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INTEGRAL AND DERIVATIVE OPERATORS
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Abstract. A unified fast time-stepping method for both fractional integral and derivative
operators is proposed. The fractional operator is decomposed into a local part with memory length
∆T and a history part, where the local part is approximated by the direct convolution method and
the history part is approximated by a fast memory-saving method. The fast method has O(n0 +

∑L
ℓ qα(Nℓ)) active memory and O(n0nT +(nT −n0)∑L

ℓ qα(Nℓ)) operations, where L = log(nT −n0),
n0 = ∆T/τ, nT = T/τ , τ is the stepsize, T is the final time, and qα(Nℓ) is the number of quadrature
points used in the truncated Laguerre–Gauss (LG) quadrature. The error bound of the present fast
method is analyzed. It is shown that the error from the truncated LG quadrature is independent
of the stepsize, and can be made arbitrarily small by choosing suitable parameters that are given
explicitly. Numerical examples are presented to verify the effectiveness of the current fast method.

Key words. Fast convolution, the (truncated) Laguerre–Gauss quadrature, short memory
principle, fractional differential equations, fractional Lorenz system.
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1. Introduction. The convolution of the form

(1.1) (k ∗ u)(t) = ∫ t

0

k(t − s)u(s)ds
arises in many physical models, such as integral equations, integrodifferential equa-
tions, fractional differential equations, and integer-order differential equations such as
wave propagation with nonreflecting boundary conditions, see for example, [3, 8, 28,
29, 35, 22].

The aim of this paper is to present a stable and fast memory-saving time-stepping
algorithm for the convolution (1.1) with a kernel k(t) = t

α−1/Γ(α). This kind of kernel
has found wide applications in science and engineering [8, 28, 29]. When α ≥ 0, Eq.
(1.1) gives a fractional integral of order α. If α < 0, then Eq. (1.1) can be interpreted
as the Hadamard finite part integral, which is equivalent to the Riemann–Liouville
(RL) fractional derivative of order −α, see [30, p. 112].

The direct discretization of (1.1) takes the following form

n

∑
k=0

ωn,ku(tk), n = 1, 2, . . . , nT ,(1.2)

where ωn,k are the convolution quadrature weights. The direct computation of (1.2)

requires O(nT ) active memory and O(n2

T ) operations, which is expensive for long
time computations. The computational difficulty in both memory requirement and
computational cost will increase greatly when the direct approximation (1.2) is applied
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to resolve high-dimensional time evolution equations and/or a large system of time-
fractional partial differential equations (PDEs) involving (1.1), see e.g., [2, 10, 22, 41,
43]. However, we believe this computational difficulty for fractional operators has not
been fully addressed in literature. The short memory principle (see [6, 29]) seems
promising to resolve this difficulty, but it has not been widely applied in fractional
calculus due to its inaccuracy.

Up to now, some progress has been made in reducing storage requirements and
computational cost for resolving fractional models. The basic idea is to seek a suitable
sum-of-exponentials to approximate the kernel function kα(t) = t

α−1/Γ(α), i.e.,
(1.3) kα(t) = t

α−1/Γ(α) = Q

∑
j=1

wje
λjt

+ O(ǫ), t ∈ [δ, T ]
where δ, T > 0 and ǫ > 0 is a given precision. The key is to determine wj and λj in
(1.3) in order that the desired accuracy up to O(ǫ) can be achieved.

In order to derive (1.3), Lubich and Schädle [22] expressed kα(t) in terms of its

inverse Laplace transform kα(t) =
1

2πi
∫
C
L[kα]etλ dλ, where L[kα](λ) denotes the

Laplace transform of kα(t) and C is a suitable contour. Then a suitable quadrature

was applied to approximate ∫
C
L[kα]etλ dλ, which leads to (1.3). This approach can be

applied to construct fast methods for a wide class of nonlocal models. The method in
[22] was then extended to calculate the discrete convolution (1.2) in [3, 31], where the
coefficients ωn,j are generated from the generating functions. A graded mesh version
of [22] was developed in [20] and an application of [22] in the simulation of fractional-
order viscoelasticity in complicated arterial geometries was proposed in [41]. The
storage and computational cost of the fast methods in [3, 20, 22, 31] are O(log nT )
and O(nT lognT ), respectively, which are much less than the direct methods with
O(nT ) memory and O(n2

T ) operations. Recently, Baffet and Hesthaven [1, 2] have
proposed to approximate L[kα] using the multipole approximation, which yields (1.3).

Another approach to derive (1.3) is based on the following integral expression

(1.4) kα(t) = sin(απ)
π ∫ ∞

0

λ
−α

e
−tλ

dλ, α < 1.

Eq. (1.4) can be derived by inserting L[kα] = λ
−α

into Henrici’s formula (see [5]), i.e.,

kα(t) = 1

2πi
∫∞

0
[L[kα](λe−iπ) − L[kα](λeiπ)] e−tλ dλ. Li [18] transformed the above

integral into its equivalent form, then multi-domain Legendre–Gauss quadrature was
applied to approximate the transformed integral to obtain (1.3). Jiang et al [14]
combined Jacobi–Gauss quadrature and multi-domain Legendre–Gauss quadrature to
discretize (1.4) for −1 < α < 1, then a global after-processing optimization technique
was applied to further reduce the number of quadrature points, see also [40]. The

exponential sum approximation for t
−β(β > 0) has been studied in the literature,

which can be used to design fast algorithm to approximate the fractional operators.
The interested readers can refer to [4, 26]. In the references [1, 2, 3, 20, 22, 31],
wj and λj are complex, however, they are real in [18, 14, 4, 26]. Apart from the
above mentioned fast methods for fractional operators, McLean [25] proposed to use
a degenerate kernel for evaluating kα ∗ u(t).

