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ABSTRACT. Due to the indefiniteness and poor spectral properties, the discretized lin-
ear algebraic system of the vector Laplacian by mixed finite element methods is hard to
solve. A block diagonal preconditioner has been developed and shown to be an effec-
tive preconditioner by Arnold, Falk, and Winther [Acta Numerica, 15:1–155, 2006]. The
purpose of this paper is to propose alternative and effective block diagonal and block tri-
angular preconditioners for solving this saddle point system. A variable V-cycle multigrid
method with the standard point-wise Gauss-Seidel smoother is proved to be a good pre-
conditioner for a discrete vector Laplacian operator. This multigrid solver will be further
used to build preconditioners for the saddle point systems of the vector Laplacian and the
Maxwell equations with divergent free constraint. The major benefit of our approach is that
the point-wise Gauss-Seidel smoother is more algebraic and can be easily implemented as
a black-box smoother.

1. INTRODUCTION

Discretization of the vector Laplacian in spaces H0(curl ) and H0(div) by mixed fi-
nite element methods is well-studied in [1]. The discretized linear algebraic system is
ill-conditioned and in the saddle point form which leads to the slow convergence of clas-
sical iterative methods as the size of the system becomes large. In [1], a block diagonal
preconditioner has been developed and shown to be an effective preconditioner. The pur-
pose of this paper is to present alternative and effective block diagonal and block triangular
preconditioners for solving these saddle point systems.

Due to the similarity of the problems arising from spaces H0(curl ) and H0(div), we
use the mixed formulation of the vector Laplacian inH0(curl ) as an example to illustrate
our approach. Choosing appropriate finite element spaces Sh ⊂ H1

0 (a vertex element
space) and Uh ⊂ H0(curl ) (an edge element space), the mixed formulation is: Find
σh ∈ Sh,uh ∈ Uh such that{

−(σh, τh) + (uh, grad τh) = 0 for all τh ∈ Sh,
(gradσh,vh) + (curluh, curlvh) = (f ,vh) for all vh ∈ Uh.

The corresponding matrix formulation is

(1)
(
−Mv B
BT CTMfC

)(
σh
uh

)
=

(
0
f

)
.
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Here Mv and Mf are mass matrices of the vertex element and the face element, respec-
tively, BT corresponds to a scaled grad operator, and C corresponds to the curl operator.

Based on the stability of (1) in H1
0 ×H0(curl ) norm, in [1], a block diagonal precon-

ditioner in the form (
(I +GTMeG)−1 O

O (I + CTMfC)−1

)
,

with G = M−1
e BT , is proposed and the preconditioned Krylov space method is shown

to converge with optimal complexity. To compute the inverse operators in the diagonal,
multigrid methods based on additive or multiplicative overlapping Schwarz smoothers [2],
multigrid methods based on Hiptimair smoothers [16, 17], or HX auxiliary space precon-
ditioner [19] can be used. In all these methods, to achieve a mesh independent condition
number, a special smoother taking care of the large kernel of the curl (or div) differential
operators is needed.

In contrast, we shall apply multigrid methods with the standard point-wise Gauss-Seidel
(G-S) smoother to the Schur complement of the (1, 1) block

(2) A = BTM−1
v B + CTMfC

which is a matrix representation of the following identity of the vector Laplacian

−∆u = −grad divu+ curl curlu.

In (2), the inverse of the mass matrix, i.e., M−1
v is dense. To be practical, the exact Schur

complement can be replaced by an approximation

Ã = BT M̃−1
v B + CTMfC,

with M̃v an easy-to-invert matrix, e.g., the diagonal or a mass lumping of Mv .
We shall prove that a variable V-cycle multigrid method using the standard point-wise

Gauss-Seidel smoother is a good preconditioner for the Schur complement A or its ap-
proximation Ã. The major benefit of our approach is that the point-wise Gauss-Seidel
smoother is more algebraic and can be easily implemented as a black-box smoother. The
block smoothers proposed in [2] for theH(curl ) andH(div) problems, however, requires
more geometric information and solving local problems in small patches.

Although the finite element spaces are nested and A is symmetric positive definite, due
to the inverse of the mass matrix, the bilinear forms in the coarse grid are non-inherited
from the fine one. To overcome this difficulty, we shall follow the multigrid framework
developed by Bramble, Pasciak, and Xu [4]. In this framework, we need only to verify
two conditions: (1) Regularity and approximation assumption; (2) Smoothing property.
Since A is symmetric and positive definite, the smoothing property of the Gauss-Seidel
smoother is well known, see e.g. [5]. To prove the approximation property, we make use
of the L2-error estimates of mixed finite element methods established in [2] and thus have
to assume the full regularity of elliptic equations. Numerically our method works well for
the case when the full regularity does not hold. With the approximation and smoothing
properties, we show that one V-cycle is an effective preconditioner. As noticed in [5],
W-cycle or two V-cycles may not be a valid preconditioner as the corresponding operator
may not be positive definite. In other words, the proposed multigrid method for the Schur
complement cannot be used as an iterative method but one V-cycle can be used as an
effective preconditioner.
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The multigrid preconditioner for Ã will be used to build preconditioners for (1). We
propose a block diagonal preconditioner and a block triangular preconditioner:

(3)
(
M−1
v O

O Ã−1

)
, and

(
I M̃−1

v B
0 I

)(
−M̃v 0

BT Ã

)−1

.

The action M−1
v can be further approximated by M̃−1

v and Ã−1 by one V-cycle multigrid.
Following the framework of [20], we prove that the preconditioned system using these
two preconditioners has a uniformly bounded conditional number by establishing a new
stability result of the saddle point system (1) in the ‖ · ‖ × ‖ · ‖A norm.

As an application we further consider a prototype of Maxwell equations with divergence-
free constraint

curl curlu = f , divu = 0, in Ω.

A regularized system obtained by the augmented Lagrangian method [14] has the form

(4)
(
A BT

B O

)
,

where A is the vector Laplacian inH0(curl ). We then construct a block diagonal precon-
ditioner and a block triangular preconditioner

(5)
(
A−1 0

0 M−1
v

)
, and

(
I G

O −M̃−1
v Ap

)(
Ã O
B Ap

)−1

,

and prove that they are uniformly bounded preconditioners for the Maxwell system (4).
Our preconditioners are new and different with the solver proposed in [12].

The paper is organized as follows. In Section 2, we introduce the discretization of the
mixed formulation of the vector Laplacian, and prove stability results. In Section 3, we
consider the multigrid methods for the discrete vector Laplacian and verify the approxi-
mation and smoothing properties. In Section 4, we propose the uniform preconditioner for
the vector Laplacian and apply to Maxwell equation in the saddle point form. At last, we
support our theoretical results with numerical experiments.

2. DISCRETIZATION

In this section, we first recall the function spaces and finite element spaces, and then
present discrete formulations of the vector Laplacian problems in both space H0(curl )
and space H0(div). We shall define a new norm using the Schur complement and prove
corresponding Poincaré inequalities and inverse inequalities.

We assume that Ω is a bounded and convex polyhedron in R3 with a simple topology
(homomorphism to a ball), and it is triangulated into a mesh Th with size h. We assume
that the mesh Th belongs to a shape regular and quasi-uniform family.

2.1. Function Spaces and Finite Element Spaces. We use L2(Ω) to denote the space of
all square integrable scalar or vector functions on Ω and (·, ·) for both the scalar and vector
L2-inner product. Given a differential operator D = grad , curl , or div, we introduce the
Sobolev space H(D,Ω) = {v ∈ L2(Ω),Dv ∈ L2(Ω)}. For D = grad , H(grad ,Ω) is
the standard H1(Ω). For simplicity, we will suppress the domain Ω in the notation. Let
n be the unit outwards normal vector of ∂Ω. We further introduce the following Sobolev
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spaces on domain Ω with homogenous traces:

H1
0 = {u ∈ H1 : u = 0 on ∂Ω},

H0(curl ) = {u ∈H(curl ) : u× n = 0 on ∂Ω},
H0(div) = {u ∈H(div) : u · n = 0 on ∂Ω},

and L2
0 = {u ∈ L2 :

∫
Ω

u dx = 0}.

