 1))≤ j

}

(10)

for a given j ∈N. Then, for any 0 < µ < 1, it follows that

∥
∥
∥u− ∑

ννν∈ΛM

cνννLννν

∥
∥
∥

2

X⊗Y
≤C2

ϕϕϕ,δCu(µ)M exp

(

− 2
(MN!∏N

n=1 λn

(1+ µ)

) 1
N

)

(11)

as j (and therefore M) goes to ∞. Here, Cu(µ) = (4e+ 4µe− 2) e
e−1

.

The index set should be chosen such that its size M allows for a specified level

of accuracy to be reached using estimate (11). The value 0 < µ < 1 is related to the

cardinality of our polynomial approximation, and decreases towards 0 as the cardi-

nality of our polynomial approximation increases. A sharp mathematical formula for

µ , given M, is currently an open problem, though it has been shown that even for a

moderate value of µ one can still obtain a strong rate of convergence. For full details

see [26, Section 4].
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3.2 Discrete least-squares approximation in quasi-optimal spaces

Here we introduce the DLS method for approximating solutions of parametric PDE in

(1) in the quasi-optimal polynomial space discussed above. This presentation is brief

and only discusses the least-squares approximation for Hilbert-valued functions. For

a more general and deeper analysis, see, e.g., [13, 22].

Let YΛM
denote an M-dimensional quasi-optimal subspace in Y . We intend to build

a DLS approximation in X ⊗YΛM
of the solution u(x,yyy) ∈ X ⊗Y by the orthogonal

projection, i.e.,

PM[u] := arg min
v∈X⊗YΛM

‖u− v‖X⊗Y .

Letting ℓℓℓM(yyy) := (ℓ1(yyy), . . . , ℓM(yyy))⊤ denote the vector of re-indexed Legendre basis

functions {Lννν(yyy) : ννν ∈ ΛM} for the subspace YΛM
, we have that

PM[u] =
M

∑
m=1

cm(x)ℓm(yyy) with cm(x) =
〈
u(x, ·), ℓm(·)

〉

Y
for m = 1, . . . ,M,

where 〈·, ·〉Y denotes the inner product on Y .

In general, we do not have available the solution of the PDE for all yyy ∈ Γ , but

only at a set of points {yyyi}S
i=1, where yyyi ∈ Γ are i.i.d. random variables distributed

according to some distribution. We then consider the discrete (with respect to the yyy

dependence) least-squares problem

PM,S[u] := arg min
v∈X⊗YΛM

S

∑
i=1

‖u(x,yyyi)− v(x,yyyi)‖2
X (12)

that has a unique solution as long as M ≤ S.

In practice, we do not have access to the exact solution u(x,yyyi) for yyyi ∈ Γ , so that

we apply the DLS operator to the finite element solution uh ∈ X fe
h ⊗Y and obtain the

L2 projection PM,S[uh] in the subspace X fe
h ⊗YΛM

which has the form

PM,S[uh] =
M

∑
m=1

J

∑
j=1

cm jφ j(x)ℓm(yyy), (13)

recalling that φ j(x) are the finite element basis functions introduced in section 2.

Letting [ΦΦΦ ]i j = ℓ j(yyyi), the coefficients {cm j}M,J
m=1, j=1 are the solution of the following

linear system:

(ΦΦΦ⊤ΦΦΦ)C = ΦΦΦ⊤U, (14)

where [C]m j = cm j for m= 1, . . . ,M, j = 1, . . . ,J and [U]i j = uh(x j,yyyi) for i= 1, . . . ,S,

j = 1, . . . ,J.
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4 Improved DLS methods based on reduced-basis solutions

The main purpose of building DLS approximations is to reduce the cost of obtaining

approximate solutions of the PDE problem (1) at a large set of samples in Γ , i.e.,

reducing the online cost. We observe that the need to reduce costs is only necessary

when the finite element degrees of freedom J is extremely large. Otherwise, for a

small J, a classic finite element solver will be efficient enough to be used as an online

solver. However, for a very large J, we can see from (14) that the coefficient C, which

is an M× J dense matrix, may require an unaffordable amount of storage. Moreover,

the complexity of each evaluation of the DLS approximation would be of O(JM).
To avoid such inefficiencies in both storage and computation, we propose to develop

a new DLS method based on reduced-basis approximations of solutions of (1). A

brief overview of a reduced-basis method is given in Section 4.1 and our approach is

introduced in Section 4.2.