In this work, we derive (1.3) by approximating (1.4) using a truncated Laguerre–
Gauss (LG) quadrature. We list the main contributions of this work as follows.
• We follow and generalize the framework in [22] to resolve the short memory prin-

ciple with a lag-term, see Section 3. By choosing suitable parameters, the current
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method can be simplified as that in [1, 2, 18, 14], where the time domain is not
divided into exponentially increasing subintervals. This approach simplifies the
implementation of the algorithm. The present fast method unifies the calculation
of the discrete convolutions to the approximation of both fractional integral and
derivative operators with arbitrary accuracy (see Tables 4.2 and 5.5), for example,
the trapezoidal rule for the fractional integral operator (see [8]) and the L1 method
for the fractional derivative operator (see [7, 34]); see Figure 2.1.

• Given any basis B (B > 1 is an integer), any stepsize τ , any memory length ∆T ≥ τ ,
and any precisions ǫ, ǫ0 > 0, the truncation number qα(Nℓ) (see (4.7) and (4.10))
of the truncated LG quadrature is determined in order that the overall error of the
present fast method from the truncated LG quadrature is O(ǫ + ǫ0), see (4.14).
The truncated LG quadrature and/or a relatively smaller basis B saves memory
and computational cost, see numerical results in Tables 4.1–4.2 and Figure 4.2.

We would like to emphasize that the truncated LG quadrature reduces the mem-
ory and computational cost significantly, see Table 4.1. The memory and computa-
tional cost in [22, 20] can be halved due to the symmetry of the trapezoidal rule,
but operations with complex numbers are involved. In addition, the Gauss–Jacobi
and Gauss–Legendre quadrature used in [18, 14] may not be truncated. Furthermore,
the discretization error caused from the LG quadrature is independent of the stepsize
and the regularity of the solution to the considered fractional differential equation
(FDE), and does not appear to be sensitive to the fractional order α ∈ (−2, 1) as
exhibited in Figure 4.2, which is competitive with the mutlipole approximation [2] in
both accuracy and memory requirement, see Figure 4.3.

In real applications, analytical solutions to FDEs are unknown and often non-
smooth, and may have strong singularity at t = 0, see, for example, [16, 23, 27, 33].
In order to resolve the singularity of the solution to the considered FDE, a graded
mesh approach was adopted by some researchers [16, 27, 33]. In [33], an optimal
graded mesh was obtained to achieve the global convergence of order 2−α, α ∈ (0, 1),
which is very effective when the fractional order is relatively large, but is less effective
when the fractional order tends to zero. In this paper, we follow Lubich’s approach
[21] to deal with the singularity by introducing correction terms.

As we mentioned above, a rational approximation was made in [2] to approximate
the Laplace transform of the fractional kernel, while the method in [18] used the
Legendre–Gauss quadrature to approximate the transformed integral of (1.4). These
approaches were initially designed for the fractional integral operator. However, we
have found that they can be applied to the RL fractional derivative operator directly
as done in the present work.

This paper is organized as follows. We follow the approach in [22] to present our
fast method in Section 2. The short memory principle with lag terms is resolved in
Section 3, it unifies the calculation of the discrete convolutions to the approximation of
the fractional integral and derivative operators. The error analysis of the fast method
is presented in Section 4, where all the parameters needed in numerical simulations
are explicitly given. Numerical simulations are presented to verify the effectiveness of
the fast method in Section 5 before the conclusion in the last section.

2. A stable fast convolution. In this section, we follow the approach given in
[22] to develop our fast convolution.

The goal is to discretize the right-hand side of (1.4) using a highly accurate

3



numerical method. It is natural to use LG quadrature to approximate (1.4), i.e.,

(2.1) kα(t) = sin(απ)
π ∫ ∞

0

λ
−α

e
−Tλ

e
−(t−T )λ

dλ ≈
sin(απ)

π

N

∑
j=0

ωje
−(t−T )λj ,

where {ωj} and {λj} are the LG quadrature weights and points that correspond to

the weight function λ
−α

e
−Tλ

. The quadrature (2.1) is exponentially convergent for
any t ≥ T if N is sufficiently large, which is discussed in Section 4.

Denote tn = nτ (n = 0, 1, ..., nT ) as the grid point, where τ is the stepsize. We
first restrict ourselves to α ∈ [0, 1). Using (2.1) and following the idea in [22], we
present our stable fast convolution for approximating kα ∗ u(t) as follows:
• Step 1) Decompose the convolution kα ∗ u(t) as

(2.2)

kα ∗ u(t) = ∫ t

t−τ

kα(t − s)u(s)ds + ∫ t−τ

0

kα(t − s)u(s)ds ≡ L
α(u, t)+H

α(u, t),
where we call L

α(u, t) and H
α(u, t) the local and history parts, respectively. Let

I
(1)
τ u(t) be the linear interpolation of u(t). Then the local and history parts can
be approximated by

L
α(u, tn)≈Lα(I(1)τ u, tn) = L

(α,n)
τ u, H

α(u, tn)≈Hα(I(1)τ u, tn) = H
(α,n)
τ u.

• Step 2) For every t = tn, let L be the smallest integer satisfying tn < 2B
L
τ , where

B > 1 is a positive integer. For ℓ = 1, 2, ..., L−1, determine the integer qℓ such that

(2.3) sℓ = qℓB
ℓ
τ satisfies tn − sℓ ∈ [Bℓ

τ, (2Bℓ
− 1)τ].

Set s0 = tn − τ and sL = 0. Then tn − τ = s0 > s1 > ⋯ > sL−1 > sL = 0.

