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Abstract

We consider a distributed optimal control problem governed by an elliptic convection diffu-
sion PDE, and propose a hybridizable discontinuous Galerkin (HDG) method to approximate
the solution. We use polynomials of degree k + 1 and k > 0 to approximate the state, dual
state, and their fluxes, respectively. Moreover, we use polynomials of degree k to approximate
the numerical traces of the state and dual state on the faces, which are the only globally coupled
unknowns. We prove optimal a priori error estimates for all variables when k£ > 0. Furthermore,
from the point of view of the number of degrees of freedom of the globally coupled unknowns,
this method achieves superconvergence for the state, dual state, and control when k£ > 1. We
illustrate our convergence results with numerical experiments.

1 Introduction

We consider the following distributed control problem. Let Q C R? (d > 2) be a Lipschitz polyhedral
domain with boundary I' = 92. The goal is to minimize

1 Y
T(w) = 5y — valdaey + 2ullday, 7 >0, 1)
subject to

—Ay+pB8-Vy=f+u inQ,
y=4g on 0f),

where f € L?(Q) and the vector field 3 satisfies
V-g=<o. 3)
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It is well known that this optimal control problem is equivalent to the optimality system

—Ay+pB-Vy=f+u inQ, (4a)
y=gyg on 01}, (4b)
—Az—-V-(Bz)=ys—y inf, (4c)
z2=0 on 012, (4d)

z—yu=0 in Q. (4e)

Many different numerical methods have been investigated for this type of problem including
approaches based on the finite element method [1-3,|10H-14}/17], mixed finite elements [13}26,2§],
and discontinuous Galerkin (DG) methods [14}18124.2527/29,30]. Also, hybridizable discontinuous
Galerkin (HDG) methods have recently been explored for various optimal control problems for the
Poisson equation |16}31] and the above convection diffusion equation [15].

In this earlier work [15], we used a hybridizable discontinuous Galerkin (HDG) method to
approximate the solution of the optimality system . We used polynomials of degree k to approx-
imate all variables and obtained optimal convergence rates when 3 is divergence free.

In this work, we investigate a different HDG method for the above problem and prove that it is
superconvergent. Specifically, we use polynomials of degree k + 1 to approximate the state y and
dual state z and polynomials of degree k > 0 for the fluxes ¢ = —Vy and p = —Vz. Moreover, we
only use polynomials of degree k to approximate the numerical traces of the state and dual state
on the faces, which are the only globally coupled unknowns. We describe the method in Section
and then in Section [3| we obtain the a priori error bounds

hk—l—l—i-min{k,l})7 hk—‘,—l—l—min{k,l})’

1y = wnllo = O Iz = 2nllo.0 = O

lg — gnllg.q = O(K*), Ip — Pullgq = O(WF),
and
lu = uplgq = O(RFFFmnRLY),

From the point of view of the global degrees of freedom, we obtain superconvergent approximations
to y, z, and u without postprocessing if & > 1. We demonstrate the performance of the HDG
method with numerical experiments in Section

2 HDG scheme for the optimal control problem

We begin with notation and a complete description of the HDG method.

2.1 Notation

Throughout this work we adopt the standard notation WP () for Sobolev spaces on € with norm
|+ lmp.o and seminorm | |5, p 0. We denote W™2(Q2) by H™ () with norm || - ||, and seminorm
|+ lm.o- We also set HY(Q) = {v € HY(Q) : v =0o0n 90} and H(div,Q) = {v € [L2(Q)]%,V v €
L?(Q)}. We denote the L2-inner products on L?(f2) and L?(T') by

(v,w) = / vw  Yu,w € L*(Q),
Q

(U,w>:/Fvw Yo, w € L*(T).



Let Tj, be a collection of disjoint elements that partition €2, and let 97, be the set {0K : K € Tp}.
For an element K € T, let e = 0K NI denote the boundary face of K if the d—1 Lebesgue measure
of e is non-zero. For two elements K+ and K~ in T, let e = 9K N 0K~ denote the interior face
between Kt and K~ if the d — 1 Lebesgue measure of e is non-zero. Let &) and 52 denote the set
of interior and boundary faces, respectively, and let &;, be the union of £} and E‘Z. Furthermore, we
introduce

(w,v)7, = Z (w,v) K, <<7p>8'7'h = Z (¢, P ok -

KeTy, KeTy

Let P*(D) denote the set of polynomials of degree at most k on a domain D. We use the
discontinuous finite element spaces

Vj, = {v e [L*()]?: v|x € [P*(K)4 VK € T}, (5)
Wy, :={w e L*(Q) : w|g € PMYK), VK € Tp}, (6)
My, :={p € L?(ep) : ple € P¥(e),Ve € e} (7)

Let Mp(o) and Mp(0) denote the spaces of discontinuous finite element functions of polynomial
degree at most k defined on the set of interior faces ) and boundary faces 5‘2, respectively. For
any functions w € Wy, and r € V}, let Vw and V - r denote the piecewise gradient and divergence
on each element K € Tj,.