4.1 Reduced-basis methods

We briefly recall the reduced-basis technique; for a more in depth discussions about

reduced-basis methods, see [7, 25]. The main idea of reduced-basis methods is to

collect a set of deterministic solutions of the stochastic problem in (1) at a subset of

the most representative samples in Γ , then uses these solutions as a basis to approx-

imate solutions at other points in Γ through Galerkin projection. Specifically, when

we have a subset, denoted by ΞK := {yyyi}K−1
i=0 , consisting of K representative samples,

we can then solve the finite element system in (6) K times to obtain the set of K

solutions {ui
h(x) = uh(x,yyyi)}K−1

i=0 . Using these solutions (snapshots), we can define a

K-dimensional reduced space

X rb
K = span{ui

h(x)}K−1
i=0 ⊂ X fe

h .

Then, we can construct a reduced-basis approximation uh,K by projecting uh into X rb
K ,

i.e., seeking

uh,K(x,yyy) =
K−1

∑
i=0

wk
i (yyy)ξi(x) ∈ X rb

K , (15)

satisfying

A(uh,K(yyy),v;yyy) = ( f ,v) ∀v ∈ X rb
K , (16)

where A(u,v;yyy) is the bilinear form defined in (6) and {ξi}K−1
i=0 is the orthogonalized

reduced basis of X rb
K . Note that, for each yyy ∈ Γ , the equation in (16) is equivalent to a

linear system of K algebraic equations for the coefficients {wk
i (yyy)}K−1

i=0 in (15). In this

way, when K ≪ J, the computational cost of approximating u(x,yyy) for each yyy ∈ Γ
is significantly reduced from solving a J × J linear system to solving a K ×K linear

system.

Now the question is how does one determine a good set of K samples ΞK :=
{yyyi}K−1

i=0 ? Suppose one has in hand a set of samples Ξk; one could start with k = 0,

i.e., a single sample chosen at random or at the center of Γ . Then given the current set

Ξk of samples, how does one find the next sample yyyk in an effective and efficient way
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so as to improve the accuracy of the reduced-basis solution. The ideal choice is to

use the greedy algorithm [6], i.e., find the next sample yyyk by solving the optimization

problem

yyyk = arg sup
yyy∈Γ

‖uh,k(·,yyy)− uh(·,yyy)‖X , (17)

i.e., locating the point yyyk ∈ Γ at which the error between the current reduced-basis

approximation and the finite element approximation is the largest. Unfortunately,

solving the optimization problem (17) is not practical because it requires full in-

formation about the exact finite element solution uh(x,yyy). To circumvent this issue, a

variant of the greedy strategy (17), i.e., the weak greedy algorithm, has been shown

to be computationally feasible in the context of solving parameterized PDEs [25].

The key idea of the weak greedy strategy is to find an accurate and computation-

ally efficient surrogate of the error uh,k(·,yyy)− uh(·,yyy), and replace the true error in

(17) with the surrogate to solve the optimization problem. To this end, we use the

Galerkin residual as the surrogate to implement the weak greedy algorithm. Letting

eh,k(x,yyy) := uh(x,yyy)− uh,k(x,yyy) ∈ X fe
h , we then have that, for any yyy ∈ Γ ,

R(v;yyy) := A
(
eh,k(·,yyy),v;yyy

)
= ( f ,v)−A

(
uh,k(·,yyy),v;yyy

)
∀v ∈ X fe

h . (18)

Thanks to Riesz representation, we have (êh,k,eh,k)X = R(eh,k;yyy), such that

‖eh,k(x,yyy)‖X = ‖uh(x,yyy)− uh,k(x,yyy)‖X ≤ 1

αLB(yyy)
‖êh,k‖X ,

where αLB(yyy) = minx∈D a(x,yyy). Thus, we can replace eh,k with êh,k. In this effort, we

also have to replace the search over all yyy ∈ Γ by a search over a discrete training set;

for solutions manifolds that are sufficiently smooth, this step does not introduce un-

manageable errors. Specifically, the construction of the reduced-basis method begins

by choosing a training set Ξtrain of Strain points in Γ ; these points could be chosen

randomly according to the joint PDF ρ(yyy) associated with the random parameters

yyy ∈Γ or could be chosen deterministically. Then, the optimization problem in (17) is

solved within the training set, i.e., yyyk is generated by

yyyk = arg sup
yyy∈Ξtrain

{ 1

αLB(yyy)
‖êh,k(·,yyy)‖X

}

. (19)

