Skip to main content
Log in

Weak Galerkin Finite Element Methods for the Simulation of Single-Phase Flow in Fractured Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a numerical simulation of the flow in fractured porous media, which can be efficiently described by the reduced model consisting of the bulk problem in the porous matrix and the fracture problem in the fracture together with physically consistent coupling conditions. The reduced model is solved by using two types of weak Galerkin finite element methods (on simplex mesh and polygonal mesh, respectively) for the bulk problem coupled with the cell centered finite volume method for the fracture problem. We prove that the algebraic system arising in the discrete formulation is symmetric and positive-definite, which leads to the well-posedness of the discrete problem. Error estimates for the pressure in suitable norms are established. A series of numerical experiments demonstrate the accuracy and robustness of our method with respect to the shape of the grid and the permeability of the fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain decomposition for some transmission problems in flow in porous media. Lect. Notes Phys. 552, 22–34 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. M2AN Math. Model. Numer. Anal. 43(2), 239–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Facciolà, C., Russo, A., Varani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. Technical Report 55/2016, MOX, Politecnico di Milano (2016)

  4. Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. M2AN Math. Model. Numer. Anal. 50(3), 809–832 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Chave, F., Di Pietro, D.A., Formaggia, L.: A hybrid high-order method for Darcy flows in fractured porous media (2017). arXiv:1711.11420v1 [math.NA]

  9. Chen, L.: \(i\)FEM: An Integrated Finite Element Methods Package in MATLAB. University of California, Irvine (2009)

    Google Scholar 

  10. Chen, W., Wang, F., Wang, Y.: Weak Galerkin method for the coupled Darcy–Stokes flow. IMA J. Numer. Anal. 36(2), 897–921 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM Math. Modell. Numer. Anal. 46(2), 465–489 (2012)

    Article  MATH  Google Scholar 

  13. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  14. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7(4), 713–1018 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media (2017). arXiv:1701.01496v1 [math.NA]

  16. Formaggia, L., Scotti, A., Sottocasa, F.: Analysis of a mimetic finite difference approximation of flows in fractured porous media. Technical Report 495/2016, MOX, Politecnico di Milano (2016)

  17. Fumagalli, A., Keilegavlen, E.: Dual virtual element methods for discrete fracture matrix models (2017). arXiv:1711.01818v1 [math.NA]

  18. Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62(Part C), 454–464 (2013)

    Article  MATH  Google Scholar 

  19. Ginting, V., Lin, G., Liu, J.: On application of the weak Galerkin finite element method to a two-phase model for subsurface flow. J. Sci. Comput. 66(1), 225–239 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaffré, J., Mnejja, M., Roberts, J.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)

    Article  Google Scholar 

  21. Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), 227–236 (2004)

    Article  Google Scholar 

  22. Lin, G., Liu, J., Mu, L., Ye, X.: Weak Galerkin finite element methods for Darcy flow: anisotropy and heterogeneity. J. Comput. Phys. 276, 422–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys 257(part B), 1163–1227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mu, L., Wang, J., Ye, X.: A new weak Galerkin finite element method for the Helmholtz equation. IMA J. Numer. Anal. 35(3), 1228–1255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12(1), 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 59(2), 473–495 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mu, L., Wang, J., Ye, X., Zhang, S.: A discrete divergence free weak Galerkin finite element method for the Stokes equations. Appl. Numer. Math. 125, 172–182 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mu, L., Wang, J., Ye, X., Zhao, S.: A new weak Galerkin finite element method for elliptic interface problems. J. Comput. Phys. 325, 157–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stefansson, I., Berre, I., Keilegavlen, E.: Hybrid-dimensional finite volume discretizations for fractured porous media (2017). arXiv:1712.08479 [math.NA]

  33. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, J., Wang, R., Zhai, Q., Zhang, R.: A systematic study on weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput. (2017). https://doi.org/10.1007/s10915-017-0496-6

  35. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, J., Ye, X.: A weak Galerkin finite element method for the stokes equations. Adv. Comput. Math. 42(1), 155–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer and editor for their valuable comments and suggestions which lead to an improvement of the paper. The authors wish to express sincere thanks to the authors in [15] who proposed the benchmarks and published the grid and result files in the form of a Git repository. This gives us the chance to present most of the numerical experiments in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Additional information

The work was supported by the Major Research and Development Program of China under Grant No. 2016YFB0200901 and the National Natural Science Foundation of China under Grant No. 11771348.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., He, Y. & Yang, J. Weak Galerkin Finite Element Methods for the Simulation of Single-Phase Flow in Fractured Porous Media. J Sci Comput 76, 1274–1300 (2018). https://doi.org/10.1007/s10915-018-0673-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0673-2

Keywords

Navigation