2.2 The HDG Formulation

For the HDG method, we consider a mixed formulation of the optimality system and approxi-
mate the state y, the dual state z, the fluxes ¢ = —Vy and p = —Vz, and the numerical traces of y
and z on the faces. The approximate optimal distributed control is found directly using a discrete
version of the optimality condition . One important feature of HDG methods is the local solver:
The unknowns corresponding to all variables except the numerical traces can be eliminated locally
on each element, which leads to a globally coupled system involving only the coefficients of the
numerical traces. This leads to a reduction in the computational cost. For more information on
HDG methods, see, e.g., [4H9}/19-21},23].
The mixed weak form of the optimality system — is given by

(@;r1) = (y,V-r1) +{y,r1-n) =0, (8a)
(V- (g + By),w1) — (V- By,w1) = (f +u,w1), (8b)
(p,r2) — (2,V -1r2) + (2,72 - m) = 0, (8¢)
(V- (p—B2),w2) = (ya — y,w2), (8d)

)

(z —yu,v) =0, (8e

for all (71, w1, o, wo,v) € H(div,Q) x L%(Q) x H(div,Q) x L?(Q) x L?(2). To approximate the
solution of this problem, the HDG method seeks approximate fluxes qy,, py, € V3, states yp,, z5, € W,
interior element boundary traces ¥y, z; € My (o), and control uj, € W), satisfying
(qn, m1) 7, = (W, V- 11) 75, + (TR 11 M) ggnc0 = — (9,71 Mo, (9a)
—(an + Byn, Vwi)7, — (V- Byp, w1) 7, — (up, w1)7,
+<El\h : n7w1>8771 + </6 : ’n’@\}iawl>87'h\gg = (fa wl)'Th
- <B - ng, w1>527 (9b)



for all (r1,w1) € Vi x Wp,
(P, 72)75, — (20, V- 12) 75 4 (Zny T2 - M) o0 = 0,
—(pn — Bzn, Vwa) 7, + (P - 1, wa)ar;,
—(B - nzj;, w2) o\ e0 + (Yn, w2) 75, = (Ya, w2)T5,5

for all (ro, we) € Vj, x Wy,

(@n-m+B-nyf, m)ag\e0 =0,
for all p; € Mp(o),

(P -m — B - nZj;, p2) g7\ c0 = 0,
for all po € Mj(0), and the optimality condition

(2h = Yun, w3)7, =0,

for all wy € Wj,. The numerical traces on 97, are defined by

Gn-mn=qn-n+h" (Pyyn —T7) + 7i(yn — U7) on 973 \ef,
Gn - =qn-n+h " (Pyyn — Pug) +7i(yn — Pug) oney,
Ph-n=pn-n+h(Puzn—2) + ma(2n — 7) on 97Ty \ef,,
Dh-n=pp-n+h Pyz,+ 102 on 52,

where 71 and 7y are stabilization functions defined on 07},. In the next section, we give conditions

that the stabilization functions must satisfy in order to guarantee the convergence results.

The implementation of the above HDG method and the local solver is similar to the implemen-
tation of another HDG method described in our recent work [15]; therefore, we omit the details.

3 Error Analysis

Next, we perform an error analysis of the above HDG method. Throughout this section, we assume
Q is a bounded convex polyhedral domain, 3 is continuous on Q, 8 € [W1°°(Q2)]%, and the solution

of the optimality system is sufficiently smooth.

We choose the stabilization functions 7 and 7o so that the following conditions are satisfied:

(A1) m=m+p3 n.
(A2) For any K € Tj,, min (11 — 38 n)|gx > 0.
Note that (A1) and (A2) imply

1
min (12 + 5,@ ‘n)|gx >0 for any K € Ty,

Below, we prove the main result:

Theorem 1. We have

lg = anll7 S B (gl + [Ylire + [Plesr + |2[rr2),

12— pall7 S P (gl + [Wlete + [Plerr + |2[s2),

ly = ynll7 SRR (gl + [Ylkse + [Plrr + 2]ke2),
S REEmRtE L (gl + Jylkrs + [Pler + [2lke2),

qlrr1 + [Ylese + |Ples1 + [2]k12)-

Iz = znll7,

i — w7, B+ emindt

(10)



3.1 Preliminary material

Let IT : [L2(Q)]? — V3, 1T : L*(Q) — Wy, and Py : L%(e) — M), denote the standard L2

projections, which satisfy
(Tig,7)k = (g, ")k, V7 € [Pr(K)]%,
(Hy7 w)K = (y7 w)Ka YVw € Pk+1(K)a
(Prm, i) = (myp). s V€ Prle).

We use the following well-known bounds:

k k
Hq - HqHTh 5 h +1 Hqu+17Q’ ||y - HyHTh 5 h +2 Hy||k+2’ﬂa
k+32 kit l
ly = Tylloz, B2 Yliions lla-n—Tg nlyy A2 gl g,
_1
lolyr <HF ol . Yo e W

We have the same projection error bounds for p and z.
Next, define HDG operators %, and %» by

P1(an, Y, Yy T Wi, 1)
= (g, m)7 = Wn, Vo) 75 + W 71 a0 — (@ + Byn, V)7,

— (V- Byn,w1)7, + {qn - m+ h ™ Pyyn + 11y, wi)or,
+{B-n—h"" - Ty W1)o7;\e0
—an -+ B ngy +h™H (Paryn — G7) + 11(yn — T5)s 11)ogi 205
B2(Phs 2hs 2y T2, W2, p2)
= (P, m2)75, — (20, V- 12) 75 4 (Z1, 72 - M) o0 — (Pn — Bzn, Vo),

+(pn - m A+ W Parzy + oz, wa)or, — (B + BT+ 1) 2 wa) o o

—{pn - —B-nZ, + hTH (Pazn — 25) + 7o(zn — 27), H2) o7 c0-

We use #; and HAs to rewrite the HDG discretization of the optimality system @D: find

(Gh, PhsYns 20y Un, Uiy 21) € Vi X Vi X Wi x Wy, x Wi, x My (0) x Mp(o)
satisfying

B1(an, yn, Uy 1, w1, 1) = (f +un, wr)75, — (Pyvg,m1-n)
- <<B n— h_l - Tl)PMg7w1>agu
Bo(Dh, 2hs 253 T2, W2, f12) = (Yd — Yh, W2) T,

(zn, — yup, ws)7;, =0,

for all (rl,rg,wl,wg,wg,ul,ug) e Vi, x Vi x Wy x Wy, x Wy, X Mh(o) X Mh(o).