• Step 3) Using (2.1), we approximate the history part H
(α,n)
τ u = H

α(Iτu, tn) by

(2.4) H
(α,n)
τ u ≈

sin(απ)
π

L

∑
ℓ=1

N

∑
j=0

ω
(ℓ)
j e

−(tn−sℓ−1−Tℓ−1)λ(ℓ)
j y(sℓ−1, sℓ, λ(ℓ)

j ) = FH
(α,n)
τ u

with y(sℓ−1, sℓ, λ) given by

(2.5) y(sℓ−1, sℓ, λ) = ∫ sℓ−1

sℓ

e
(s−sℓ−1)λI(1)τ u(s)ds,

where {ω(ℓ)
j } and {λ(ℓ)

j } are the LG quadrature weights and points that corresponds

to the weight function λ
−α

e
−Tℓ−1λ (see (7.27) in [32]), and Tℓ−1 = B

ℓ−1
τ satisfying

tn − s − Tℓ−1 ≥ 0 for all tn − s ∈ [Bℓ−1
τ, (2Bℓ

− 1)τ], s ∈ [sℓ, sℓ−1]. Here y(s) =

y(s, sℓ, λ(ℓ)
j ) used in (2.4) that is defined by (2.5) satisfies the following ODE

(2.6) y
′(s) = −λ

(ℓ)
j y(s) + I

(1)
τ u(s), y(sℓ) = 0,

which can be exactly solved by the following recursive relation

(2.7) y(tm+1) =e−λ(ℓ)
j τ

y(tm) + e
−λ

(ℓ)
j τ ∫ tm+1

tm

e
λ
(ℓ)
j (s−tm)

I
(1)
τ u(s)ds.
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• Step 4) Calculate the local part L
(α,n)
τ u = ∫ tn

tn−τ
kα(tn − s)I(1)τ u(s)ds with

(2.8) L
(α,n)
τ u = L(I(1)τ u, tn) = τ

α

Γ(2 + α)(un − un−1).
Combining Steps 1)–4), we obtain our fast convolution for approximating kα ∗ u(t).
The above fast convolution has the same storage and computational cost as that in
[22], the main differences are listed below:

i) The LG quadrature is applied instead of the trapezoidal rule to approximate

the history part H
α(Iτu, t) = ∫ t−τ

0
kα(t−s)Iτu(s)ds, that is, the history part

H
α(Iτu, t) in [22] was approximated by

(2.9) F Ĥ
(α,n)
τ u = Im{ L

∑
ℓ=1

N−1

∑
j=−N

ω̂
(ℓ)
j L[kα](λ̂(ℓ)

j )e(tn−sℓ−1)λ̂(ℓ)
j ŷ(sℓ−1, sℓ, λ̂(ℓ)

j )} ,

where {ω̂(ℓ)
j } and {λ̂(ℓ)

j } are the weights and quadrature points for the Talbot

contour Γℓ, and ŷ(s) = ŷ(s, sℓ, λ̂(ℓ)
j ) = ∫ s

sℓ
e
−(s−sℓ−1)λ̂(ℓ)

j I
(1)
τ u(s)ds satisfies the

following ODE

(2.10) ŷ
′(s) = λ̂

(ℓ)
j ŷ(s) + I

(1)
τ u(s), y(sℓ) = 0.

ii) We solve a stable ODE (2.6) instead of a possibly unstable ODE (2.10) that
may affect the stability and accuracy of (2.9). Indeed, for the Talbot contour
used in [22] (see also the parabolic contour or hyperbolic contour discussed in

[38]), there exist λ̂
(ℓ)
j ’s, whose real parts are positive. Numerical tests show

that (2.9) still works well since one may not solve (2.10) for a long time, which
reduces the iteration error from solving (2.10) even though the real part of

some λ̂
(ℓ)
j is positive.

The above fast convolution Step 1) – Step 4) holds for α < 1, that is, the RL
fractional derivative operator of order −α is thus discretized if α < 0.

Example 2.1. Let u(s) = 1 + s in (2.4) and define the relative error

(2.11) en =

∣Hα(u, tn) − FH
(α,n)
τ u∣∣Hα(u, tn)∣ , ên =

∣Hα(u, tn)− F Ĥ
(α,n)
τ u∣∣Hα(u, tn)∣

where FH
(α,n)
τ u and F Ĥ

(α,n)
τ u are defined by (2.4) and (2.9), respectively.

We choose u(s) = 1 + s in order that the errors en and ên mainly come from the
quadrature used in the discretization of the kernel kα(t). We show the errors en and
ên for different α in Figure 2.1. We can see that the LG quadrature shows better
accuracy than the trapezoidal rule based on the Talbot contour in this example.

3. Short memory principle with lag terms. In this section, we generalize
the fast convolution in the previous section to resolve the short memory principle (see
[6, 29]). The error analysis of the method is given in the next section.

Let ∆T ≥ 0 be a memory length. Divide the convolution kα ∗ u(t) into the local
part L

α
∆T (u, t) and the history part H

α
∆T (u, t) as shown below

kα ∗ u(t) ≡ L
α
∆T (u, t) +H

α
∆T (u, t),(3.1)

5
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Fig. 2.1. Comparison between the trapezoidal rule based on the Talbot contour (black curve)
and the LG quadrature (red curve), τ = 1, B = 5, N = 100. The optimal contour z(θ, t) =

t (−0.4814 + 0.6443(θ cot(θ) + i0.5653θ)) obtained in [37] is applied here, i.e., λ̂
(ℓ)
j in (2.9) is given

by λ̂
(ℓ)
j = z(θj , N/(2Tℓ − τ)) with the corresponding weight ω̂

(ℓ)
j = ∂θz(θj , N/(2Tℓ − τ)), where

θj = (2j + 1)π/(2N), j = −N, ...,N − 1 and Tℓ = B
ℓ
τ , B = 5, N = 32.

L
α
∆T (u, t) = ∫ t

max{0,t−∆T } kα(t − s)u(s)ds,(3.2)

H
α
∆T (u, t) = ∫ max{0,t−∆T }

0

kα(t − s)u(s)ds.(3.3)

If we drop the history part in (3.1), then the remaining part is the famous short
memory principle rule (see [29]). However, the short memory principle has not been
widely applied, since L

α
∆T (u, t) is not a good approximation of kα ∗ u(t). Our goal is

to develop a good numerical approximation of H
α
∆T (u, t), such that the storage and

computational cost are reduced significantly compared with the direct approximation.
The local part L

α
∆T (u, t) is just the fractional operator defined on [max{0, t−∆T }, t],

which can be discretized directly by the known methods, see [11, 21, 24, 34]. Next,
we introduce how to discretize (3.1) efficiently and accurately.