The term αLB(yyy) will be calculated over the training set using the Successive Con-

straint Method outlined in [20]

Due to the affine property of the coefficient in (5), the residual R(v;yyy) in (18) can

be decomposed as

R(v;yyy) = ( f ,v)−A0

(
uh,k(·,yyy),v

)
+

N

∑
n=1

An

(
uh,k(·,yyy),v;yyy

)
yn

= ( f ,v)−
k−1

∑
i=0

(

A0

(
ξi,v
)
+

N

∑
n=1

An

(
ξi,v
)
yn

)

wk
i (yyy),
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for all v ∈ X fe
h . Due to the linearity of the above representation, we can determine

êh,k(x,yyy) ∈ X fe
h efficiently by solving the following set of problems offline:

{

(ê f ,v)X = ( f ,v) ∀v ∈ X fe
h ,

(ên,i,v)X = An(ξi,v) ∀v ∈ X fe
h for i = 0, . . . ,k− 1 and n = 0, . . . ,N,

(20)

such that êh,k can be computed very efficiently by

êh,k(x,yyy) = ê f (x)−
k−1

∑
i=0

wk
i (yyy)

[

ê0,i(x)+
N

∑
n=1

ynên,i(x)
]

∈ X fe
h .

We note that the quantities ê f (x), ê0,i(x), and ên,i(x) are independent of yyy and can

therefore be stored in an offline phase.

To terminate the greedy procedure, we can preset some error tolerance εtol and

end the algorithm when the approximation error is judged to be sufficiently small, i.e.,

{‖êh,k/αLB(yyy)‖X ≤ εrb,∀yyy ∈ Ξtrain}. In addition, how the points should be selected

and the size of the training set is extremely problem dependent. In practice there are

two approaches commonly used to construct Ξtrain. The first is an adaptive approach

which starts with a small number of sample points and then greedily enriches the

sample space based on these initial points; see [21]. The other method is to randomly

sample the parameter space Γ according to the probability distribution associated

with the problem.

4.2 Reduced-basis discrete least-squares (RB-DLS) approximation

As already mentioned, the goal of using reduced-basis approximations in the least-

squares setting is to reduce the online cost, i.e., the cost of evaluating the final DLS

approximation. Letting K denote the final value of k upon termination of the greedy

algorithm, we observe that the parameter dependence of the reduced-basis solution in

(15) only appears in the coefficients wwwK(yyy) := (wK
1 (yyy), . . . ,w

K
K(yyy))

⊤ which is vector

of size K ≪ J. Thus, instead of applying the DLS operator PM,S[·] to uh, we apply it

to the reduced-basis solution uh,K , i.e.,

PM,S[uh,K ] =
K

∑
k=0

(
M

∑
m=1

crb
mk ℓm(yyy)

)

ξk(x) (21)

which is equivalent to approximating the coefficient vector wwwK(yyy) using the DLS

method. The algebraic formulation for solving the coefficients crb
mk is

(ΦΦΦ⊤ΦΦΦ)Crb = ΦΦΦ⊤W, (22)

where [Crb]mk = crb
mk for m = 1, . . . ,M, k = 0, . . . ,K and [W]ik = wK

i (yyyk) for i =
1, . . . ,S, k = 0, . . . ,K. Then, for each new sample yyy ∈ Γ , the evaluation of the RB-

DLS approximation in PM,S[uh,K ] can be conducted by

uuuRB−DLS = V(Crb)⊤ℓℓℓM(yyy), (23)
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where uuuRB−DLS := (PM,S[uh,K ](x1), . . . ,PM,S[uh,K ](xJ))
⊤ and V = (ξ0, . . . ,ξK) is the

reduced-basis matrix. In comparison, evaluating the classic DLS approximation PM,S[uh]
in (13) has to be done by

uuuDLS = C⊤ℓℓℓM(yyy), (24)

where uuuDLS := (PM,S[uh](x1), . . . ,PM,S[uh](xJ))
⊤ and C is given in (14). The advan-

tages of (23) over (24) can be seen from two aspects. In terms of storage, (23) only

requires storage for a J×K matrix V and an M×K matrix Crb, whereas (24) requires

storage for an M× J matrix C. Thus, when K is small, (23) requires much less stor-

age than (23). In other words, the matrix CrbV⊤ can be viewed as a low-rank (i.e.,

rank K) approximation of the matrix C. In terms of computation, for each yyy ∈Γ , (23)

requires O(K(M + J)) operations to perform matrix-vector products, whereas (24)

requires O(MJ) operations. This is another significant savings achieved by using our

approach.