(11)

(12a)
(12b)
(12c¢)

(13)

(14)

(15a)

(15Db)
(15¢)

Next, we prove an energy identity for the HDG operators and prove the discrete optimality
system is well-posed. The proofs of the next three results are similar to the proofs of the

corresponding results in our earlier work [15]; we include them for completeness.



Lemma 1. For any (v, wp, un) € Vi X Wi, x My(0), we have
B1(Vh; Why b Oh, Why fin)

1 1
= (v, vn) 7, + (11 = 58 n)(Wh = pn), wh = pr)o\eg = 5(V - Bwn, wi)T,

_ 1
+ (W (Pywp, — ), Parwp, — n)omaeo + (1 — 3B M)W, Whep
+ (™' Pagwn, Prwn).o,
B (O, Why o Ohy Wy [1h)

1 1
= (On, 0n) 75, + (72 + 58 - ) (wn = pn)s wh = pn)or;\eg = 5(V - Bwn, wp) 7,

_ 1
+ (W (Pywp, — pn), Pywp, — tn)omneo + (72 + 55 “M)Wh, Wh) 0
+ <h_1P]\/[wh7 PMwh>€2.
Proof. We prove the first identity; the proof of the second identity is similar.

P (Vhs Whs f; Ohs Why 1)
= (vn, vn) 75, = (Wi, V - )75, + (s V1 - Yo7\ 0 — (Vn + Bwn, Vwn) T,

— (V- Bwp,wp) 75, + (v - M+ h= Pyrwy, + mwp, wp)aT;,

(B = R = ) wn) g

— (v -+ By + hTH(Pagwn — pn) + Tu(wh — ph)s i) o 20+

= (vn, o), — (Bwn, V)7, — (V- Bwy, wh) T,

+ (hilPMwh + Tywp, wp)o7;, + (BN — - T1) s wh>a’rh\52

— (B np + b (Prywn — ) + T (wh = fin), o\ e0-
For the second term, we have

(Bwn, Vwn)7,, = (B - Vwn, wa)7, = (V- (Bwn), wn)7, — (V- Bwp, wa)T,
= (B - nwp, wp)om, — (Bwn, Vwp)7, — (V- Bwp, wa)T,,

which implies

1 1
(Bwn, Vwn) 7, = 5(6’ - MW, Wh)oT;, — §(V - Bwp, W) Ty, -

This gives
B1(Vh, Wh, [tk O, Wh, i)

1 1
= (on, 00) 75, +{(11 = 5B 1) (wn — pn)s wh = pn)or;\eg — 5 (V - Bup, wp)T,
_ 1
+ (W™ (Parwn — pn), Prrwn = pon) o eo + (11— 5B n)wn, wp) o

_ 1
+ (h 1PMwh,PMwh>€g - 5<5 : nﬂh,ﬂh>aTh\e§'

Since puy, is single-valued across the interfaces, we have

1
—§<,3 *Nfip, Mh>a7'h\gg =0.

This completes the proof.



The following property of the HDG operators is crucial to our analysis.

Lemma 2. We have %1(qn, Yn, Y5; Ph, —2h, —25) + Bo(Dh, 2hs 25 —Qhs Yn, Uj) = 0.
Proof. By definition:
PBr(@h: Yn, Yns Phy =2y —25) + B2(Ph 20, 23 —hs Y i)
= (qn, )7 — Wn, V- 1) + Uho P - ) og\e0 + (@n + Byn, Van) T,
+ (V- BYn, 21)7, — {@n - 7+ h ™ Pryn + Tiyn, 20)oT,
—((B-n 71— h™)h 2n) e
+{an -+ B ngh + b7 (Paryn — U7) + mi(yn — T5) 2 omin e
= (Prsan) 7, + (20, V- qn) 7, = (25, @n - M) o0 — (Ph — Bz, Viyn) T,
+ (P A+ W Parzn + mazn, yndom, — (B n+ o+ T yn) om0
—{pn - — Bz + h (Parzn — 23) + 12(2n = 20), 0 oy e
Integration by parts gives

'@1 (Qh, Yh, Z//\.};;pha —Zh; _/Z\Z) + %Q(Z)hv Zhy /Z\Za —qh, Yh, Z/U\Z)
= ((r + B -n —71)yn, 2n)om, + (72 + B -1 — 7)Y, 24) o7\ c0-

Condition (A1) completes the proof. O

Proposition 1. There exists a unique solution of the HDG equations (15)).

Proof. Since the system is finite dimensional, we only need to prove the uniqueness. Therefore,
we assume yg = f = g = 0 and show the system only has the zero solution.

FirSt7 take <7’1,’U)1, /'Ll) = (pha —Zh; _/Z\Z)a (7’2,’[1}2, /'LQ) = (_qhvyha/y\]?b)7 and W3 = Zp — YUh in the
HDG equations (15a)), (15b]), and (15c), respectively, and sum to obtain

@1((1117 Yh, Z//\Zv Dh, —Z2hn, _/Z\Z) + %2(1%7 Zhs /Z\Za —qh; Yh, :UZ)
=YW, Yn) 7, + (2hs 20) 7, -
Since v > 0, Lemma [2] gives yp, = up, = 2z, = 0.
Next, take (r1, w1, p1) = (qn, yn,¥j) and (ra, we, p2) = (P, 2n,2;,) in Lemma and then use
(A2) and (L0 to get g5, = pp, =0, ¥ =z = 0. O
3.2 Proof of the main result

We follow the proof strategy used in our earlier works [15[16], and split the proof of the main result
into eight steps. We consider the following auxiliary problem: find

(gn(u), pr(u), yn(w), 2n(w), yp (u), 2, (u)) € Vi X Vi x Wiy x Wy, x Mp(0) x Mp (o)
such that
B (an(u), yn(u), yn(u); r1, w1, p1) = (f +w,w1) 7, — (Pug,r1-n)
—((B-n—h"t— Tl)PMg,wﬁgga (17a)
Bo(pr(u), zp(u), Zn(u); r2, w2, p2) = (Yqg — yn(u), w27, (17b)



for all (7’1,7’2,’(01,11)2,;11,/,1,2) eV, xV, x Wy, x W, x Mh(o) X Mh(o).