3.1. Interpolations. In this work, the discretization of (3.2) and (3.3) is based
on the interpolation of u. Specifically, L

α
∆T (u, t) and H

α
∆T (u, t) are approximated

by L
α
∆T (ILτ u, t) and H

α
∆T (IHτ u, t), respectively, where I

L
τ and I

H
τ are two suitable

piecewise interpolation operators, which will be discussed in the following.

Linear interpolation is simple and has been applied widely in the discretization
of the fractional operators, see [8, 15, 17, 34]. Several quadratic interpolations have
been used to discretize the Caputo fractional operators, see, for example, [40, 19, 24].
We adopt the quadratic interpolation in [24] to illustrate the implementation of the

present fast algorithm. Define the local interpolation operator Π
j
τ as

(3.4) Π
j
τu(t) = 3

∑
k=1

uj+k−1F
(j)
k (t), t ∈ [tj , tj+1], j ≥ 0,

where F
(j)
1 =

(t−tj+1)(t−tj+2)(tj−tj+1)(tj−tj+2) , F
(j)
2 =

(t−tj)(t−tj+2)(tj+1−tj)(tj+1−tj+2) , and F
(j)
3 =

(t−tj)(t−tj+1)(tj+2−tj)(tj+2−tj+1) .
Let Π

−1

τ u(t) = Π
0

τu(t). Then, for each n ≥ 1, the quadratic interpolation I
(2,n)
τ is

6



defined by

(3.5) I
(2,n)
τ u(t) = {Π

j
τu(t), t ∈ [tj , tj+1], 0 ≤ j ≤ n − 2,

Π
n−2
τ u(t), t ∈ [tn−1, tn].

For each n ≥ 1, we define I
L
τ and I

H
τ as follows

I
L
τ u(t) = I

(2,n)
τ u(t), t ∈ [max{tn −∆T, 0}, tn],(3.6)

I
H
τ u(t) = I

(2,n)
τ u(t), t ∈ [0,max{tn −∆T, 0}].(3.7)

Let jn = max{n− n0, 0}. Then L
(α,n)
∆T,τu = L

α
∆T (ILτ u, tn) and H

(α,n)
∆T,τ u = H

α
∆T (IHτ u, tn)

are given by

L
(α,n)
∆T,τu =

n−2

∑
j=jn

(b(1)n−1−juj + b
(2)
n−1−juj+1 + b

(3)
n−1−juj+2) + 2

∑
j=0

djun+j−2,(3.8)

H
(α,n)
∆T,τ u =

jn−1

∑
j=0

(b(1)n−1−juj + b
(2)
n−1−juj+1 + b

(3)
n−1−juj+2) ,(3.9)

where b
(k)
n−j−1 = ∫ tj+1

tj
kα(tn − s)F (j)

k (s)ds and dj = ∫ tn

tn−1

kα(tn − s)F (n−2)
j (s)ds, i.e.,

d0 =

−ατ
α

2Γ(α + 3) , d1 =

α(3 + α)τα
Γ(α + 3) , d2 =

(4 + α)τα
2Γ(α + 3) ,(3.10)

b
(1)
j =

τ
α

2Γ(α) [ℓ(α+2)j − (2j − 1)ℓ(α+1)j + j(j − 1)ℓ(α)j ] ,(3.11)

b
(2)
j = −

τ
α

Γ(α) [ℓ(α+2)j − 2jℓ
(α+1)
j + (j + 1)(j − 1)ℓ(α)j ] ,(3.12)

b
(3)
j =

τ
α

2Γ(α) [ℓ(α+2)j − (2j + 1)ℓ(α+1)j + j(j + 1)ℓ(α)j ] ,(3.13)

ℓ
(α)
j =

1
α [(j + 1)α − j

α] .(3.14)

Some researchers used other interpolations in the discretization of the fractional
integral and derivative operators, we refer readers to [19, 7, 8, 17, 10, 42].

3.2. Corrections. From (3.8)–(3.9) and for any ∆T ≥ 0, we always have

(3.15) D
(α,n)
∆T,τu = L

(α,n)
∆T,τu +H

(α,n)
∆T,τ u =

n

∑
j=0

wn,juj,

where wn,j can be derived from (3.10)–(3.13), which do not give explicitly. Clearly,

D
(α,n)
∆T,τu is just the second-order trapezoidal rule (or the (2 + α)-order L1 method)

for the fractional integral of order α > 0 (or the RL fractional derivative of order
0 < −α < 1) if the linear interpolation is used and u(t) is sufficiently smooth, see

[7, 8]. For quadratic interpolation (3.5), D
(α,n)
∆T,τu achieves the (3 + α)-order accuracy

for the RL derivative of order 0 < −α < 1 when u(t) is smooth. However, the

approximation D
(α,n)
∆T,τu defined by (3.15) is not a good approximation of kα ∗ u(tn)

when u(t) has strong singularities.

7



In this work, we follow Lubich’s idea (see [21]) to use correction terms to capture
the singularity of the solution u(t) to the considered FODE. The correction method
is based on the assumption that the solution u(t) has the following form

(3.16) u(t) − u(0) = m

∑
j=1

cjt
σj

+ t
σm+1 ũ(t), 0 < σj < σj+1,

where ũ(t) is uniformly bounded for t ∈ [0, T ]. Readers can refer to [8, 23, 13, 29]
for more detailed results of the regularity of FODEs.

Combining (3.15) and (3.16) gives the following correction method

D
(α,n,m)
∆T,τ u = D

(α,n)
∆T,τu + τ

α
m

∑
j=1

Wn,j(uj − u0),(3.17)

where Wn,j are the starting weights that are chosen such that

(3.18) D
(α,n)
∆T,τu + τ

α
m

∑
j=1

Wn,j(uj − u0) = kα ∗ u(tn) = τ
α
n
σk+α

Γ(σk + 1 + α) , 1 ≤ k ≤ m

for u(t) = t
σk , 0 < σk < σk+1. For each n > 0, one can resolve Wn,j(1 ≤ j ≤ m)

from the above linear system and Wn,j are independent of τ . The error analysis of
the direct method (3.17) is discussed in Section 4. Readers can refer to [9, 21, 44] for
more discussions of the correction method.