The total error of the RB-DLS approximation PM,S[uh,K ] can be split into the

sums of the finite element discretization error, the reduced-basis error, and the DLS

projection error, i.e.,

E
[
‖u−PM,S[uh,K ]‖2

X

]

≤E
[
‖u− uh‖2

X

]

︸ ︷︷ ︸
eI

+E
[
‖uh − uh,K‖2

X

]

︸ ︷︷ ︸
eII

+E
[
‖uh,K −PM,S[uh,K ]‖2

X

]

︸ ︷︷ ︸
eIII

. (25)

The first error eI is easy to control/balance based on the classic finite element er-

ror analysis. The second error eII is essentially controlled by the Kolmogorov width

associated with the solution manifold in the finite element space X fe
h . In the recent

works [2,16], it has been shown for the class of problems dealt with in this paper that

the Kolmogorov width will decay at least algebraically ; this gives us hope that our

reduced-basis method will be successful. In practice it is difficult to determine the

decay of the RB error a-priori, hence we use the a-posteriori estimate to balance the

second error eII by adjusting the threshold εtol.

Defining the term

Z(ΛM) := ∑
ννν∈ΛM

||Lννν ||2L∞ ,

the third error eIII can be bounded for any r > 0 by [15]

eIII ≤ (1+β (S))eM(u)
2 + 8H2S−r

as long as the number of sample points satisfies

S

ln(S)
≥ Z(ΛM)

κ
, κ :=

1− ln(2)

2+ 2r
,

where β (S)→ 0 as S→+∞, H is the uniform upper bound of u, and eM(u) is the error

in the best M-term approximation of uh,K . The term r is related to the stability of the

least squares system, full details can be found in [15]. As shown in [13], when using

Legendre polynomials, the quantity Z(ΛM) can be bounded by M ≤ Z(ΛM) ≤ M2,

when ΛM is a lower set. When using Chebyshev polynomials, a better bound can

be obtained for lower sets, i.e., Z(ΛM) ≤ min(Mlog3/ log2,2NM). Even though the
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polynomial space used in this work is not a lower set, the quasi-optimal polynomial

space can be covered with a lower set which is only slightly larger allowing us to

effectively use these bounds. As will be illustrated in section 5 to maintain stability

of the DLS method using the quasi-optimal polynomial space sample points only on

the order of 3M are required. Therefore the slight theoretical oversampling due to the

lack of the quasi-optimal polynomial space not being a lower set does not have an

impact in practice. With the use of the quasi-optimal error estimate in Proposition 1,

the error eIII can then be bounded by

eIII ≤ (S
N

N+1 CN + 8H2)exp(−(CeS)
1

N+1 ), (26)

where the constants Ce and CN are given by

Ce =

(
τ2N−1N!∏N

i=1 λi

3N(1+ µ)

)

CN = ((1+β (S))Cϕϕϕ,δCu(µ)
τ

N
N+1

3 ∗ 22N

(
(1+ µ)

N!∏N
i=1 λi

) 1
N+1

(27)

with τ = 1−ln2
2

and the constants µ ,Cϕϕϕ,δ ,Cµ are defined in Section 3.1.

The error eIII can be balanced by constructing an appropriate quasi-optimal sub-

space. To do so, we will be required to determine the weights λλλ = (λ1, . . . ,λN) in

(11). We note that it is the ratio of the weights which will determine our polyno-

mial space, the magnitude will simply dictate the pace at which the error decays. It

it only possible to analytically construct the weights in the case where the functions

{an(x)}N
n=0 in (5) do not have overlapping supports, e.g., the inclusion problem in-

vestigated in [3]; otherwise the weights must be determined numerically. On the other

hand, the optimal weights require the solution of a nonlinear optimization problem

in the N-dimensional parameter space, which is also not feasible in practice. Hence,

we instead follow a procedure of one-dimensional analyses as done in [4, 23]. We

consider the subset U = {ννν ∈ NN
0 : νi = 0 if i 6= n,νn = 0,1,2, ...}. Then, according

to the decay rates established in the previous section, |cννν | ∼ e−λλλ n , so the rate λλλ n can

then be estimated through linear regression of the quantities ln |cννν |. Now recalling

definition 1 for any 0 ≤ δ ≤ 1 it must hold that R(a(x,zzz)) ≥ δ for all x ∈ D and

zzz = {zi}N
i=1 in the polyellipse E which is determined by the weights λλλ n. In order to

ensure this holds we scale our weights by an appropriate constant. Even though this

may not result in an optimal estimate, it will still manage to capture any anisotropic

behavior present in the problem.