In the first three steps of the proof, we bound the error between the solution components
(yn(u), gn(u)) of part 1 of the auxiliary problem and (y,q) of the mixed form of the optimality
system. Since u is the exact optimal control in both problems and is fixed, the source terms in both
problems are the same. We would use the results from [22] to obtain the error bounds; however,
the authors of [22] pointed us to an error in their work in the £ = 0 case. To be complete, we
present most of the proofs in Steps 1-3, and we use many proof strategies from [22] in those steps.

3.2.1 Step 1: The error equation for part 1 of the auxiliary problem (17a)).

Define
09 =q—1Ilgq, el =TIq — qp(u),
0¥ =y —1Ily, ey = Iy — yn(u), (18)
57j:y—PMy, E%ZPMZI—Z//\h(U)a
61 =07 -n+h~'Pyd? + 8- nd? +7(6Y — 6Y).

where g (u) = 7% (u) on €% and g (u) = Pyrg on 9. This gives 8% =0 on &},
Lemma 3. We have

%}1(5%75%,5%’ Tlawly,ul) = (dev vwl)Th + (V : /85y7w1)7’h
— (01, w)a, + (01, 1)o7, \ 20+ (19)

Proof. By definition:

%1 (I1q, Iy, Prry, m1, wi, pa)
= (g, r1)7, — (y, V- 71)7;, + (Pyy, 71 - m) gy 0 — (Hg + Blly, Vun) 7,
— (V- By, w1)7, + (Ilg - n + h= Py Iy + m 11y, w1)aT;,
+((B-n—h"" —7)Pyy, W1) 73 \e0
— (g n+ B nPyy+h™ (Pylly — Pyy) + 71 (Hy — Pary), 1) o7, \c0-

Properties of the L? projections give

%1 (I1g, 11y, Pypry, r1, w1, 1)
=(g.r)7 — W,V -r1)7, + (Y71~ n)aﬁ\gg
— (g + By, Vwr)7, + (88, Vwi) 1, — (V- By, w1)7;, + (V- B6Y, w17,
+
(

n,wi)a7;, — (09 - n,wi)a7;, + (hilPMHy + miIly, wi)a7;,

—+

ny, w1)gye0 — (B n5§7w1>aTh\s§ — (" + 1) Py, wi)or e

q .
/@ .
q-n, Ml)aﬂ\sg —+ <5q -n, :U’1>8’7'h\€2 - <B ‘ny, Nl>87'h\52
/8 .

+

{
{

’n5g»ﬂl>87'h\52 + (h_IPMCSy,Ml)an\sg + (n (6 — 5g)aﬂl>87h\62'



The exact state y and flux q satisfy

(@, 7)7, — W,V -1)7 + (U1 g0 = — (9,71 M) 0,

—(g + By, Vwi)7, — (V- By, w1)7,
+ <q ' n7w1>87’h + <B ’ nyaw1>67’h\gg = - <16 : ng7w1>g2 + (f + u, wl)Thv

(g +By) - n, M1>a7;1\gg =0,
for all (r1, w1, p1) € Vi, X Wy, x Mp(0). Therefore,

%, (I1q, Iy, Pry, 1, w1, p)
=—{g,m 'n>s§ —(B- ng,wﬁei + (f +w,wi)7, + (B6Y, Vwi) T,
+ (V- B8, w1)7;, — (69 - n,wi)or, + (R Py Iy + 711y, w1)aT;,
—(B-nd?, wi) g — (A 4+ 1) Parys wi)opco + (67 10, i)\ o0
+ (8- nd7, 1)ore0 + <h_1PM5y:M1>aTh\eg + (11(8¥ — 7), 1) o7 \e0 -

Subtracting part 1 of the auxiliary problem ([17a)) from the above equality gives the result:

931(5%,6%,8%,7’1,1017 p1)
= (86, Vwr)7, + (V- B6Y, w)7;, — (0% - m,wi)ar, + (b~ Pylly, w)ar,
+(nIly,wi)o, — (B 16, wi)oy, — (W™ + 71) Py, wa)or,
+ (6%, ) gpnco + (B no?, )omed + <h71PM5y’“1>BTh\62
+ (1 (6Y — 5g)?ﬂ1>8ﬁ\52
= (B, V)7, + (V- B8, w1)7;, — (81, w1)a7, + (81, 1) g0 c0-

3.2.2 Step 2: Estimate for ¢}.
The following key inequality is found in [22].
Lemma 4. We have
1 m _1 7
IVeRllm + h™2llel = efllom, < llekllm, + h™2 || Paep, — e} llom.-
Lemma 5. We have
_1 7
lefll +h 2l Pueh = ehllor, S B (gl + yliz.0)-
Proof. First, since 5% =0 on 5‘2, the energy identity for %; in Lemma || gives
Bef, el 1 el el eY)
_ 7 1 1
= (eh, e 7 + [ Puel — <) 3, + SI=V- E)EEA

1 1 =
- 18-l - Dl



Taking (71, wy, pu1) = (Ez,ez,sg) in in Lemmagives

_ - 1 1
(L eDm + b I Pael, — e 3 + 5I1(=V - B)2e]15;