3.3. The fast implementation. In this subsection, we generalize the fast algo-

rithm in Section 2 to approximate D
(α,n)
∆T,τ defined by (3.15), which is given as follows.

• Step A) Decompose D
(α,n)
∆T,τu into two parts as D

(α,n)
∆T,τu = L

(α,n)
∆T,τu +H

(α,n)
∆T,τ u.

• Step B) Assume that ∆T = n0τ = tn0
. For every t = tn, n ≥ n0, let L be the

smallest integer satisfying tn−n0+1
< 2B

L
τ . For ℓ = 1, 2, ..., L − 1, determine the

integer qℓ such that

(3.19) sℓ = qℓB
ℓ
τ satisfies tn−n0+1

− sℓ ∈ [Bℓ
τ, (2Bℓ

− 1)τ].
Set s0 = tn−n0+1

− τ and sL = 0.

• Step C) Let t̂n = tn − ∆T + τ = tn−n0+1
≥ τ . Then the history part H

(α,n)
∆T,τ u =

H
α
∆T (IHτ u, tn) is approximated by

H
(α,n)
∆T,τ u =

sin(απ)
π

L

∑
ℓ=1

∫ ∞

0

λ
−α

e
−(Tℓ−1+∆T−τ)λ

e
−(t̂n−sℓ−1−Tℓ−1)λy(sℓ−1, sℓ, λ)dλ

≈

sin(απ)
π

L

∑
ℓ=1

qα(Nℓ)
∑
j=0

ω
(ℓ)
j e

−(t̂n−sℓ−1−Tℓ−1)λ(ℓ)
j y(sℓ−1, sℓ, λ(ℓ)

j ) ∶= FH
(α,n)
∆T,τ u,(3.20)

where {ω(ℓ)
j } and {λ(ℓ)

j } are the LG quadrature weights and points that corre-

spond to the weight function λ
−α

e
−(Tℓ−1+∆T−τ)λ

, qα(Nℓ) is defined by (4.7), and

y(sℓ−1, sℓ, λ(ℓ)
j ) can be be obtained exactly by solving the following linear ODE

(3.21) y
′(s) = −λ

(ℓ)
j y(s) + I

H
τ u(s), y(sℓ) = 0,

see also (2.6) and (2.7).
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• Step D) Calculate the local part L
(α,n)
∆T,τu = L

α
∆T (ILτ u, tn).

The fast algorithm for the discretization of kα ∗ u(t) is now given by

(3.22) FD
(α,n,m)
∆T,τ u = L

(α,n)
∆T,τu + FH

(α,n)
∆T,τ u + τ

α
m

∑
j=1

Wn,j(uj − u0),
where L

(α,n)
∆T,τ is given by (3.8), FH

(α,n)
∆T,τ u is given by (3.20), and the starting weights

Wn,j are determined by the linear system (3.18).
Next, we analyze the complexity of the present fast method (3.22). For the

local part L
(α,n)
∆T,τu, the memory requirement is O(n0) with the computational cost

of O(n0(nT − n0)) for all n0 < n ≤ nT . For the history part FH
(α,n)
∆T,τ u, we have

O(∑L

ℓ qα(Nℓ)) active memory and O((nT − n0)∑L

ℓ qα(Nℓ)) operations, where L =

logB (nT − n0). An additional cost is required to obtain the starting weights Wn,j in
(3.22), which can be performed by use of fast Fourier transform with O(nT log(nT ))
arithmetic operations. Hence, the overall active memory and computational cost are

O(n0 +∑L

ℓ qα(Nℓ)) and O(n0nT + (nT − n0)∑L

ℓ qα(Nℓ)), respectively.
4. Error analysis. In this section, we analyse the overall discretization error of

the fast method (3.22) in Section 3. Firstly, we present the exponential convergence
rate of the LG quadrature used in (2.4) and (3.20). Then we show how to choose Nℓ

and qα(Nℓ) used in (3.20), such that the desired accuracy is maintained with the use
of the minimum number of the quadrature points.

For simplicity, we denote

(4.1) I
α[T, f] = ∫ ∞

0

λ
α
e
−Tλ

f(λ)dλ and I
α[f] = ∫ ∞

0

λ
α
e
−λ

f(λ)dλ.
The LG quadrature for I

α[T, f] and I
α[f] are given by (see [32])

(4.2) Q
α
N[T, f] = T

−α−1
N

∑
j=0

w
(α)
j f(λj/T ), Q

α
N[f] = N

∑
j=0

w
(α)
j f(λj),

where λj are the roots of the Laguerre polynomial L
(α)
N+1

(λ), and w
(α)
j are the corre-

sponding weights given by

w
(α)
j =

Γ(N + α + 1)λj(N + α + 1)(N + 1)!(L(α)
N (λj))−2.(4.3)

We show the convergence of the quadrature Q
α
N[T, e−tλ] and the property of the

quadrature weight w
(α)
j (see (4.3)) in the following two theorems. The proofs are

given in Appendix A.
Theorem 4.1. Let t ≥ 0, T > 0, α > −1, and N be sufficiently large. Then

(4.4)
»»»»»Iα[T, e−tλ] −Q

α
N[T, e−tλ]»»»»» ≤ Cα,NT

−α−1 ( t/T
1 + t/T )2N ,

where Cα,N is bounded −1 < α ≤ 0 and Cα,N ≤ CαN
α
for α > 0.

Theorem 4.2. Let α > −1 and w
(α)
j be defined by (4.3). If N and j are suffi-

ciently large, then there exists a positive constant C independent of N such that

(4.5) w
(α)
j ≤ C(N + 1)αe−0.25π2(j+1)2/(N+1)

.

9



Given a precision ǫ0 > 0, the truncated LG quadrature is given by

(4.6) Q
α
N,ǫ0

[T, f] = T
−α−1

q−α(N)
∑
j=0

w
(α)
j f(λj/T ),

where q−α(N) is a positive number given by

(4.7) q−α(N) = min {N, ⌈2π−1
√(N + 1) log((N + 1)αǫ−10 )⌉ − 1}.