5 Numerical experiments

In this section, we illustrate the convergence as well as the computational efficiency of

the DLS-RB method. All calculations in this section are effected using the FEniCS [1]

(http://fenicsproject.org/) and Rbnics [20] http://mathlab.sissa.it/rbnics

software suites. We will use the same problem formulation utilized in [9]. Consider

the stochastic elliptic problem (3) with D = [0,1]2, the forcing term f = 1, and the

http://fenicsproject.org/
http://mathlab.sissa.it/rbnics
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finite element discretization with fixed h = 1
256

. We take the coefficient a(x,yyy) to be

a random field with expectation and correlation given as

E[a](x) = c for a fixed c > 0 and Cov[a](x,x′) = exp

(

− (x− x′)2

L2

)

, (28)

where L is the correlation length. This field can be represented by the following

Fourier-type expansion

a(x,y) =
1

100

{

c+

(√
πL

2

) 1
2

y1 +
∞

∑
n=1

√

ξn

(

sin(nπx1)y2n + cos(nπx1)y2n+1

)
}

,

(29)

where the uncorrelated random variables yn have zero mean and unit variance, and

the eigenvalues are equal to

√

ξn = (
√

πL)
1
2 exp

(

− (nπL)2

8

)

for n ≥ 1. (30)

Here, we take c = 4, L = 1
8

and only retain the first 5 random variables yyy = (y1, ...,y5)
in the expansion (29). Even though the independence of the five random variables is

only valid in the case of Gaussian distribution, we assume (y1, ...,y5) are independent

uniformly distributed random variables in Γ = [−1,1]5. The weights for the quasi-

optimal subspace are found to be λλλ ≈ (0.68,0.66,0.98,1.37,0.49) after rescaling. In

order to measure the error in our examples we will consider the quantity of interest

Q(u) =
1

|D|

∫

D
udx, (31)

and examine the behavior of our algorithm in the norm

E
(
‖Q(uh)−Q(PM,S[uh,k](yyy))‖∞

)
≈ max

yyy∈Ξtest

∣
∣Q(uh(yyy))−Q(PM,S[uh,k](yyy))

∣
∣ (32)

where Ξtest is 10,000 uniformly distributed points and uh is some reference finite

element solution. In order to generate a reduced basis in our examples we will use a

training set Ξtrain of 1,000 uniformly distributed points.

We note for this particular quantity of interest it can be shown using an Aubin-

Nitsche duality argument from [10, 11] that the convergence rates will be twice as

great as those in estimate (25).

5.1 Example 1

For our first example, we examine the convergence and stability of the DLS method

independent of any reduced basis. Specifically, we are interested in illustrating that

a linear rule maintains sufficient stability for the least-squares problem (in a moder-

ately sized dimension) utilizing a quasi-optimal polynomial space. This is motived by

computational necessity in larger dimensions for which the cardinality of the quasi-

optimal polynomial space can grow very quickly. We choose the number of sample
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points S = M, 3M, and M2. As can be seen in Figure 5.1, we obtain similar levels of

accuracy using the linear rule as we do when using a quadratic rule in agreement with

the numerical findings in [13,22]. We also see that taking S = M leads to an unstable

approximation indicating that some scaling constant is required.

101 102 103 104 105 106 107 108

S

10-4

10-3

10-2

10-1

100

101

102


(||
Q
(u
)
−
Q
(u

Λ
)||

∞
)

S

3S

S 2

Fig. 1 Comparing the convergence of the DLS method utilizing different numbers of sample points with

respect to the cardinality of the polynomial basis.