2
= 7 21
< (B8, Vel + (V- B8, )y, — (u.el, — elbor, 2!
=T+ 15+ T3.
For the terms 77 and T, apply Lemma [4] and Young’s inequality to give
T, = (B§Y.VeY <C 2 59112 L a2 1Py v2
1= (80, Vep) 7, < CllBIG oo oll0”lI7, + 3 lenllT, + 5 1Pl — ehllor
1 1
Ty = (V- B0, ef), < Cllo 1%, + 51(=V - B)2ef |17
For the term T3,
Ty = —(81,€% — o,
— (6% - n+h " PydY + B -nd + 1 (8Y — Y, &) — D)o
= —(0%-n+ B -1’ +11(6Y - 6%),e} — &})or, — (b Pud?,€f, — e,
= T4 + T5.
Applying Lemma [f] and Young’s inequality again gives
Ty=—(67 - n+ B -nd? + 7 (6Y — &%), ) — e%)m—h
- - 1. -~
< C|IR2(07 - m+ B nd” + 1 (8" — 637, + S 1h7 (e — h)llE,
- - 1
< OIR?(07 - m+ B nd” + (8% — 6) 37, + {lIh I,
1 -
+ g 1Puet — 3.
Finally, for the term Ty, we have
Ts = —(h™'Pyd”, e} — €})or, = (h™'8%, Pue} — €})om,
_ 1 7
< AR5 + EHPM# —epll3 T,
Sum all the estimates for {T;}2_; to obtain
lefll%,, + ™ [ Parel, — enli3,
2 - 2 m
Shl6 5y, + R ! 16|57, + h||5yH%Th7
k
S (gl + 1Yl .0)-
O

3.2.3 Step 3: Estimate for 5% by a duality argument.
Next, for any given © in L?(f2) the dual problem is given by

® VU =0 in Q,
V- ®+V-(BY)=06 in €, (22)
=0 on Of).

10



Since the domain 2 is convex, we have the following regularity estimate
@[ 0 + [¥l20 < Creg [©llg s (23)

We use the following quantities in the proof below to estimate s}yL:

P —d—TI®, Y =U—_TI0, Y =U— Py (24)
Lemma 6. We have
el |7 < REFFmnED (g]| 0 + [lyllkse.g)-

Proof. Consider the dual problem and let © = —¢}. Take (ry,wi, 1) = (II®, 1Y, Py ¥) in
in Lemma [3) and since ¥ = 0 on 82, we have
B(2, € V. 1D, IV, Py W)
= (], I®)7, — (], V- T®) 7, + (], TI® - )70 — (] + Bef, VIIO) 7,
— (V- Bel, 1) 7, + (e -+ b~ Pyl + mel, IV o7,
+ (B = A7t =) T oo
— (el n+p- nsg + h ™ (Pyel - 52) + 7i(e} — 5%), Pr¥)g7,\c0
= (& @)7 — (e, V- ®)7, + (], V- 0%)7, = (€], 6% - ndor,
— (e} + Bef,, V)7, + (], + B}, V¥ )7, — (V- Be}, W), + (V- B, 6¥),
—(el-n+p8- nsg + h™H(Pyel - 6%) + T1(ef — 5%), ov — 5‘T’>3frh.

Here we used <5g, ® - n)s1, = 0, which holds since sg is a single-valued function on interior edges

7 _ o
and g, =0 on &7.

Next, integration by parts gives
(8%, V- 5@)7;L = <5:Z,75q> : n>377L - (v{‘:?}ia 5(1))771 = <€?}/L7 5(1’ ' n>(97-h7
(e, V)7 = (el -1, 6" )or, — (V- e, 8%) 7 = (efl - 1,67 Vo (25)
(Bep, V)7, = (B-ne), 0% )or, — (V- Be),6%) 7, — (BVe], 07,
We have
B (cd,e¥ e TI®, IV, Py D)
= |ledl5 + (g8 — <}, 6% - n+B-ns"Yor, — (Vel, B5Y) 7,
— (7 (Parefy — &f)) + (e — 7). 0% — 6%,
On the other hand, since ¥ = 0 on E‘Z the error equation in Lemma gives
P11, 6% ). 1D, IV, Py )
— (B8Y, VIIV) 7 + (V - B6Y, TIW) 7= + (61,6Y — 6V o7 .
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Comparing the above two equalities, we get
[EAE
= (e} = &],0% -n+ B-nd")op, + (Vel, B0")7; + (B6Y, VIIU)7,
+ (V- B8Y, TIW) 7, + (b (Pael — €0) + mi (el — 1) + 81, 6% — 6¥)or,
= Ry + Ry + Ry + Ry + Rs.
For the terms R; and Rg, Lemma [4 and Lemma [5] give
Ri = —(e¥ — 6%, % n+p3- néqj)m-h
<h73|lef —eflor, h2[|6T - m+ B 16" o,
< b2l — elllom 16T - m+ B nd” |7,
< Ch73|lef — fllor (16% I + 116" 172)

< O (lgllksr.2 + Iy lksz)lieh 7
Ry = (Ve},, 86%)7, < C|[Vej |7, 118 |17,

< CE 2 (lqllksr,e + [Yllkr2.0) el 7 -
By a simple application of the triangle inequality for the terms Rs and Ry, we have
Ry = (86", VIIV) 7, < C|6"|| 7, || VI |75, < C16¥||7, (V8" |l + IV ¥]17)
< Cl10%]l7 (Al ¥ l2,0 + 1¥][1,0) < Cll6Y] 7 [1¥]l2,0
< CH 2 (|lqllesr. + 1yllr+2.0) €817
Ry = (V- 88", I1W)7, < C[6¥||7, [11¥] |7, < Cl16]|7, (167 |7 + [1¥]7:,)
< 18|17, (W[ ¥]l2.0 + [ ¥ll0) < Cll6Y[ 7,119 l2,0

< CR*" (|l glls+1.0 + |Yllkr2.0) el 7, -

For the terms Ry to R4, we obtain the optimal convergence rate for k£ > 0. However, we only get
the optimal convergence rate for Rs when k& > 1.