From (4.5), we can find the smallest integer j satisfying (N+1)αe−0.25π2(j+1)2/(N+1)
≤

ǫ0, which yields (4.7). We choose ǫ0 = 10
−16

in this paper.

Figure 4.1 (a) shows the exponential decay of w
(−α)
j when j ≥ qα(128) for dif-

ferent fractional orders α = −1.8,−1.2,−0.8,−0.2, 0.2, 0.8. Figure 4.1 (b) displays
similar behaviors as shown in Figure 4.1 (a). We can see that Eq. (4.7) works
well, and qα(N) is not very sensitive to the fractional order α ∈ (−2, 1). For
example, qα(128) = (48, 47, 46, 44, 43, 41) (or qα(256) = (69, 67, 65, 62, 61, 58)) for
α = (−1.8,−1.2,−0.8,−0.2, 0.2, 0.8), and qα(N) ≪ N when N is sufficiently large.
For α ≤ −2, similar results are obtained, which is not shown here.
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Fig. 4.1. The exponential decay of the quadrature weights w
(−α)
j defined by (4.3).

For notational simplicity, we denote

T̂ℓ = Tℓ−1 +∆T − τ, Ĥ
n
ℓ (s) = t̂n − Tℓ−1 − s.

Next, we investigate how to estimate Nℓ in (3.20), such that the LG quadrature

Q
−α
Nℓ

[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] to the integral I

−α[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] preserves the accuracy up to O(ǫ)

for all s ∈ [sℓ, sℓ−1].
From Theorem 4.1, we know that the error of Q

−α
Nℓ

[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] mainly depends

on the following term

(Ĥn
ℓ (s)/T̂ℓ)2N = ( t̂n − s − Tℓ−1

Tℓ−1 +∆T − τ
)2N , s ∈ [sℓ, sℓ−1].

Using (3.19) and Tℓ−1 = B
ℓ−1

τ gives

(4.8) 0 ≤
t̂n − s − Tℓ−1

Tℓ−1 +∆T − τ
≤

2B − 1 −B
1−ℓ

1 +B1−ℓ(∆T/τ − 1) = Tℓ ≤ 2B − 1, ∀ℓ ≥ 1.
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Using the above inequality and Eq. (4.4) yields

(4.9)

∣I−α[T̂ℓ, e
−Ĥ

n
ℓ (s)λ]−Q

−α
Nℓ

[T̂ℓ, e
−Ĥ

n
ℓ (s)λ]∣

≤Cα,Nℓ
T̂

α−1
ℓ ( Ĥ

n
ℓ (s)/T̂ℓ

1 + Ĥn
ℓ (s)/T̂ℓ

)2Nℓ

≤ Cα,Nℓ
T̂

α−1
ℓ ( Tℓ

1 + Tℓ
)2Nℓ

.

Since the relative error of (4.9) is independent of T̂ℓ, we can let (Tℓ/(Tℓ + 1))2Nℓ
≤ ǫ,

which yields the minimum Nℓ given by

(4.10) Nℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
log ǫ

2 log( Tℓ

Tℓ+1
)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥ , Tℓ =

2B − 1 −B
1−ℓ

1 +B1−ℓ(∆T/τ − 1) .
From (4.6) and (4.9), we derive that the pointwise error of the truncated quadra-

ture Q
−α
Nℓ,ǫ0

[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] for all s ∈ [sℓ, sℓ−1] is given by

(4.11) E
−α,ℓ
ǫ,ǫ0

[e−Ĥn
ℓ (s)λ] = I

−α[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] −Q

−α
Nℓ,ǫ0

[T̂ℓ, e
−Ĥ

n
ℓ (s)λ] = O(ǫ) +O(ǫ0),

where Q
−α
Nℓ,ǫ0 is defined by (4.6) and Nℓ is given by (4.10).

Next, we present the error bound of the fast method in Section 3. Denote by

(4.12) R
(n)

= ∫ tn

0

kα(tn − s)u(s)ds −D
(α,n,m)
∆T,τ u.

Note that the above discretization error R
(n)

depends on the smoothness of u(t) and

the discretization method D
(α,n,m)
∆T,τ u. If u(t) is sufficiently smooth, no correction

terms are needed to achieve (2 + α)-order (or (3 + α)-order) accuracy if linear (or
quadratic) interpolation is applied for α < 0. If u(t) satisfies (3.16), then the global(2+α)-order (or (3+α)-order) accuracy can be achieved for σm+1 ≥ 2 (or σm+1 ≥ 3).
In numerical simulations, the condition σm+1 ≥ 2 (or σm+1 ≥ 3) does not need to be
satisfied, (2 + α)-order (or (3 + α)-order) accurate numerical solutions are observed
far from t = 0. In the numerical simulations, only a small number of correction terms
are sufficient to achieve very accurate numerical solutions; see numerical simulations
in the following section and see also related results in [44].

From (3.20) and (4.11), we have
(4.13)

∣Hα
∆T (IHτ u, tn) − FH

(α,n)
∆T,τ u∣ = »»»»»»sin(απ)π

L

∑
ℓ=1

E
−α,ℓ
ǫ,ǫ0

[e−(t̂n−Tℓ−1−sℓ−1)λy(sℓ−1, sℓ, λ)]»»»»»»
=

»»»»»»sin(απ)π

L

∑
ℓ=1

∫ sℓ−1

sℓ

E
−α,ℓ
ǫ,ǫ0

[e−Ĥn
ℓ (s)λ]IHτ u(s)ds»»»»»»

≤C(ǫ + ǫ0)∫ t̂n

0

∣IHτ u(s)∣ds ≤ Cmax{0, tn+1 −∆T }∥u∥∞(ǫ + ǫ0).
Combining (4.12) and (4.13) yields

(4.14)

»»»»»»kα ∗ u(tn) − FD
(α,n,m)
∆T,τ u

»»»»»» =»»»»»»Hα
∆T (IHτ u, tn) − FH

(α,n)
∆T,τ u +R

(n)»»»»»»
≤Cmax{0, tn+1 −∆T }∥u∥∞(ǫ + ǫ0) + ∣R(n)∣,
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where the error in (4.14) originates from two parts: the LG quadrature for discretizing

I
−α[T̂ℓ, e

−Ĥ
n
ℓ (s)λ] (see (4.11)) and the discretization error defined by (4.12).