Then, let us recall the following finite element spaces:
• Sh ⊂ H1

0 is the well-known Lagrange elements, i.e., continuous and piecewise
polynomials,

• Uh ⊂H0(curl ) is the edge element space [23, 24],
• V h ⊂H0(div) is the face element space [25, 23, 7, 24, 6, 8],
• Wh ⊂ L2

0 is discontinuous and piecewise polynomial space.
To discretize the vector Laplacian problem posed in H0(div) or H0(curl ), we start

from the following de Rham complex

0−→H1
0

grad−→ H0(curl )
curl−→H0(div)

div−→ L2
0−→0.

We choose appropriate degrees and types of finite element spaces such that the discrete de
Rham complex holds

(6) 0−→Sh
grad−→ Uh

curl−→ V h
div−→Wh−→0.

Important examples are: Sh is the linear Lagrange element;Uh is the lowest order Nedelec
edge element; V h is the lowest order Raviart-Thomas element, and Wh is the piecewise
constant.

We now define weak differential operators and introduce the following exact sequence
in the reversed ordering:

(7) 0←−Sh
divh←− Uh

curl h←− V h
grad h←− Wh←−0.

The weak divergence divh : Uh → Sh is defined as the adjoint of −grad operator in the
L2-inner product, i.e., divhwh ∈ Sh, s.t.,

(8) (divhwh, vh) := −(wh, grad vh) for all vh ∈ Sh.
Weak curl operator curl h and weak grad operator grad h are defined similarly. For a
given wh ∈ V h, define curl hwh ∈ Uh as

(9) (curl hwh,vh) := (wh, curlvh) for all vh ∈ Uh.

For a given wh ∈W h, define grad hwh ∈ V h as

(10) (grad hwh,vh) := −(wh,div vh) for all vh ∈ V h.

In the limiting case when h → 0, these weak differential operators becomes the so-called
co-differential operators, c.f. [1], and will be denoted by Dw.

The exactness of (7) can be easily verified by the definition and the exactness of (6).
Note that the inverse of mass matrices will be involved when computing the weak differ-
ential operators and thus they are global operators.

We introduce the null space of differential operators:

Zch = Uh ∩ ker(curl ), and Zdh = V h ∩ ker(div),

and the null space of weak differential operators

Kc
h = Uh ∩ ker(divh), and Kd

h = V h ∩ ker(curl h).



MULTIGRID PRECONDITIONERS FOR MIXED FINITE ELEMENT METHODS OF VECTOR LAPLACIAN 5

Similar notation Zc, Zd,Kc,Kd will be used for the null spaces in the continuous level
when the subscript h is skipped.

According to the exact sequence (6), we have the discrete Hodge decompositions [1]:

Uh = Zch ⊕⊥ Kc
h = gradSh ⊕⊥ curl hV h,

V h = Zdh ⊕⊥ Kd
h = curlUh ⊕⊥ grad hWh.

The notation ⊕⊥ stands for the L2 orthogonal decomposition. These discrete version of
Hodge decompositions play an important role in the analysis.

We update the exact sequences as:

(11) 0−→Sh
grad−→ Zch ⊕Kc

h
curl−→ Zdh ⊕Kd

h
div−→Wh−→0,

and

(12) 0←−Sh
divh←− Zch ⊕Kc

h
curl h←− Zdh ⊕Kd

h

grad h←− Wh←−0.

The space in the end of the arrow is the range of the operator above and in the beginning is
the real domain. The precise characterization of the null space Zh or Kh can be found by
tracing back of the corresponding operators.

2.2. Discrete Formulations of Vector Laplacian. On the continuous level, the mixed
formulation of the vector Laplacian in space H0(curl ) is: Find σ ∈ H1

0 ,u ∈ H0(curl )
such that

(13)

{
−(σ, τ) + (u, grad τ) = 0 for all τ ∈ H1

0 ,

(gradσ,v) + (curlu, curlv) = (f ,v) for all v ∈H0(curl ).

The problem (13) on the discrete level is: Find σh ∈ Sh,uh ∈ Uh such that

(14)

{
−(σh, τh) + (uh, grad τh) = 0 for all τh ∈ Sh,

(gradσh,vh) + (curluh, curlvh) = (f ,vh) for all vh ∈ Uh.

Note that the first equation of (14) can be interpreted as σh = −divh uh and in the
second equation of (14) the term (gradσh,vh) = −(σh,divh vh). After eliminating σh
from the first equation, we can write the discrete vector Laplacian for edge elements as

(15) −∆c
huh := curl hcurluh − grad divh uh,

which is a discretization of the identity

−∆u = curl curlu− grad divu.

Choosing appropriate bases for the finite element spaces, we can represent the spaces
Sh and V h by RdimSh and RdimV h respectively. In the following, we shall use the same
notation for the vector representation of a function if no ambiguity arises. Then we have
the corresponding operator and matrix formulations as: Lch : Sh ×Uh → S′h ×U

′
h

(16) Lch
(
σh
uh

)
:=

(
−Mv B
BT CTMfC

)(
σh
uh

)
=

(
0
f

)
.

Here Mv,Me and Mf are mass matrices of the vertex element, edge element and the face
element, respectively, BT = MeG corresponds to a scaling of the grad operator G, and
C to the curl operator. We follow the convention of Stokes equations to reserve B for
the (negative) divergence operator. Note that to form the corresponding matrices of weak
derivative operators, the inverse of mass matrices will be involved. The Schur complement

(17) Ach = BTM−1
v B + CTMfC
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is the matrix representation of discrete vector Laplacian (15). The system (16) can be
reduced to the Schur complement equation

(18) Achuh = f .

Similarly, the mixed formulation of the vector Laplacian in space H0(div) is: Find
σ ∈H0(curl ),u ∈H0(div) such that

(19)

{
−(σ, τ ) + (u, curl τ ) = 0 for all τ ∈H0(curl ),

(curlσ,v) + (divu,div v) = (f ,v) for all v ∈H0(div).

The corresponding discrete mixed formulation is: Find σh ∈ Uh,uh ∈ V h such that

(20)

{
−(σh, τh) + (uh, curl τh) = 0 for all τh ∈ Uh,

(curlσh,vh) + (divuh,div vh) = (f ,vh) for all vh ∈ V h.

Eliminating σh from the first equation of (20), we have the discrete vector Laplacian
for face elements as

(21) −∆d
huh := curl curl huh − grad h divuh,

and the operator and matrix formulations are: Ldh : Uh × V h → U ′h × V
′
h

(22) Ldh
(
σh
uh

)
:=

(
−Me CT

C BTMtB

)(
σh
uh

)
=

(
0
f

)
,

where Mt denotes the mass matrix of the discontinuous element. The Schur complement
Adh = CM−1

e CT +BTMtB is the matrix representation of discrete vector Laplacian (21).
Similarly, the reduced equation of (22) is

(23) Adhuh = f .

We shall consider multigrid methods for solving (18) and (23) and use them to con-
struct efficient preconditioners for the corresponding saddle point systems (16) and (22),
respectively.

2.3. Discrete Poincaré Inequality and Inverse Inequality. In this subsection, we define
the norms associated with the discrete vector Laplacian, and prove discrete Poincaré and
inverse inequalities.

Definition 2.1. For uh ∈ Uh, define ‖uh‖2Ac
h

= ach(uh,uh), where the bilinear form
ach(·, ·) is defined as

ach(uh,vh) := (curluh, curlvh) + (divh uh,divh vh).

Similarly, for uh ∈ V h, define ‖uh‖2Ad
h

= adh(uh,uh), where the bilinear form adh(·, ·) is
defined as

adh(uh,vh) := (curl huh, curl hvh) + (divuh,div vh).

