Skip to main content
Log in

Numerical Analysis of an Artificial Compression Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Magnetohydrodynamics (MHD) is the study of the interaction of electrically conducting fluids in the presence of magnetic fields. MHD applications require substantially more efficient numerical methods than currently exist. In this paper, we construct two decoupled methods based on the artificial compression method (uncoupling the pressure and velocity) and partitioned method (uncoupling the velocity and electric potential) for magnetohydrodynamics flows at low magnetic Reynolds numbers. The methods we study allow us at each time step to solve linear problems, uncoupled by physical processes, per time step, which can greatly improve the computational efficiency. This paper gives the stability and error analysis, presents a brief analysis of the non-physical acoustic waves generated, and provides computational tests to support the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature. 150, 405–406 (1942)

    Article  Google Scholar 

  2. Moffatt, H.K.: Field generation in electrically conducting fluids[M]. Cambridge University Press, (1978)

  3. Barleon, L., Casal, V., Lenhart, L.: MHD flow in liquid-metal-cooled blankets. Fusion Engineering and Design. 14, 401–412 (1991)

    Article  Google Scholar 

  4. Davidson, P.A.: Magnetohydrodynamics in material processing. Annu. Rev. Fluid Mech. 31, 273–300 (1999)

    Article  Google Scholar 

  5. Lin, T.F., Gilbert, J.B., Kossowsky, R.: Sea-water magnetohydrodynamic propulsion for next-generation undersea vehicles. PENNSYLVANIA STATE UNIV STATE COLLEGE APPLIED RESEARCH LAB (1990)

  6. Gerbeau, J.F., Bris, C.L., Lelièvre, T.: Mathmatical methods for the Magnetohydrodynamics of Liquid metals. Oxford University Press, (2006)

  7. Adams, R.A.: Sobolev spaces. Academic press, (2003)

  8. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations[J]. SIAM Journal on Numerical Analysis. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.J.: Numerical solution of the Navier-Stokes equations[J]. Mathematics of computation. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rannacher, R.: On Chorin’s projection method for the incompressible Navier-Stokes equations, pp. 167–183. In The Navier-Stokes equations IItheory and numerical methods. Springer, Berlin Heidelberg (1992)

    MATH  Google Scholar 

  11. Turek, S.: A comparative study of some time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit nonlinear schemes to semi-implicit projection methods[M]. IWR. (1995)

  12. Peterson, J.S.: On the finite element approximation of incompressible flows of an electrically conducting fluid[J]. Numerical Methods for Partial Differential Equations. 4(1), 57–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations[J]. Computer Methods in Applied Mechanics and Engineering 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Q., Su, H., Feng, X.: A partitioned finite element scheme based on Gauge-Uzawa method for time-dependent MHD equations[J]. Numerical Algorithms, : 1-19 (2017)

  15. Zhu, T., Su, H., Feng, X.: Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations[J]. Applied Mathematics and Computation 302, 34–47 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wu, J., Liu, D., Feng, X., Huang, P.: An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations[J]. Applied Mathematics and Computation 302, 21–33 (2017)

    Article  MathSciNet  Google Scholar 

  17. Su, H., Feng, X., Zhao, J.: Two-Level Penalty Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics Equations[J]. Journal of Scientific Computing 70(3), 1144–1179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg. 276 287C311 (2014)

  19. Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63, 426C451 (2015)

    Article  MathSciNet  Google Scholar 

  20. Yuksel, G., Ingram, R.: Numerical analysis of a finite element Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers. International Journal of Numerical Analysis and Modeling. 10(1), 74–98 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Roberts, P.H.: An introduction to magnetohydrodynamics. Elsevier, USA (1967)

    Google Scholar 

  22. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, United Kingdom (2001)

    Book  MATH  Google Scholar 

  23. Layton, W.J., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Meth. Part D. E. 30(4), 1083–1102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Layton W, Tran H, Trenchea C. Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number[J]. Recent advances in scientific computing and applications. 586(231) (2013)

  25. Yuksel, G., Isik, O.R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydynamic flows. Applied Mathematical Modelling. 39, 1889–1898 (2015)

    Article  MathSciNet  Google Scholar 

  26. Lighthill, M.J.: On sound generated aerodynamically. I. General theory[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 211(1107): 564-587 (1952)

  27. Layton, W., Novotny, A.: The exact derivation of the Lighthill acoustic analogy for low Mach number flows. Advances in Math Fluid Mech. 247-279 (2009)

  28. Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations[J]. SIAM Journal on Numerical Analysis. 32(2), 386–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fabrie, P., Galusinski, C.: The slightly compressible Navier-Stokes equations revisited[J]. Nonlinear Analysis: Theory, Methods and Applications. 46(8), 1165–1195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J.: On a new pseudocompressibility method for the incompressible Navier-Stokes equations[J]. Applied numerical mathematics. 21(1), 71–90 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations. I. time discretization, Numer. Method Part. Diff. Equ. 33(3), 956C973 (2017)

    Google Scholar 

  32. Zhang, G., He, Y.: Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation. Comput. Math. Appl. 69, 1390C1406 (2015)

  33. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA Journal of Numerical Analysis. dru015, (2014)

  34. Shen, J.: Pseudo-compressibility methods for the unsteady incompressible Navier-Stokes equations. In Proceedings of the 1994 Beijing symposium on nonlinear evolution equations and infinite dynamical systems. 68-78 (1997)

  35. Rong, Y., Hou, Y., Zhang, Y.: Numerical analysis of a second order algorithm for simplified magnetohydrodynamic flows[J]. Advances in Computational Mathematics. 43, 823–848 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rong, Y., Hou, Y.: A Partitioned Second-Order Method for Magnetohydrodynamic Flows at Small Magnetic Reynolds Numbers. Numerical Methods for Partial Differential Equations. 33(6), 1966–1986 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J.: On error estimates of projection methods for Navier-Stokes equations: first-order schemes[J]. SIAM Journal on Numerical Analysis. 29(1), 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations[J]. Numerische Mathematik. 62(1), 49–73 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system[J]. ESAIM. Mathematical Modelling and Numerical Analysis 42(6), 1065–1087 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Temam, R.: Sur l’approximation de la solution des quations de Navier-Stokes par la mthode des pas fractionnaires (I)[J]. Archive for Rational Mechanics and Analysis. 32(2), 135–153 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hecht, F., Pironneau, O.: FreeFem++. Webpage: http://www.freefem.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Rong.

Additional information

Yao Rong was supported by NSFC (Grants 11171269 and 11571274) and China Scholarship Council (Grant 201606280154). William Layton and Haiyun Zhao supported by NSF Grants DMS 1522267 and CBET 160910.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Layton, W. & Zhao, H. Numerical Analysis of an Artificial Compression Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers. J Sci Comput 76, 1458–1483 (2018). https://doi.org/10.1007/s10915-018-0670-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0670-5

Keywords

Navigation