Next, we numerically study the error caused by the LG quadrature. Let m = 0

and u(t) = 1 + t. Then R
(n)

in (4.14) is zero. Denote the relative pointwise error

en = (kα ∗ u(tn))−1 »»»»»»kα ∗ u(tn) − FD
(α,n,0)
∆T,τ u

»»»»»», 1 ≤ n ≤ nT = T/τ,
where kα ∗ u(tn) = t

α
n/Γ(1 + α) + t

α+1
n /Γ(2 + α) for u(t) = 1 + t.

Given a precision ǫ = 10
−10

, the maximum relative error ∥e∥∞ = max0≤n≤nT
∣en∣,

the total number of the quadrature points∑Nℓ, and the total number of the truncated
quadrature points ∑ qα(Nℓ) are shown in Table 4.1 for different basis B, α = −0.5, τ =

0.1,∆T = 1, and T = 10
4
. We can see that the truncated LG quadrature saves

memory. A relatively smaller basis B needs less quadrature points and thus saves
memory, which can be explained from (4.8) and (4.9). Eq. (4.9) implies a faster
convergence as B decreases, due to Tℓ ≈ 2B − 1, ℓ is sufficiently large. Hence, a
relatively smaller B means that smaller Nℓ are needed to achieve high accuracy that
leads to the use of less LG quadrature points.

We change the precision ǫ and show the corresponding relative maximum errors∥e∥∞ in Table 4.2. We can see that ∥e∥∞ increases as ǫ increases and the total
number of the quadrature points are reduced. It also shows that much better results
are obtained than the theoretical prediction, see also the related results in Table 5.5.

Table 4.1

The maximum relative error ∥e∥∞ under the precision ǫ = 10
−10

, α = −0.5, τ = 0.1,∆T = 1,

and T = 10
4
.

B ∑Nℓ ∑ qα(Nℓ) ∥e∥∞ B ∑Nℓ ∑ qα(Nℓ) ∥e∥∞

2 583 389 6.8651e-13 30 3333 545 7.2134e-13
3 605 323 6.6718e-13 40 3583 514 7.3190e-13
4 687 318 7.4246e-13 50 4521 576 7.3391e-13
5 783 320 7.4754e-13 60 5463 637 7.4632e-13
8 1151 370 7.4377e-13 70 6406 689 7.3451e-13
10 1246 359 7.1388e-13 80 7345 737 7.4678e-13
15 1598 376 6.9954e-13 90 8288 785 7.3892e-13
20 2173 438 7.0761e-13 100 9231 829 7.4941e-13
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Fig. 4.2. (a) The maximum relative error ∥e∥∞ against the basis B; (b) The total number

∑ qα(Nℓ) of the quadrature points against B; τ = 0.01, T = 10
4
, ǫ = 10

−10
.
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Figure 4.2 (a) shows the relative maximum error ∥e∥∞ against the basis B for

different fractional orders, τ = 0.01, T = 10
4
, ǫ = 10

−10
. We can see that better

results are obtained than the predicted precision ǫ = 10
−10

, even for α = −1.8 (the
fractional derivative of order 1.8). Figure 4.2 (b) shows the total number of the
truncated LG quadrature points against the basis B. For a fixed B, the number
of truncated quadrature points increases as α decreases, which is in line with the
theoretical prediction (4.7). For a fixed fractional order α, the number of the truncated
quadrature points increases asB increases, which agrees with (4.10), due to Tℓ ≈ 2B−1
when ℓ is sufficiently large.

It is reasonable to choose a relatively smaller precision ǫ and smaller basis B in
numerical simulations, since a smaller ǫ ensures a relatively large Nℓ that guarantees
the exponential convergence of the LG quadrature, and a small B ensures a smaller
radius of convergence of the quadrature error (4.9).

Table 4.2

The maximum relative error ∥e∥∞ under different precision ǫ, B = 5, α = −0.5,∆T = 1.

τ = 0.01, T = 10
4

τ = 0.1, T = 10
5

ǫ ∑Nℓ ∑ qα(Nℓ) ∥e∥∞ ∑Nℓ ∑ qα(Nℓ) ∥e∥∞

10
−12

1018 384 1.1937e-12 1203 442 6.8208e-12

10
−10

848 349 4.7044e-12 1001 402 6.8191e-12

10
−8

680 313 4.7044e-12 799 361 6.5369e-12

10
−6

512 271 3.1858e-09 604 312 1.2450e-10

10
−5

427 243 2.1577e-06 503 281 1.8889e-08

10
−4

340 215 2.1577e-06 404 252 2.3317e-07

Finally in this section, we compare the truncated LG quadrature with the mul-
tipole approximation proposed in [2]. As the key idea of the existing fast methods

aforementioned is to seek a sum-of-exponentials of the form ∑ωje
−λjt to approxi-

mate the kernel function kα(t), we compare the accuracy of the sum-of-exponentials
from the LG quadrature and the multipole approximation. The relative pointwise

errors en = ∣kα(tn)−∑ωje
−λjtn∣/∣kα(tn)∣ are shown in Figure 4.3, where we set the

precision ǫ = 10
−10

, B = 5, and ∆T = τ when the LG quadrature is applied, and
the precision in [2] is set to be 10

−14
. For α = 0.5, the two methods achieve similar

accuracy with, respectively, P = 832 and Q = 777 quadrature points for the multi-
pole approximation and the truncated LG quadrature, see Figure 4.3 (a). Figure 4.3
(b) shows the pointwise errors for α = −0.5, the truncated LG quadrature shows a
slightly better approximation. For other fractional orders α ∈ (−1, 1), the truncated
LG quadrature is competitive with the multipole approximation both in accuracy and
the computational cost. These results are not shown here.