Lemma 2.2 (Discrete Poincaré Inequality). We have the following discrete Poincaré in-
equalities:

‖uh‖ . ‖uh‖Ac
h

for all uh ∈ Uh;(24)

‖uh‖ . ‖uh‖Ad
h

for all uh ∈ V h.(25)
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Proof. We prove the first inequality (24) and refer to [11] for a proof of (25). From the
discrete Hodge decomposition, we have for uh ∈ Uh, there exist ρ ∈ Sh and φ ∈ Zdh
such that

uh = grad ρ+ curl hφ.(26)

Applying −divh to (26), we have − divh uh = −divh grad ρ, thus

‖grad ρ‖2 = (−divh uh, ρ) ≤ ‖divh uh‖‖ρ‖ . ‖ divh uh‖‖grad ρ‖,

which leads to

(27) ‖grad ρ‖ . ‖ divh uh‖.

To control the other part, we first prove a discrete Poincaré inequality in the form

(28) ‖φ‖ . ‖curl hφ‖ for all φ ∈ Zdh.

By the exactness of the complex (12), there exists v ∈ Kc
h such that φ = curlv. We recall

another Poincaré inequality [22, 18]

‖v‖ . ‖curlv‖ for all v ∈ Kc
h = Uh ∩ ker(curl )⊥.

Then we have

‖φ‖2 = (φ, curlv) = (curl hφ,v) ≤ ‖curl hφ‖‖v‖ . ‖curl hφ‖‖curlv‖ = ‖curl hφ‖‖φ‖.

Canceling one ‖φ‖, we obtain the desired inequality (28).
Applying curl to the Hodge decomposition (26) and using the inequality (28), we have

curluh = curl curl hφ, thus

‖curl hφ‖2 = (curluh,φ) ≤ ‖curluh‖‖φ‖ . ‖curluh‖‖curl hφ‖,

which leads to the inequality

(29) ‖curl hφ‖ . ‖curluh‖.

Combine inequalities (27) and (29), we have proved that

‖uh‖ ≤ ‖grad ρ‖+ ‖curl hφ‖ . ‖ divh uh‖+ ‖curluh‖ . ‖uh‖Ac
h
.

�

Remark 2.3. The result and the proof can be easily generalized to mixed discretization of
Hodge Laplacian in discrete differential forms [1]. We keep the concrete form inH(curl )
andH(div) conforming finite element spaces for the easy access of these results. �

It is easy to prove the following inverse inequalities:

‖uh‖Ac
h
. h−1‖uh‖ for all uh ∈ Uh;

‖uh‖Ad
h
. h−1‖uh‖ for all uh ∈ V h.

3. MULTIGRID METHODS FOR DISCRETE VECTOR LAPLACIAN

In this section, we describe a variable V-cycle multigrid algorithm to solve the Schur
complement equations (18) and (23), and prove that it is a good preconditioner.
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3.1. Problem Setting. Let us assume that nested tetrahedral partitions of Ω are given as

T1 ⊂ · · · ⊂ TJ = Th,

and the corresponding H1
0 ,H0(curl ) andH0(div) finite element spaces are

S1 ⊂ · · · ⊂ SJ = Sh, U1 ⊂ · · · ⊂ UJ = Uh, V 1 ⊂ · · · ⊂ V J = V h.

For a technical reason, we assume that the edge element space and the face element space
contain the full linear polynomial which rules out only the lowest order case. When no
ambiguity can arise, we replace subscripts h by the level index k for k = 1, 2, . . . , J .

The discretization (13) of the mixed formulation of the vector Laplacian in spaceH0(curl )
based on Tk, for k = 1, 2, . . . , J , can be written as

(30)
(
−Mv,k Bk
BTk CTkMf,kCk

)(
σk
uk

)
=

(
0
fk

)
.

Eliminating σk from (30), we get the reduced Schur complement equation

(31) Ackuk = (BTkM
−1
v,kBk + CTkMf,kCk)uk = fk.

The discretization (19) of the mixed formulation of vector Laplacian in spaceH0(div) on
Tk, for k = 1, 2, . . . , J , can be written as

(32)
(
−Me,k CTk
Ck BTkMt,kBk

)(
σk
uk

)
=

(
0
fk

)
,

and the reduced Schur complement equation is

(33) Adkuk = (BTkMt,kBk + CkM
−1
e,kC

T
k )uk = fk.

We are interested in preconditioning the Schur complement equations (31) and (33) in the
finest level, i.e., k = J .

Notice that, for k < J , Ack and Adk are defined by the discretization of the vector
Laplacian on the trianglulation Tk, but not by the Galerkin projection of AcJ or AdJ since
the inverse of a mass matrix is involved. In other words, Ack andAdk are non-inherited from
AcJ or AdJ for k < J .

When necessary, the notation without the superscript c and d is used to unify the dis-
cussion. The notation Vk is used to represent both Uk and V k spaces.

3.2. A Variable V-cycle Multigrid Method. We introduce some operators first. Let Rk
denote a smoothing operator on level k, which is assumed to be symmetric and convergent.
Let Ik denote the prolongation operator from level k − 1 to level k, which is the natural
inclusion since finite element spaces are nested. The transpose Qk−1 = (Ik)T then repre-
sents the restriction from level k to level k − 1. The Galerkin projection Pk−1, which is
from level k to level k− 1, is defined as: for any given uk ∈ Vk, Pk−1uk ∈ Vk−1 satisfies

ak−1(Pk−1uk,vk−1) = ak(uk, I
kvk−1) = ak(uk,vk−1) for all vk−1 ∈ Vk−1.

The variable V-cycle multigrid algorithm is as following.

Algorithm 2. Multigrid Algorithm: uMG
k = MGk(fk;u0

k,mk)

Set MG1 = A−1
1 .

For k ≥ 2, assume that MGk−1 has been defined. Define MGk(fk;u0
k,mk) as follows:
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• Pre-smoothing: Define ulk for l = 1, 2, · · · ,mk by

ulk = ul−1
k +Rk(fk −Akul−1

k ).

• Coarse-grid correction: Define umk+1
k = umk

k + Ikek−1, where

ek−1 = MGk−1(Qk−1(fk −Aku
mk

k ); 0,mk−1).

• Post-smoothing: Define ulk for l = mk + 2, · · · , 2mk + 1 by

ulk = ul−1
k +Rk(fk −Akul−1

k ).

Define uMG
k = u2mk+1

k .

In this algorithm, mk is a positive integer which may vary from level to level, and
determines the number of smoothing iterations on the k-th level, see [4, 5].

3.3. Multigrid Analysis Framework. We employ the multigrid analysis framework de-
veloped in [4]. Denoted by λk the largest eigenvalue of Ak. For the multigrid algorithm to
be a good preconditioner to Ak, we need to verify the following assumptions:

(A.1): “Regularity and approximation assumption”: For some 0 < α ≤ 1,

|ak((I − Pk−1)uk,uk)| ≤ CA
(
‖Akuk‖2

λk

)α
ak(uk,uk)1−α for all uk ∈ Vk,

holds with constant CA independent of k;
(A.2): “Smoothing property”:

‖uk‖2

λk
≤ CR(Rkuk,uk) for all uk ∈ Vk,

holds with constant CR independent of k.
Following the standard arguments, we can show that the largest eigenvalue of Ak, λk,

satisfies λk h h−2
k for k = 1, 2, . . . , J .

3.4. Smoothing Property. The symmetric Gauss-Seidel (SGS) or a properly weighted
Jacobi iteration both satisfy the smoothing property (A.2), a proof of which can be found
in [5]. For completeness we present a short proof below.

Recall that Gauss-Seidel iteration can be understood as a successive subspace correction
method applied to the basis decomposition Vk =

∑Nk

i=1 Vk,i with exact local solvers [26].
For u ∈ Vk, let u =

∑Nk

i=1 ui be the basis decomposition. By the X-Z identity [27, 10]
for the multiplicative method, we have

(R−1
SGSu,u) = ‖u‖2Ak

+

N∑
i=0

‖Pi
∑
j>i

uj‖2Ak
,

where Pi is the Ak orthogonal projection to Vk,i. For an index i, we denote by n(i) the set
of indices such that the corresponding basis function has overlapping support with basis
function at i. We then estimate the second term as

N∑
i=0

‖Pi
∑
j>i

uj‖2Ak
≤

N∑
i=0

∑
j∈n(i)

‖uj‖2Ak
. λk

N∑
i=0

‖ui‖2 . λk‖u‖2.