5.2 Example 2

Next, we are interested in the offline and online computational cost of the DLS

method compared to that of the RB-DLS method. Beginning with the offline com-

plexity of the DLS method we see, that the majority of the cost is incurred from

setting up the right-hand side U and then solving the system (14). To solve (14) we

can use any number of methods, two of the more popular being the LU factorization

or QR factorization, both of which have the same order of computational complexity.

It then follows that the complexity for the DLS algorithm will scale as

DLScost = S×O

(

Jα
)

+O(M3)+O(M2)× J, (33)

where O (Jα) is the cost for solving the finite element system where α depends on

both the solver and spatial dimension, O(M3) is the cost associated with the LU or

QR decomposition, and O(M2)× J is the cost for solving the system (14).

Next, we analyze the algorithm with the reduced basis incorporated into it. The

construction of the reduced basis scales as

RBcost = O(Strain)×
(K−1

∑
ℓ=1

wonline(ℓ)
)

+K×O

(

Jα
)

, (34)
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where O(Strain) is the cost of a max search in our training set, and wonline(ℓ) = O(ℓ3)
is the cost for calculating êh,K and uh,k(yyy) for a value yyy ∈ Ξtrain. The total cost for our

algorithm, assuming no online enrichment of the reduced basis is necessary, will thus

scale as

RB-DLScost = RBcost + S×O(K3)+O(M3)+O(M2)×K+ S×N2×K2, (35)

where S×O(K3) is the cost for solving the reduced basis system for {yyyi}S
i=1 to form

W in (22), O(M3) is the cost associated with the LU or QR decomposition, O(M2)×
K is the cost for solving the system (22) and S×N2 ×K2 is the cost for evaluating

the error bound êh,K .

We see that the complexity of RB-DLS is dominated by the term O(M2)×K

when K is large. On the other hand, when K is small the complexity of both al-

gorithms is dominated by the term O(M3). The key to the computational savings

witnessed in the reduced-basis method is that the cost of the reduced-basis algorithm

will be independent of J except in the offline portion. As seen in the above discus-

sion, for large values of J the computational cost of the algorithm is dominated by the

cost of finite element solves; therefore, we measure the offline computational cost in

terms of the total number of full finite element solves necessary for the construction

of the DLS and RB-DLS approximations.

Turning to the online computational cost, as described in Section 4, the cost of

evaluating DLS for a given yyy ∈ Γ is of O(MJ) versus O(k(M + J)) for RB-DLS. To

illustrate the significant cost savings of RB-DLS, we compare the total CPU time (in

seconds) it takes to compute all RB-DLS and DLS approximations for all yyy ∈ Ξtrain.

As shown in Figure 2, we observe significant offline and online computational cost

savings while still being able to achieve similar levels of accuracy from the RB-DLS

method.

6 Conclusions

We integrated a reduced-basis method into the discrete least-squares framework uti-

lizing a new quasi-optimal polynomial space. Through our numerical results, we

demonstrated significant cost savings in both the offline and online portions of the

discrete least-squares-reduce basis method compared to that for the original discrete

least-squares algorithm. Again, we would like to emphasize that reduced basis plays

a critical role in solving large-scale UQ problems involving expensive finite element

discretization (e.g., with a very fine mesh), especially in the online phase. We note

that this method is not without drawbacks. For the case where the Kolmogorov width

of the PDE solution does not decay quickly we will need to use a large number of

reduced basis functions in order to obtain an accurate reduced basis approximation.

This could potentially make the DLS-RB method more expensive than the standalone

DLS method. Additionally the quasi-optimal polynomial basis used in this work only

applies to the parametrized diffusion equation. Thus for more complicated PDEs a

different polynomial basis would have to be used. This new basis may have signifi-

cantly worse stability and convergence properties when coupled with the DLS method

possible rendering it ineffective.
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Fig. 2 A comparison of the offline (top) and online (bottom) error versus the cost for the DLS method

versus the RB-DLS method measured in terms of the number of finite element solves in the offline phase

(top) and CPU time in the online phase (bottom).

We note that while we paired the reduced basis method with the discrete least-

squares algorithm, it is also possible to combine it with sparse-grid method as done

in [9–11]. A detailed comparison of these approaches has not been done and will be

a subject of future research.

As shown in this work, a polynomial approximation of the solution map (x,yyy)→
u(x,yyy) without using a reduced basis may lead to an unaffordable online cost in terms

of storage requirement. Thus, model reduction should become a standard procedure

in approximating/recovering the solution map (x,yyy)→ u(x,yyy).
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