Ry = (b (Pyel — )+ (! —20) +81,6% — 67,
< WM (Parel — D) + (el — D) + ullom lI6Y — 67 lor,
< C(hH|(Parel — D) loms, + el — hllom, + 181llo7)18% = 6 [lo7;.
It is straightforward to get
hY|(Pagel — e loms + llet — ehllom, + 1181l

1
< "2 (|lqllisr0 + llkse0),

and
¥ ; 1
16 = 6% o7, < CR™ B3|l |7,
This gives
Ry < CAFHm B (g1 0 + [[9llks2.0)lleh|7 -
Finally, we complete the proof by summing the estimates for R; to Rs. O
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The triangle inequality gives convergence rates for ||q — gp(u)||7;, and ||y — yn(w)| 7

Lemma 7.

lg = an(w)ll7, < 16707 + llegllT,

<A (lglkrra + vllks2.0), (26a)
ly — yn(w)ll7 < 16YN17: + llepll7a
< pFHHmintE L (gl 0 + [Yllkr2.0)- (26b)

3.2.4 Step 4: The error equation for part 2 of the auxiliary problem ((17b).

Next, we consider the dual variables, i.e., the state z and the flux p, and bound the error between
the solutions of part 2 of the auxiliary problem and the mixed form — of the optimality
system. Define

6P = p —Ilp, e, = p — py(u),
0" =z —Ilz, ej =z — zp(u),
: i . )
0=z — Pyz, e;, = Pyz — zp(u),
8y = 0P -+ h™ ' Pyd* + B - nd® + (6% — 6°)
Lemma 8. We have
%2(52’7 527 55» T2, w2, /'52) = (ﬂ(sza VwQ)Th - <3\27 w2>87ﬁ + <3\27 N2>8771\52
+ (¥ = yn(u), w2)7;,- (28)
The proof is similar to the proof of Lemma [3| and is omitted.
3.2.5 Step 5: Estimate for efl.
The following discrete Poincaré inequality can be found in [22].
Lemma 9. We have
_1 >
lerllm < CUIVeRllT +h™2ller, — egllor,)- (29)
Lemma 10. We have
1 3
bl + R 2 l1Pueh — eillom,
S g0 + [Yllsr20 + Plke0 + l2llkr2.90), (30a)
leill, < P lallerie + 19llkzo + [Plk10 + [12llk2.0)- (30b)

Proof. First, we note the key inequality in Lemma {4| can be applied with (z,p, 2) replaced by
(y7 q, g) This gives

_1 > _1 z
IVerllm + b2, = enllom, < llelim + b 2|1 Pus, — eillor, - (31)
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Next, since 5% =0on 52, the energy identity for %, in Lemma (1| gives
p z P z
%2(5h7 527 g}zw Ehs E?L’ 52)

1 1
+31-V - 8)kel%,

- <az,e’;:>n + 7Y Push - Silld + 5

l o~
+ (2 + ﬁ n)2 (ef, — &i)l37.-
Then taking (72, wa, u2) = (sﬁ,si,si) in in Lemmagives

_ > 1 1 7
(8, el + b Pueq, — eill3r, + 11(r2 + ;8- n)z (eh — i3,

< (B6*,Vei), — (02,65, — €i)om, + (v — yn(u), i),
=T+ 15+ T;.

As in the proof of Lemma [5, apply and Young’s inequality to obtain
= (8%, Vei) T,
1 -
< O8I, + || enlF + ] —&ill37»

Ty = —(bs,65, — €h>a7‘h
< C(W’H% + h26%)1F + hlI6*5)

1 -
||5h||7—h AL eill3T,
For the term T3, we have

T3 = (y — yn(w),ep)7 < ly — yn(u )HThHEZIITh
(
(
(

W)l (IVeillm + b2 llei — &3 lom)
< CHy yn (w7, ( HEhHTh +h™2 || Pusj, - &7 llos)
)

1 _
< Clly = yn(w)||%, + Hei’llgrh + o 1Paeh = enll3, -
Summing 77 to T3 gives
1 5
12l + b3 11Pases — illom
< CR*  (llalleso + ylliz0 + 2l + 12]k20).

Finally, , (30al), and together imply (30b]). O

3.2.6 Step 6: Estimate for ¢; by a duality argument.
For © given in L?(Q), we consider the dual problem for z:
P -VU =0 in ,

V-®—B-VI=0 inQ, (32)
=0 on Of).
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Again since the domain € is convex, we have the regularity estimate
@[ 0 + [¥l20 < Creg [©llg s (33)

Before we estimate €j, we repeat the notation in @:
P —d_TI®, Y =U—_TI0, oY =U— Py
Lemma 11. We have

iz, < CREHHERED (Igllisr @ + 1y lkzn + IPlrre + 12]kz0)-

Proof. Consider the dual problem and let © = ¢7. We take (12, ws, u2) = (II®, 11V, Py, V) in
in Lemma |8 and since ¥ =0 on E‘Z, we have

Bo(eP, €5, 73 TI®, TIW, Py )
= (e, O®)7, — (¢}, V - TI®) 7, + (e}, TP - ) o7 \e?
— (e} — Be;, VIIW) 75, + (8 - n + h™ ' Pysef, + moef, IV o,
—(B-n+h 14+ Tl)EZZ, H\Il>67’h\sg
—(eh -n+ B nej + h (Pusj, — &;) + 12(eh — €5) PurW)om o0
= (8, ®)7, — (¢}, V- @), + (67, V - 6%) 7, — (€5, 0% - m)or,
— (e} — Bej,, V)7, + (e] — Bef, V)T,
— (P n— B nei + b (Pyel —el) + (el — 1), 6% — 6¥)or.
He(lie,gwe gave %5, ® - n)y7, = 0, which holds since £ is single-valued function on interior edges
. ;ﬁe saniana?;g.ument in gives
(67, V- 8%)75, = (7., 0% - n)ar;, — (Vei,, 8%)7;, = (€7,,0% - m)ar,
(5, V0¥ )7, = (eh -1, 0% ) o7, — (V -7, 8%) 7, = (e} - 1, 8% Yo,
(Be;, VoV 7, = (B nej, 6 V)or, — (V- Bei, 0V)7, — (BVe;, 69) T,
Then,
By (<P &3, e5; TI®, TIW, PyT)
= |leill, + (e — €5, 0% - n— B-ndY)or, + (Vei, BO7)
+ (V- e 0%)7, — (b M (Puch, — i) + (e — ), = 0o,

where we have used ai is single-valued function on interior edges and Ei =0 on 5‘2. On the other
hand,