Here we use the sparsity of Ak such that the repetition in the summation, i.e, the number
of indices in n(i), is uniformly bounded above by a constant. The last step is from the
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stability of the basis decomposition in L2-norm which holds for all finite element spaces
under consideration.

We have thus proved that (R−1
SGSu,u) . λk‖u‖2 which is equivalent to the smoothing

property by a simple change of variable. Similar proof can be adapted to the weighted
Jacobi smoother.

3.5. Regularity Results. In this subsection, we will present some regularity results for
Maxwell equation. Recall that, we assume Ω is a bounded and convex polyhedron through-
out of this paper.

Lemma 3.1 (Theorem 3.7 and 3.9 in [15]). The space H(div; Ω) ∩ H0(curl ; Ω) and
H0(div; Ω) ∩H(curl ; Ω) are continuously imbedded intoH1(Ω) and

‖φ‖1 . ‖curlφ‖+ ‖ divφ‖.
for all functions φ ∈H(div; Ω) ∩H0(curl ; Ω) orH0(div; Ω) ∩H(curl ; Ω).

In the sequel, we are going to develop an H2 regularity result of Maxwell equation.

Lemma 3.2. For functions ψ ∈H(div; Ω)∩H0(curl ; Ω) orH0(div; Ω)∩H(curl ; Ω).
satisfying curlψ ∈H1(Ω) and divψ ∈H1(Ω). Then ψ ∈ H2(Ω) and

‖ψ‖2 . ‖curlψ‖1 + ‖ divψ‖1.

Proof. Let ψ̃ be the zero extension of ψ from Ω to R3 and Fψ̃ denote the Fourier trans-
form of ψ̃ defined as usual by

Fψ̃ =

∫
R3

e−2iπ(x,µ)ψ̃dx, (x, µ) =

3∑
i=1

xiµi.

By carefully calculation, we can prove that∥∥∥∥∥F ∂2ψ̃l
∂xi∂xj

∥∥∥∥∥ . ‖curlψ‖1 + ‖ divψ‖1.

The desired result follows by the properties of Fourier transform. �

Then we have the following H2 regularity of Maxwell equation.

Lemma 3.3. For any ψ ∈ Kc, define ζ ∈ Kc to be the solution of

(34) (curl ζ, curlθ) = (ψ,θ) for all θ ∈ Kc.

Then curl ζ ∈H2(Ω) and

‖curl ζ‖1 . ‖ψ‖,(35)

‖curl ζ‖2 . ‖curlψ‖.(36)

Proof. Indeed curl ζ ∈ H0(div; Ω) with div curl ζ = 0 and (34) implies curlwcurl ζ =
ψ holds in L2. The desired H1 regularity (35) of curl ζ then follows from Lemma 3.1.

For any w ∈H0(div), let θ = curlww. Then equation (34) implies

(curl curlwcurl ζ,w) = (curlψ,w) for all w ∈H0(div).

Thus, we have

curl curlwcurl ζ = curlψ in L2, and divw curlwcurl ζ = 0.

Again by Lemma 3.1, it holds

‖curlwcurl ζ‖1 . ‖curlψ‖.
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The desired result (36) is then obtained by Lemma 3.2. �

3.6. Error Estimate of Several Projection Operators. We define several projection op-
erators to the null space KDh . Given u ∈ H(D), find PDh u ∈ KDh such that

(37) (DPDh u,Dvh) = (Du,Dvh), for all vh ∈ KDh .

Equation (37) determines PDh u uniquely since (D·,D·) is an inner product on the subspace
KDh which can be proved using the Poincaré inequality (Lemma 2.2). For D = grad , we
understand Kgrad

h as Sh.

Lemma 3.4 (Theorem 2.4 in Monk [21]). Suppose that curlu ∈ Hk and let uh = P chu
toUh which contains polynomial of degree less than or equal to k. Then we have the error
estimate

‖curl (u− uh)‖ . hr‖curlu‖r, for 1 ≤ r ≤ k.

We are also interested in the estimate of projections between two consecutive finite
element spaces. Following the convention of multigrid community, for any 2 < k ≤ J , let
TH = Tk−1 and Th = Tk. Notice that the ratio H/h ≤ C.

The following error estimates are obtained in [2].

Lemma 3.5. Given uh ∈ Kc
h, let uH = P cHuh. Then

‖uh − uH‖ . H‖curluh‖,
‖curl (uh − uH)‖ . H‖curl hcurluh‖.

Lemma 3.6. Give vh ∈ Kd
h, let vH = P dHvh. Then

‖vh − vH‖ . H‖ div vh‖,
‖ div(vh − vH)‖ . H‖grad h div vh‖.

We now introduce a projection to Kc. Let QcK : L2 → Kc be the L2-projection to Kc.
Notice that for u ∈ L2, QcKu = u − ∇p where p ∈ H1

0 is determined by the Poisson
equation (∇p,∇q) = (u,∇q) for all q ∈ H1

0 . Therefore curlQcKu = curlu. Similarly
we define Qch : L2 → Kc

h as Qchu = u−∇p where p ∈ Sh is determined by the Poisson
equation (∇p,∇q) = (u,∇q) for all q ∈ Sh. We have the error estimate, c.f. [2, 28].

Lemma 3.7. For uh ∈ Kc
h, we have

(38) ‖QcKuh − uh‖ . h‖curluh‖.

And for uH ∈ Kc
H

(39) ‖QchuH − uH‖ . H‖curluH‖.

In the estimate (38)-(39), we lift a function in a coarse space to a fine space while in
Lemma 3.5, we estimate the projection. TheL2-projectionQch : Kc

H → Kc
h can be thought

of as a prolongation of non-nested spaces Kc
H and Kc

h.

3.7. Approximation Property of Edge Element Spaces. Let uh ∈ Uh be the solution
of equation

(40) ach(uh,vh) = (fh,vh) for all vh ∈ Uh,

and uH ∈ UH ⊂ Uh be the solution of equation

(41) acH(uH ,vH) = (fh,vH) for all vH ∈ UH .
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We have the Hodge decomposition

uh = gradφh ⊕⊥ u0,h, with unique φh ∈ Sh, u0,h ∈ Kc
h,(42)

uH = gradφH ⊕⊥ (u0,H + eH), with unique φH ∈ SH , u0,H and eH ∈ Kc
H ,(43)

fh = grad gh ⊕⊥ curl hqh, with unique gh ∈ Sh, qh ∈ Zdh,(44)

where u0,H = P cHu0,h . Then by Lemma 3.5, we immediately get the following estimate.

Lemma 3.8. Let u0,h and u0,H be defined as in equations (42) and (43). It holds

‖u0,h − u0,H‖ . H‖uh‖Ac
h
.

Now we turn to the estimate of eH being given in equation (43).

Lemma 3.9. Let eH ∈ Kc
H be defined as in equation (43). It holds

‖eH‖Ac
h
. H‖Achuh‖.

Proof. By equations (40) and (41), we have

(curlu0,h, curlvh) = (qh, curlvh), for all vh ∈ Kc
h

(curl (u0,H + eH), curlvH) = (grad gh,vH) + (qh, curlvH), for all vH ∈ Kc
H ,

where gh and qh are defined in equation (44). Then

(45) (curl eH , curlvH) = (grad gh,vH) for all vH ∈ Kc
H .

Let eh = QcheH , then divh eh = 0 and by Lemma 3.5 ‖eh − eH‖ . H‖curl eH‖. Thus
it holds

(curl eH , curl eH) = (grad gh, eH) = (grad gh, eH − eh) . H‖grad gh‖‖curl eH‖,

which implies

‖curl eH‖ . H‖grad gh‖ ≤ H‖fh‖ = H‖Achuh‖.

Using the fact that divh eh = 0, the inverse inequality and the above inequality, we
immediately get

‖ divh eH‖ = ‖ divh(eH − eh)‖ . h−1‖eh − eH‖ .
H

h
‖curl eH‖ . H‖Achuh‖.

The desired result then follows. �

We now explore the relation between φh, φH , and gh defined in equations (42)-(44).