Bo(eP, €5, e1; TI®, TIW, Py, W)
= (B0*, VII)7, + (81,6Y — 6")or, + (y — yn(w), 1TT)7,.
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Comparing the above two equalities gives
leq 17, = —(eh — €3, 6% -+ B~ né)or, — (Vei, B6%)7, + (857, VIIV) 7,
+ (™Y (Pyei — €5) + mo(ei — ) + 82,0Y — §%)or,

— (V- Be;, 0%) 7, + (y — yn(u), )7,
=: 51+ S2+ 53+ 54+ S5 + Sg.

We can estimate S; to Sy as in the proof of Lemma [0] to get

4
S8 < erEEmnEL (gl o+ [ylleaa + I1Plke + [2llk2.0)-

i=1
By the estimate for €7 in (30b]) in Lemma [10, we have
S5 = —(V - Bef, %) 7, < Cliillz 16”17
< Ch*2(llallksr,0 + 1ylerze + [Plk+1.0 + I2lr2.0) i 17

The estimate of the last term Sg can be easily obtained from :

So = (y — yn(w), 1) 75, < [ly — yn(w)l|7, (187 [l + 2]l 7:)

< Chk—i—l—i—min{k:,l} ||€Z||7—h

Finally, we complete the proof by combining the estimates for S7 to Sg. O
The triangle inequality gives convergence rates for ||p — pp(u)||7, and ||z — z(w)|| 7,

Lemma 12.

lp = pr(w)ll7, < 19717 + I}l

< (lglerra + [ylerza + Ipllkins + lzlka0) (342)
Iz~ zn()llz < 167 + il
S P g0+ ylksze + [Pl + 2lkz0). (34b)

3.2.7 Step T: Estimate for [|u —up|7,, [lv —ynly and ||z — 2|, -

To obtain the main result, we bound the error between the solutions of the auxiliary problem and
the HDG problem . The proofs of the results in Steps 7 and 8 are similar to the proofs of the
corresponding results in our earlier work [15]; we include them for completeness.
For the final steps, let
Cq=an(w) —aqn, G =yn(w) —yn, G =yn(u) —yn,
Cp=pn(uw) —Pn, G =2n(u) =2, (G =Zn(u) — Zp

Subtracting the auxiliary problem and the HDG problem gives the error equations

%1(an Cya Cg’/\a T17w17/l1) = ('LL — Up, wl)Th (35&)
QQ(CpaC27C2; 7“2,11}2,/,62) = _(Cyan)'Th' (35b)
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Lemma 13. We have

Yllu = unllF + lyn(w) — yall7

= (zn, — yup, w —up) 7, — (2R (W) — YU, u — up)7T; - (36)
Proof. First, we have
(zn — yun, u — up) 7, — (2p(u) — yu,u — up)7,
= —(Cru—un) 7y, +vlu— w7

Next, Lemma [2] gives

%I(Ctp <y7 C@\v Cp7 _C27 _Cg) + %2(4177 <Z7 C/z\a _Ctp Cyv C@\) = 0.
On the other hand, working from the definitions yields

QI(CQ7 Cyv <§7 Cpa _CZ7 _(2) + <@Z(Cp? CZ? C?a _an Cyv CZ//\)
= —(u = un, G)75, = G115
Comparing the above two equalities gives
—(u—un, &)75, = 161175

which completes the proof. O

Theorem 2. We have

lu — up |7, S RN (gl 4 ylere + [Plren + [2]642), (37a)
lv —ynll7 S hk+1+min{k’1}(\Q\k+1 + ylet2 + Plet1 + [2]r42), (37b)
Iz = zpll7 S REFED (gl + ylere + [Plrs + [2]er2). (37¢c)

Proof. The continuous and discretized optimality conditions and ((15d)) give yu = z and ~yuy, =
zp. Use these equations and the previous lemma to obtain

Yllu— w7 + G115,
= (zn — yun,u — up)7;, — (2n(u) — YU, u — up)7,
= —(zn(u) — z,u — up)7;

lzn(w) = 2|73 [[w = unll7,

1 2 Y 2
< E”Zh(u) — 2|7 + 5““ — up||7, -

IN

By Lemma we have

hk+1+min{k’1}(|Q|k+1 + [Ylkr2 + [Plrt1 + 12|k12)-

[l = unll7 + Gl <
By the triangle inequality and Lemma [7| we obtain

ly — ynll7, < BEFRREL (gl 4 Yk + |Plres + |2]kr2)-

Finally, z = yu and 2z, = yuy, give

2 — zpll7, < REFIEI (g 4 (ylege + [Pt + [2]rr2)-
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3.2.8 Step 8: Estimate for ||¢ — ¢||7;, and |p — ppl|7,-
Lemma 14. We have

ICqll7, S PEFFIED (gl iy + |ylire + [Plrst + [2]ks2), (38a)
Cpll7, < AEHFmEL (g y 4 [ylhre + [Plrrt + |2]kr2)- (38b)