Lemma 3.10. Let φh ∈ Sh and φH ∈ SH be defined as in equations (42) and (43). It
holds

‖gradφh − gradφH‖ . H‖uh‖Ac
h
.

Proof. For equation (40), test with vh ∈ gradSh to get

(divh gradφh,divh vh) = (grad gh,vh) = −(gh,divh vh),

which implies −divh gradφh = −divh uh = gh, i.e.,

−∆hφh = gh.(46)

From equation (46), we can see that φh is the Galerkin projection of φ to Sh, where φ ∈
H1

0 (Ω) satisfies the Poisson equation:

−∆φ = gh.
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Therefore by the standard error estimate of finite element methods, we have

‖∇φ−∇φh‖ . H‖gh‖.

For equation (41), choose vH = gradψH ∈ gradSH , we have

(divH gradφH ,divH vH) = (grad gh, gradψH) = (gradP gHgh, gradψH),

which implies −divH gradφH = P gHgh, i.e.,

−∆HφH = P gHgh.(47)

From equation (47), we can see that φH is the Galerkin projection of φ̃ to SH , where
φ̃ ∈ H1

0 (Ω) satisfies the Poisson equation:

−∆φ̃ = P gHgh.

The H1-projection P gH is not stable in L2-norm. Applied to functions in Sh, however, we
can recover one as follows

‖(I − P gH)gh‖ . H‖grad (I − P gH)gh‖ . H‖grad gh‖ . H/h‖gh‖ . ‖gh‖.

In the last step, we use the fact that the ratio of the mesh size between consecutive levels is
bounded, i.e., H/h ≤ C.

We then have

‖grad (φ̃− φH)‖ . H‖P gHgh‖ ≤ H‖gh‖+H‖(I − P gH)gh‖ . H‖gh‖.

And by the triangle inequality and the stability of the projection operator P gH

‖grad (φh − φH)‖ ≤ ‖grad (φh − φ)‖+ ‖grad (φH − φ̃)‖+ ‖grad (φ− φ̃)‖
. H‖gh‖+ ‖gh − P gHgh‖−1.

Using the error estimate of negative norms and the inverse inequality, we have

‖gh − P gHgh‖−1 . H
2‖gh‖1 . H‖gh‖.

Here we use H−1 norm estimate for SH having degree greater than or equal to 2. Noticing
that gh = divh uh, we thus get

‖grad (φh − φH)‖ . H‖ divh uh‖ . H‖uh‖Ac
h
.(48)

�

As a summary of the above results, we have the following approximation result.

Theorem 3.11. Condition (A.1) holds with α = 1
2 , i.e. for any uk ∈ Uk, there hold

(49) ack((I − Pk−1)uk,uk) .

(
‖Ackuk‖2

λk

) 1
2

ack(uk,uk)
1
2 .

Proof. We use h to denote k and H to denote k − 1. Let uh, uH , and fh as in equations
(40)-(41) which have Hodge decompositions, c.f. (42)-(44). Let δ1 = u0,h − u0,H ,
δ2 = gradφh − gradφH , by Lemmas 3.8, 3.9 and 3.10, it holds

ach((I − PH)uh,uh) = ach(δ1,uh) + ach(δ2,uh) + ach(eH ,uh)

≤ ‖δ1‖‖Achuh‖+ ‖δ2‖‖Achuh‖+ ‖eH‖Ac
h
‖uh‖Ac

h

. H‖uh‖Ac
h
‖Achuh‖.

�
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3.8. Approximation Property of Face Element Spaces. Let uh ∈ V h be the solution of
equation

(50) adh(uh,vh) = (fh,vh) for all vh ∈ V h,

and uH ∈ V H ⊂ V h be the solution of equation

(51) adH(uH ,vH) = (fh,vH) for all vH ∈ V H .

We can easily see that fh = Adhuh.
By the Hodge decomposition, we have

uh = curlφh ⊕ u0,h, with unique φh ∈ Kc
h, u0,h ∈ Kd

h,(52)

uH = curlφH ⊕ (u0,H + eH) with unique φH ∈ Kc
H , u0,H , eH ∈ Kd

H ,(53)

fh = curl gh ⊕ grad hqh with unique gh ∈ Kc
h, qh ∈Wh,(54)

where u0,H = P dHu0,h. By Lemma 3.6, we immediately have the following result.

Lemma 3.12. Let u0,h ∈ grad hWh and u0,H ∈ gradHWH be defined as in equations
(52) and (53). It holds

‖u0,h − u0,H‖ . H‖ divu0,h‖.

The estimate of eH ∈ Kd
H defined in equation (53) can be proved analog to Lemma 3.9

and thus skipped.

Lemma 3.13. Assume that eH ∈ gradHWH be defined as in equation (53). Then it holds

‖eH‖Ad
h
. ‖Adhuh‖.

We now explore the relation between φh, φH , and gh defined in equations (52)-(54).

Lemma 3.14. Assume that ψh ∈ Kc
h. Let ζh ∈ Kc

h be the solution of equation

(curl ζh, curl τh) = (ψh, τh) for all τh ∈ Kc
h,

and let ζ ∈ Kc be the solution of equation

(curl ζ, curl τ ) = (QcKψh, τ ) for all τ ∈ Kc.

Then, it holds
‖curl (ζ − ζh)‖ . h‖ψh‖.

Proof. Let ζ̃h = P chζ. By Lemma 3.4, we have

‖curl (ζ − ζ̃h)‖ . h‖curl ζ‖1 . h‖QcKψh‖ . h‖ψh‖.
But ζh 6= ζ̃h. Indeed by the definition of ζh and ζ̃h, we have

(curl (ζh − ζ̃h), curl τh) = (ψh −QcKψh, τh) for all τh ∈ Kh.

Thus, with δh = ζh − ζ̃h, we have

‖curl (ζh − ζ̃h)‖2 = (curl (ζh − ζ̃h), curl δh) = (QcKψh −ψh, δh)

= (QcKψh −ψh, δh −QcKδh) . h‖ψh‖‖curl δh‖.
The desired result follows by canceling one ‖curl δh‖ and the triangle inequality. �

We are in the position to estimate φh and φH .

Lemma 3.15. Let φh ∈ Uh and φH ∈ UH be defined as in equations (52) and (53). It
holds

‖curlφh − curlφH‖ . H‖uh‖Ad
h
.
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Proof. Chose the test function vh = curlwh with wh ∈ Uh in equation (50) to simplify
the left hand side of (50) as

(curl huh, curl hcurlwh) = (curl hcurlφh, curl hcurlwh) = (curlφh, curl curl hcurlwh),

and the right hand side becomes

(fh, curlwh) = (curl gh, curlwh) = (gh, curl hcurlwh)

Denoted by τh = curl hcurlwh ∈ Kc
h. We get

(curlφh, curl τh) = (gh, τh) for all τh ∈ Kc
h.

Let φ ∈ Kc satisfy the Maxwell equation:

(curlφ, curl τ ) = (QcKgh, τ ) for all τh ∈ Kc.

By Lemma 3.14, we have
‖curl (φ− φh)‖ . h‖gh‖.

When moving to the coarse space, the left hand side of equation (51) can be still sim-
plified to (curlφH , curl τH). But the right hand side becomes

(fh, curlwH) = (curl gh, curlwH) 6= (gh, curlHcurlwH).

We need to project gh to the coarse space and arrives at the equation

(curlφH , curl τH) = (P cHgh, τH) for all τH ∈ Kc
H .

Let φ̃ ∈ Kc satisfy the Maxwell equation:

(curl φ̃, curl τ ) = (QcKP
c
Hgh, τ ) for all τh ∈ Kc.

By Lemma 3.14, we have

‖curl (φ̃− φH)‖ . H‖QcKP cHgh‖ ≤ H‖P cHgh‖ . H‖gh‖.

By the triangle inequality, it remains to estimate ‖curl (φ− φ̃)‖. We first write out the
error equation for φ− φ̃

(curl (φ− φ̃), curlψ) = (QcK(gh − P cHgh),ψ), for all ψ ∈ Kc.

We then apply the standard duality argument. Let ζ ∈ Kc satisfies

(curl ζ, curl τ ) = (ψ, τ ) for all τ ∈ Kc

Then

(QcK(gh − P cHgh),ψ) = (curl ζ, curlQcK(gh − P cHgh))

= (curl ζ, curl (gh − P cHgh))

= (curl (ζ − P cHζ), curl (gh − P cHgh))

. H2‖curl ζ‖2‖curl gh‖ . H‖curlψ‖‖gh‖,
which implies

‖curl (φ− φ̃)‖ . H‖gh‖.
The estimate of ‖curlφh − curlφH‖ then follows from the triangle inequality. �

As a summary the the above results, we have the following theorem.

Theorem 3.16. Condition (A.1) holds with α = 1
2 , i.e. for any uk ∈ V k, there hold

(55) adk((I − Pk−1)uk,uk) .

(
‖Adkuk‖2

λk

) 1
2

adk(uk,uk)
1
2 .
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3.9. Results. According to the multigrid framework in [4], we conclude that the variable
V-cycle multigrid algorithm is a good preconditioner for the Schur complement equations
(18) and (23). We summarize the result in the following theorem.

Theorem 3.17. Let Vk denote the operator of one V-ycle of MGk in Algorithm 2 with
homogenous data, i.e., fk = 0. Assume the smoothing steps mk satisfy

β0mk ≤ mk−1 ≤ β1mk.

Here we assume that β0 and β1 are constants which are greater than one and independent
of k. Then the condition number of VJAJ is O(1).

Remark 3.18. As noticed in [5], W-cycle or two V-cycles may not be a valid precondi-
tioner as the corresponding operator may not be positive definite. In other words, the pro-
posed multigrid method for the Schur complement cannot be used as an iterative method
but one V-cycle can be used as an effective preconditioner. �

4. UNIFORM PRECONDITIONER

In this section, we will show that the multigrid solver for the Schur complement equa-
tions can be used to build efficient preconditioners for the mixed formulations of vector
Laplacian (16) and (22). We also apply the multigrid preconditioner of the vector Lapla-
cian to the Maxwell equation discretized as a saddle point system. We prove that the
preconditioned systems have condition numbers independent of mesh parameter h.

4.1. Block Diagonal Preconditioner. It is easy to see that the inverses of the symmetric
positive definite matrices Mv , Me, Ach and Adh exist, which implies the existence of the
operators (Lch)−1, (Ldh)−1, and the block diagonal preconditioners defined as following.

Definition 4.1. We define the operator Pch : S′h × U
′
h → Sh × Uh with the matrix

representation

(56) Pch =

(
M−1
v 0
0 (Ach)−1

)
,

and the operator Pdh : U ′h × V
′
h → Uh × V h with the matrix representation

(57) Pdh =

(
M−1
e 0
0 (Adh)−1

)
.

Follow the framework in [20], it suffices to prove the boundedness of operators Lch and
Ldh and their inverse in appropriate norms. In the sequel, to unify the notation, we use
M for the mass matrix and A the vector Laplacian. The inverse of the mass matrix can
be thought of as the matrix representation of the Riesz representation induced by the L2-
inner product and the inverse of A is the Riesz representation of the A-inner product. The
preconditioners Pch and Pdh are Riesz representation of L2 ×A-inner product. Let 〈·, ·〉 be
the duality pair in Vh. We clarify the norm notations using M and A as follows:

• ‖ · ‖M : ‖σh‖2M = 〈Mσh, σh〉;
• ‖ · ‖A: ‖uh‖2A = 〈Ahuh, uh〉;
• ‖ · ‖M−1 : ‖gh‖2M−1 = 〈M−1gh, gh〉;
• ‖ · ‖A−1 : ‖fh‖2A−1 = 〈A−1

h fh, fh〉.

The following lemma gives a bound of the Schur complement BA−1BT similar to the
corresponding result of the Stokes equation.
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Lemma 4.2. We have the inequality

(58) 〈B(Ach)−1BTφh, φh〉 ≤ 〈Mvφh, φh〉 for all φh ∈ Sh,

Proof. Let vh = (Ach)−1BTφh. Then

〈B(Ach)−1BTφh, φh〉 = 〈(Ach)−1BTφh, B
Tφh〉 = 〈Achvh,vh〉 = ‖vh‖2A.

Now we identify vh ∈ V ′h by the Riesz map in the A-inner product, and then we have

‖vh‖A = sup
uh∈V h

〈vh,uh〉A
‖uh‖A

= sup
uh∈V h

〈BTφh,uh〉
‖uh‖A

= sup
uh∈V h

〈φh, Buh〉
‖uh‖A

≤ sup
uh∈V h

‖φh‖M‖Buh‖M−1

‖uh‖A
≤ ‖φh‖M .

In the last step, we have used the identity (17) which implies ‖Buh‖M−1 ≤ ‖uh‖A. The
desired result (58) then follows easily. �

We present a stability result of the mixed formulation of the vector Laplacian which is
different with that established in [1].

Theorem 4.3. The operators Lch,Ldh and there inverse are both bounded operators:

‖Lch‖L(Sh×Uh,S′h×U
′
h), ‖Ldh‖L(Uh×V h,U ′h×V

′
h),

are bounded and independent of h from (‖ · ‖M−1 , ‖ · ‖A−1)→ (‖ · ‖M , ‖ · ‖A), and

‖(Lch)−1‖L(S′h×U
′
h,Sh×Uh), ‖(Ldh)−1‖L(U ′h×V

′
h,Uh×V h)

are bounded and independent of h from (‖ · ‖M , ‖ · ‖A)→ (‖ · ‖M−1 , ‖ · ‖A−1).

Proof. We prove theH0(curl ) case below. The proof of theH0(div) case is similar.
Let (σh,uh) ∈ Sh ×Uh and (gh,fh) ∈ S′h ×U

′
h be given by the relation with

(59) Lch
(
σh
uh

)
=

(
−Mv B
BT CTMfC

)(
σh
uh

)
=

(
gh
fh

)
.

To prove ‖Lch‖L(Sh×Uh,S′h×U
′
h) . 1, it is sufficient to prove

(60) ‖gh‖M−1 + ‖fh‖A−1 . ‖σh‖M + ‖uh‖A.
From (59), we have gh = −Mvσh + Buh and fh = Achuh − BTM−1

v gh. The norm of
gh is easy to bound as follows

‖gh‖2M−1 ≤ 2‖Mvσh‖2M−1 + 2‖Buh‖2M−1 ≤ 2‖σh‖2M + 2‖uh‖2A.

To bound the norm of fh, we first have

‖fh‖2A−1 ≤ 2‖BTM−1
v gh‖2A−1 + 2‖Achuh‖2A−1 ≤ 2‖BTM−1

v gh‖2A−1 + 2‖uh‖2A.

Let φh = M−1
v gh, by Lemma 4.2, we have

‖BTM−1
v gh‖2A−1 = ‖BTφh‖2A−1 = 〈B(Ach)−1BTφh, φh〉 ≤ ‖φh‖2M = ‖gh‖2M−1 .

Thus we get

‖fh‖2A−1 ≤ 2‖gh‖2M−1 + 2‖uh‖2A ≤ 4‖σh‖2M + 6‖uh‖2A.

Then the desired inequality (60) follows from the bound of ‖gh‖M−1 and ‖fh‖A−1 .
To prove ‖(Lch)−1‖L(S′h×U

′
h,Sh×Uh) . 1, we need to prove

(61) ‖σh‖M + ‖uh‖A . ‖gh‖M−1 + ‖fh‖A−1 .
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From (59), we have uh = (Ach)−1(fh +BTM−1
v gh). Then

‖uh‖2A = ‖fh +BTM−1
v gh‖2A−1

≤ 2‖fh‖2A−1 + 2‖BTM−1
v gh‖2A−1 ≤ 2‖fh‖2A−1 + 2‖gh‖2M−1 .

We also have σh = M−1
v (Buh − gh) and thus

‖σh‖2M = ‖Buh − gh‖2M−1 ≤ 2‖Buh‖2M−1 + 2‖gh‖2M−1 ≤ 2‖uh‖2A + 2‖gh‖2M−1 .