Proof. By Lemma [1] and the error equation ([35a}), we have

||Cq||%’h S ﬂl(CQ7<y7C§]; an(ya@)
= (u — up, Gy) 7y,
< lw = unll7, 1Syl 7

N h2k+2+2min{k’1}<\Q\k+1 + Ylkt1 + |Pleg1 + \Z\k+1)2~

Similarly, by Lemma [l| and the error equation (35b|), we have

16p113 < Ba(Cp, Cov 3 Gy G2, (2)
= _(Cy7gz)7'h
< I¢yll7 N1 N7

< pRr2r2min{k b} (gl 4yl + [Plra + [2le1)>

O]

The above lemma along with the triangle inequality, Lemma [7, and Lemma complete the
proof of the main result:

Theorem 3. We have
g — anll7 S P (i + [ylkee + 1Plket + [2lke2)s (39a)

lp —pull7 S hk“(\‘l\kﬂ + ylks2 + Pleg1 + [2]ks2)- (39b)

4 Numerical Experiments

To illustrate our convergence results, we consider two examples on a square domain = [0, 1] x
[0,1] C R? from our previous work [15]. We first take 4 = 1 and choose the exact state, dual state,
and function 3. Then we generate the data f, g, and y4 using the optimality system .

Table [I}-Table [] show the computed errors and convergence rates for k = 0 and k = 1 for the
two examples. The computational results match the theory.

Example 1. 8 = [1, 1], state y(x1,x2) = sin(nzy), dual state z(z1, z9) = sin(mzy) sin(wzs)

Example 2. 8 = [z2,x1], state y(z1,z2) = sin(7zy), dual state z(x1,x2) = sin(wxy ) sin(mwxs)

5 Conclusions

In our earlier work [15], we considered an HDG method with degree k polynomials for all variables
to approximate the solution of an optimal distributed control problems for an elliptic convection
diffusion equation. We proved optimal convergence rates for all variables in |[15] when 3 is divergence
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h/\2 1/16 1/32 1/64 1/128 1/256
lg — gnlloo | 1.7274e-01 | 9.7054e-02 | 5.2507e-02 | 2.7509¢-02 | 1.4111e-02
order - 0.83 0.89 0.93 0.96
1P —pulloq | 2.5783e-01 | 1.4468e-01 | 7.7818e-02 | 4.0586e-02 | 2.0763e-02
order - 0.833 0.89 0.94 0.97
ly —ynlloq | 2-4430e-02 | 1.4046e-02 | 7.8371e-03 | 4.1908e-03 | 2.1744e-03
order - 0.80 0.84 0.90 0.95
2 = znllg.q | 2-8132e-02 | 1.8225¢-02 | 1.0659¢-02 | 5.8061e-03 | 3.0363e-03
order - 0.63 0.77 0.88 0.94

Table 1: Example |1} Errors for the state y, adjoint state z, and the fluxes ¢ and p when k& = 0.

h/ﬂ 1/8 1/16 1/32 1/64 1/128
lla — an 0.0 | 1.1365¢-02 3.0743e-03 | 8.0051e-04 | 2.0438e-04 | 5.1648e-05
order - 1.89 1.94 1.97 1.98
llp — pn Hoﬂ 2.6923e-02 | 6.9736e-03 | 1.7764e-03 | 4.4849e-04 | 1.1269e-04
order - 1.95 1.97 1.99 2.00
lly — thQQ 1.9986e-03 | 2.8351e-04 | 3.7918e-05 | 4.9101e-06 | 6.2497e-07
order - 2.82 2.90 2.95 2.97
|z — znllgq | 3-8753e-03 | 5.3846e-04 | 7.1154e-05 | 9.1544e-06 | 1.1613e-06
order - 2.85 2.92 2.96 2.98

Table 2: Example [} Errors for the state y, adjoint state z, and the fluxes g and p when k = 1.

hIV?2 1/16 1/32 1/64 1/128 1/256
la — anlloq | 1.7074e-01 | 9.5848¢-02 | 5.1838¢-02 | 2.7156e-02 | 1.3929¢-02
order - 0.83 0.89 0.93 0.96
Ip — Pl | 2-5679¢-01 | 1.4404e-01 | 7.7454e-02 | 4.0301e-02 | 2.0661e-02
order - 083 0.90 0.94 0.97
Iy — ynllog | 2.4537e-02 | 1.4150e-02 | 7.9032¢-03 | 4.2273¢-03 | 2.1935¢-03
order - 0.79 0.84 0.90 0.95
12— znlloq | 2.8293e-02 | 1.8369¢-02 | 1.0747¢-02 | 5.8549¢-03 | 3.0618¢-03
order - 0.62 0.77 0.88 0.94
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Table 3: Example [2} Errors for the state y, adjoint state z, and the fluxes g and p when k = 0.




h/\@ 1/8 1/16 1/32 1/64 1/128
llg — ‘IhHo,Q 1.0144e-02 | 2.7469e-03 | 7.1555e-04 | 1.8271e-04 | 4.6174e-05
order - 1.88 1.94 1.97 1.98
llp — pn \079 2.6378e-02 | 6.8203e-03 | 1.7358e-03 | 4.3805e-04 | 1.1004e-04
order - 1.95 1.97 1.99 1.99
lv — ynllo.q | 1.8869e-03 | 2.6762e-04 | 3.5771e-05 | 4.6297e-06 | 5.8909e-07
order - 2.82 2.90 2.95 2.97
|z = znllgq | 3-8001e-03 | 5.2896e-04 | 6.9919e-05 | 8.9948e-06 | 1.1409e-06
order - 2.84 2.92 2.96 2.98

Table 4: Example [2} Errors for the state y, adjoint state z, and the fluxes g and p when k = 1.

free; however, we did not obtain superconvergence. In this work, we considered the same control
problem and approximated the solution using a different HDG method with degree k+1 polynomials
for the flux variables and degree k polynomials for the other variables. When k > 0 and V-3 < 0,
we obtained superconvergence for the control, state, and dual state, and optimal convergence rates
for the fluxes. We plan to consider HDG methods for more complicated optimal control problems
for PDEs in the future.
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