Combining with the bound for ‖uh‖A, we obtain the desirable stability (61).
�

Remark 4.4. By choosing vh = M−1
e BTσh, we can obtain the stability

‖BTσ‖M−1 ≤ ‖fh‖M−1 .

From Theorem 4.3, we can conclude that the proposed preconditioners are uniformly
bounded with respect to h.

Theorem 4.5. The Pch and Pdh are uniform preconditioners for Lch and Ldh, respectively,
i.e., the corresponding operator norms

‖PchLch‖L(Sh×Uh,Sh×Uh), ‖(LchPch)−1‖L(Sh×Uh,Sh×Uh),

‖PdhLdh‖L(Uh×V h,Uh×V h), ‖(PdhLdh)−1‖L(Uh×V h,Uh×V h)

are bounded and independent with parameter h.

4.2. Mass Lumping. The inverse of the mass matrices M−1
v and M−1

e are in general
dense. To be practical, the exact Schur complement can be replaced by an approximation

Ãch = BT M̃−1
v B + CTMfC,(62)

Ãdh = CM̃−1
e CT +BTMtB,(63)

with M̃v and M̃e easy-to-invert matrices, e.g., diagonal or mass lumping of Mv and Me,
respectively. In this way, we actually change the L2-inner product into a discrete L2 inner
product. We then define the adjoint operators with respect to the discrete L2-inner product.
For example, we define d̃ivhwh ∈ Sh, s.t.,

(64) 〈d̃ivhwh, vh〉h := −(wh, grad vh) for all vh ∈ Sh,
where 〈·, ·〉h is the discrete L2-inner product defined by M̃v .

The operator and matrix formulations of the vector Laplacian L̃ch : Sh×Uh → S′h×U
′
h

(65) L̃ch

(
σh
uh

)
:=

(
−M̃v B
BT CTMfC

)(
σh
uh

)
=

(
0
f

)
.

And L̃dh : Uh × V h → U ′h × V
′
h

(66) L̃dh

(
σh
uh

)
:=

(
−M̃e CT

C BTMtB

)(
σh
uh

)
=

(
0
f

)
.

The associated diagonal preconditioners are

(67) P̃ch =

(
M̃−1
v 0

0 (Ãch)−1

)
and

(68) P̃dh =

(
M̃−1
e 0

0 (Ãdh)−1

)
.
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It is not hard to see that the modification of the L2-inner product will not bring any es-
sential difficulty to the proof of the previous results. We can easily reproduce all the results
that we have proved in the previous sections with the help of the following proposition
whose proof can be found in [11].

Proposition 4.6. Assume that the discrete L2 norm is equivalent to the L2 norm. Then the
norm ‖ · ‖Ãc

h
is equivalent to ‖ · ‖Ac

h
, and ‖ · ‖Ãd

h
is equivalent to ‖ · ‖Ad

h
i.e.,

‖u‖Ãc
h
. ‖u‖Ac

h
. ‖u‖Ãc

h
for all u ∈ Uh;(69)

‖u‖Ãd
h
. ‖u‖Ad

h
. ‖u‖Ãd

h
for all u ∈ V h.(70)

4.3. Triangular Preconditioner. When a diagonal mass matrix is used, we can make use
of the block decomposition

(71)
(
−M̃v B
BT CTMfC

)(
I M̃−1

v B
0 I

)
=

(
−M̃v 0

BT Ãch

)
to obtain a triangular preconditioner.

Definition 4.7. We define the operator Gch : S′h ×U
′
h → Sh ×Uh

(72) Gch =

(
I M̃−1

v B
0 I

)(
−M̃v 0

BT Ãch

)−1

,

and the operator Gdh : U ′h × V
′
h → Uh × V h

(73) Gdh =

(
I M̃−1

e CT

0 I

)(
−M̃e 0

CT Ãdh

)−1

.

From the definition, it is trivial to verify that Gch = L̃ch
−1

and Gdh = L̃ch
−1

and thus
conclude that the proposed triangular preconditioners are uniform.

Theorem 4.8. Assume M̃ is spectrally equivalent to M . Then the Gch and Gdh are uniform
preconditioners for Lch and Ldh, respectively, i.e., the corresponding operator norms

‖GchLch‖L(Sh×Uh,Sh×Uh), ‖(LchGch)−1‖L(Sh×Uh,Sh×Uh),

‖GdhLdh‖L(Uh×V h,Uh×V h), ‖(GdhLdh)−1‖L(Uh×V h,Uh×V h)

are bounded and independent with parameter h.

In both diagonal and triangular preconditioners, to be practical, we do not computeA−1

or Ã−1. Instead we apply one and only one V-cycle multigrid for Ã−1.

4.4. Maxwell Equations with Divergence-Free Constraint. We consider a prototype of
Maxwell equations with divergence-free constraint

curl curlu = f , divu = 0, in Ω, u× n = 0 on ∂Ω.

The solution u is approximated in the edge element space Uh. The divergence-free con-
straint can then be understood in the weak sense, i.e., divh u = 0. By introducing a
Lagrangian multiplier p ∈ Sh, the matrix form is

(74)
(
CTMfC BT

B O

)(
u
p

)
=

(
f
g

)
.
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We can apply the augmented Lagrangian method [14], by adding BTM−1
v B to the first

equation, to get an equivalent matrix equation

(75)
(
A BT

B O

)(
u
p

)
=

(
f +BTM−1

v g
g

)
.

Now the (1, 1) blockA = CTMfC+BTM−1
v B in (75) is a discrete vector Laplacian and

the whole system (75) is in Stokes type.
We can thus use the following diagonal preconditioner.

Theorem 4.9. The following block-diagonal matrix

(76)
(
A−1 0

0 M−1
v

)
is a uniform preconditioner for the regularized Maxwell operator

(
A BT

B O

)
.

Proof. It suffices to prove that the Schur complement S = BA−1BT is spectral equivalent
to Mv . The inequality (Sp, p) ≤ (Mvp, p) for all p ∈ Sh has been proved in Lemma 4.2.
To prove the inequality in the other way, it suffices to prove the inf-sup condition: there
exists a constant β independent of h such that

(77) inf
ph∈Sh

sup
vh∈Uh

〈Bvh, ph〉
‖vh‖A‖qh‖

= β > 0.

Given ph ∈ Sh, we solve the Poisson equation ∆φ = ph with homogenous Dirichlet
boundary condition and let v = gradφ. Then v ∈ H0(curl ) and div v = ph holds in
L2. We define vh = Qhv where Qh : H0(curl ) → Uh is the L2 projection. Then
(divh vh, qh) = (vh, grad qh) = (v, grad qh) = −(div v, qh) = (ph, qh), i.e., divh vh =
ph. To control the norm of curlvh, we denote v0 as the piecewise constant projection of
v. Then

‖curlvh‖ = ‖curl (vh − v0)‖ . h−1‖vh − v0‖ ≤ ‖v‖1 . ‖ph‖.

In the last step, we have used the H2-regularity result.
In summary, given ph ∈ Sh, we have found a vh ∈ Uh such that 〈Bvh, ph〉 = ‖ph‖2

while ‖vh‖2A = ‖divh vh‖2 + ‖curlvh‖2 . ‖ph‖2. Therefore the inf-sup condition (77)
has been proved which implies the inequality 〈Sp, p〉 ≥ β2〈Mvp, p〉. �

To design an efficient triangular preconditioner for (75), we explore the commutator

(78) AG = G̃Ap,

where G = M−1
e BT is the matrix representation of the gradient operator Sh → Uh,

Ĝ = BTM−1
v is another scaled gradient operator, and Ap = BG represents the discrete

Laplacian operator Sh → Sh. The identity (78) is a discrete version of the following
identity

(79) ∆grad = grad ∆,

where the first ∆ is the vector Laplacian operator and the second ∆ is the scalar Laplacian,
and can be verified by noticing that CG = curl grad = 0.

With (78), we have the following block factorization

(80)
(
A BT

B O

)(
I G
O −M−1

v Ap

)
=

(
A O
B Ap

)
.
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(a) A mesh for the unit square (b) A mesh for a L-shape domain (c) A mesh for a crack domain

FIGURE 1. Meshes for Example 5.1

TABLE 1. Iteration steps and CPU time of the diagonal and the triangu-
lar preconditioners for the vector Laplace equation in H0(curl ) space:
the square domain (0, 1)2.

h Dof Iteration (D) Time Iteration (T) Time
1/32 4,225 28 0.20 s 13 0.18s
1/64 16,641 28 0.68 s 14 0.34s
1/128 66,049 27 1.90 s 14 1.30s
1/256 263,169 27 8.80 s 14 6.80s

TABLE 2. Iteration steps and CPU time of the diagonal and the trian-
gular preconditioners for the lowest order discretization of the vector
Laplace equation in H0(curl ) space: the L-shape domain
(−1, 1)2\ {[0, 1]× [−1, 0]}.

h Dof Iteration (D) Time Iteration (T) Time
1/32 3,201 33 0.24 s 15 0.19s
1/64 12,545 35 0.63 s 16 0.40s
1/128 49,665 39 2.50 s 16 1.90s
1/256 197,633 41 7.20 s 16 5.50s

TABLE 3. Iteration steps and CPU time of the diagonal and the trian-
gular preconditioners for the lowest order discretization of the vector
Laplace equation in H0(curl ) space: the crack domain {|x| + |y| <
1}\{0 ≤ x ≤ 1, y = 0}.

h Dof Iteration (D) Time Iteration (T) Time
1/16 2,145 34 0.13 s 15 0.08 s
1/32 8,385 38 0.54 s 15 0.30 s
1/64 33,153 41 1.60 s 16 1.00 s

1/128 131,841 44 6.70 s 16 3.60 s

When Sh is the linear (P1) element, M−1
v can be approximated accurately by using the

mass lumping of the P1 element. Therefore we can easily solve (74) by inverting two
Laplacian operators: one is a vector Laplacian of the edge element and another is a scalar
Laplacian for the P1 element. In general M−1

v will be replaced by a sparse approximation
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(a) A mesh for the unit cube (b) A mesh for a L-shaped domain

FIGURE 2. Meshes for Example 5.2

TABLE 4. Iteration steps and CPU time of the diagonal and triangular
preconditioners for the lowest order discretization of the vector Laplace
equation inH0(curl ) space in three dimensions: the unit cube domain.

h Dof Iteration (D) Time Iteration (T) Time
1/4 729 21 0.25 s 12 0.15 s
1/8 4,913 29 0.48 s 16 0.28 s
1/16 35,937 33 3.90 s 18 4.0 s
1/32 274,625 33 40 s 19 27 s

TABLE 5. Iteration steps and CPU time of the diagonal and trian-
gular preconditioners for the lowest order discretization of the vector
Laplace equation in H0(curl ) space in three dimensions: L-shape do-
main (−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)}.

h Dof Iteration (D) Time Iteration (T) Time
1/2 665 20 0.03 s 12 0.06 s
1/4 4,401 34 0.54 s 16 0.37 s
1/8 31,841 42 5.50 s 20 3.60 s
1/16 241,857 48 48 s 23 33 s

TABLE 6. Iteration steps and CPU time of the diagonal and triangular
preconditioners for the lowest order discretization of Maxwell equations
in the saddle point form in three dimensions: the unit cube domain.

h Dof Iteration (D) Time Iteration (T) Time
1/4 729 21 0.40 s 12 0.80 s
1/8 4,913 27 1.3 s 16 1.3 s
1/16 35,937 31 4.30 s 18 4.8 s
1/32 274,625 31 40 s 19 39 s

M̃−1
v and (80) can be used to construct effective block-triangular preconditioners:

(81)
(
I G

O −M̃−1
v Ap

)(
Ã O
B Ap

)−1

.
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TABLE 7. Iteration steps and CPU time of the diagonal and triangu-
lar preconditioners for the lowest order discretization of Maxwell equa-
tions in the saddle point form in three dimensions: L-shape domain
(−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)}.

h Dof Iteration (D) Time Iteration (T) Time
1/2 665 20 0.47 s 10 0.68 s
1/4 4,401 28 0.58 s 14 1.10 s
1/8 31,841 34 5.70 s 17 4.00 s
1/16 241,857 37 40 s 19 38 s

Again in practice, Ã−1 and A−1
p will be replaced by one multigrid V-cycle for the vector

Laplacian or scalar Laplacian, respectively.

5. NUMERICAL EXAMPLES

In this section, we will show the efficiency and the robustness of the proposed diagonal
and triangular preconditioners. We perform the numerical experiments using the iFEM
package [9].

Example 5.1 (Two Dimensional Vector Laplacian using Edge Elements). We first consider
the mixed system (16) arising from the lowest order discretization of the vector Laplace
equation inH0(curl ) space.

We consider three domains in two dimensions: the unit square (0, 1)2, the L-shape
domain (−1, 1)2\ {[0, 1]× [−1, 0]}, and the crack domain {|x| + |y| < 1}\{0 ≤ x ≤
1, y = 0}; see Fig. 4.4.

We use the diagonal preconditioner (67) in the MINRES method and the triangular
preconditioner (72) in GMRES (with the restart step 20) to solve (16). In these precondi-
tioners, one and only one variable V-cycle is used for approximating Ã−1. In the variable
V-cycle, we chose mJ = 2 and mk = d1.5J−kmJe for k = J, . . . , 1. We stop the Krylov
space iteration when the relative residual is less than or equal to 10−8. Iteration steps and
CPU time are summarized in Table 1, 2, and 3.

Example 5.2 (Three Dimensional Vector Laplacian using Edge Elements). We then con-
sider the three dimensional case. Still consider the lowest order discretization of the vector
Laplace equation in H0(curl ) space. We use almost the same setting except mJ = 3 for
which the performance is more robust.

We consider two domains. One is the unit cube (0, 1)3 for which the full regularity
assumption holds and another is a L-shape domain (−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)}
which violates the full regularity assumption. Iteration steps and CPU time are summarized
in Table 4 and 5.

Based on these tables, we present some discussion on our preconditioners.
(1) Both diagonal and triangular preconditioners perform very well. The triangular

one is more robust and efficient.
(2) The diagonal preconditioner is more sensitive to the elliptic regularity result as the

iteration steps are slowly increased, which is more evident in the three dimensional
case; see the third column of Table 4 and 5. For general domains, theH0(curl )∩
H(div) is a strict subspace of H1 and thus the approximation property may fail.
On the other hand, the numerical effectiveness even in the partial regularity cases
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is probably due to the fact that the full regularity of elliptic equations always holds
in the interior of the domain. Additional smoothing for near boundary region
might compensate the loss of full regularity.

(3) Only the lowest order element is tested while our theory assumes the finite ele-
ment space should contain the full linear polynomial to ensure the approximation
property. This violation may also contribute to the slow increase of the iteration
steps. We do not test the second type of edge element due to the complication
of the prolongation operators. The lowest order edge element is the most popular
edge element. For high order edge elements, we prefer to use the V-cycle for the
lowest order element plus additional Gauss-Seidel smoothers in the finest level to
construct preconditioners.

Example 5.3 (Three dimensional Maxwell equations with divergent-free constraint). We
consider the lowest order discretization of Maxwell equations in the saddle point form (74)
and solve the regularized formulation (75). We test the block-diagonal preconditioner (76)
and triangular preconditioner (81). We use the same setting as in Example 5.2 and report
the iteration steps and corresponding CPU time in Table 6 and 7.

From these results, we conclude our block-diagonal and block-triangular precondition-
ers works pretty well for the Maxwell equations discretized in the saddle point form. The
iteration steps may increase but very slowly. Although the block-triangular preconditioner
requires less iteration steps, the computational time is almost the same. This is due to
the fact, now for the (2, 2) block, the block-triangular preconditioners requires a V-cycle
for the scalar Laplacian while in the block-diagonal preconditioner it is only a diagonal
approximation of the mass matrix.
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