5. Numerical examples and applications. In this section, two examples are
presented to verify the effectiveness of the present fast method when it is applied to
solve FDEs. All the algorithms are implemented using MATLAB 2016a, which were
run in a 3.40 GHz PC having 16GB RAM and Windows 7 operating system.

Example 5.1. Consider the following scaler FDE

(5.1) CD
α
0,tu(t) = −Au(t) + F (u, t), u(0) = u0, t ∈ (0, T ],

where 0 < α ≤ 1 and A ≥ 0, and CD
α
0,t is the Caputo fractional operator, which

satisfies CD
α
0,tu(t) = kα ∗ u(t) − u(0)t−α/Γ(1 − α), see [29].

13



100 105 1010

t

10-16

10-15

10-14

R
el

at
iv

e 
er

ro
rs

 = 0.5

The multi-pole approximation: P = 832
The truncated LG quadrature: Q = 777

(a) α = 0.5, τ = 0.0001.

100 105 1010

t

10-16

10-15

10-14

10-13

10-12

R
el

at
iv

e 
er

ro
rs

 = -0.5

The multi-pole approximation: P = 832
The truncated LG quadrature: Q = 818

(b) α = −0.5, τ = 0.0001.

Fig. 4.3. Comparison of the truncated LG quadrature and the multipole approximation [2].

We present our fast numerical method for (5.1) as follows: For a given length
∆T = n0τ , find Un for n > n0 such that

(5.2) FD
(−α,n,m)
∆T,τ U − u0t

−α
n /Γ(1 − α) = −AUn + F (Un, tn),

where FD
(α,n,m)
∆T,τ is defined by (3.22). The application of the direct convolution

method means here that FD
(−α,n,m)
∆T,τ U in (5.2) is replaced by D

(−α,n,m)
∆T,τ U . The New-

ton method is used to solve the nonlinear system (5.2). The direct method is applied
to obtain Uk(≤ k ≤ m), and the stating values Uk(1 ≤ k ≤ m) are obtained using the
direct method with one correction term and a smaller stepsize τ

−2
.

The following two cases are considered in this example.
Case I: For the linear case of F = 0, the exact solution of (5.1) is

u(t) = Eα(−Atα),
where Eα(t) is the Mittag–Leffler function defined by Eα(t) = ∑∞

k=0
t
k

Γ(kα+1) .
Case II: Let F = u(1 − u

2) and the initial condition is taken as u0 = 1.
The maximum error is defined by

∥e∥∞ = max
0≤n≤T/τ ∣en∣, en = u(tn) − Un, T = 40.

In this example, we always choose the memory length ∆T = 0.5, the basis B = 5,
the truncation number qα(Nℓ) in (3.20) is calculated by (4.7) and Nℓ is determined

by (4.10) under the precision ǫ = 10
−10

, and A = 1. We will reset these parameters
if needed. The fast method based on quadratic interpolation (3.5) is applied in this
example if there is no further illustration.

The purpose of Case I is to check the effectiveness of the present fast method for
non-smooth solutions. We demonstrate that adding correction terms improves the
accuracy of the numerical solutions significantly. We first let α = 0.8, the maximum
error and the error at t = 40 are shown in Tables 5.1 and 5.2, respectively. We can see
that the expected convergence rate 3 − α is almost achieved by adding two or three
correction terms, and the numerical solution at the final time is much more accurate
than that near the origin. This phenomenon can be observed from the existing time-
stepping methods for time-fractional differential equations.
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As the fractional order decreases, the singularity of the analytical solution be-
comes stronger. Tables 5.3 and 5.4, respectively, show the maximum errors and the
errors at t = 40 for α = 0.1. We observe that the maximum error, which occurs near
the origin, almost does not improve, though the step size decreases. We find that
as the number of correction terms increases, the accuracy of the numerical solutions
increases significantly. We need almost 30 correction terms to derive the expected
global convergence rate 3 − α for α = 0.1, which is impossible to achieve by double
precision. The fact is a small number of correction terms is enough to yield satis-
factory numerical solutions, which makes the present method more practical. We
refer readers to [44] for more explanations and numerical results associated with this
phenomenon.

Table 5.1

The maximum error ∥e∥∞ of the method (5.2), Case I, σk = kα, α = 0.8, T = 40, B = 5.

τ m = 0 Order m = 1 Order m = 2 Order m = 3 Order

2
−5

2.7966e-3 1.5674e-3 3.0233e-5 3.4818e-5

2
−6

1.7545e-3 0.6726 5.4427e-4 1.5260 5.9024e-6 2.3568 7.7701e-6 2.1638

2
−7

1.0604e-3 0.7264 1.8498e-4 1.5569 1.6683e-6 1.8229 1.7199e-6 2.1756

2
−8

6.2689e-4 0.7584 6.2086e-5 1.5751 4.2485e-7 1.9733 3.7854e-7 2.1838

2
−9

3.6575e-4 0.7773 2.0686e-5 1.5856 1.0205e-7 2.0576 8.3007e-8 2.1892

Table 5.2

The absolute error ∣en∣ of the method (5.2) at t = 40, Case I, σk = kα, α = 0.8, B = 5.

τ m = 0 Order m = 1 Order m = 2 Order m = 3 Order

2
−5

5.8890e-7 1.9977e-7 1.7531e-7 4.8407e-6

2
−6

3.0861e-7 0.9322 5.8512e-8 1.7715 3.8771e-8 2.1769 1.1237e-6 2.1069

2
−7

1.5741e-7 0.9713 1.6977e-8 1.7852 8.5112e-9 2.1875 2.5398e-7 2.1455

2
−8

7.9372e-8 0.9878 4.8985e-9 1.7931 1.8745e-9 2.1829 5.6424e-8 2.1703

2
−9

3.9821e-8 0.9951 1.4075e-9 1.7992 4.3619e-10 2.1035 1.2218e-8 2.2073

Table 5.3

The maximum error ∥e∥∞ of the method (5.2), Case I, σk = kα, α = 0.1, T = 40, B = 5.

τ m = 0 Order m = 1 Order m = 3 Order m = 5 Order

2
−5

2.5872e-3 1.5852e-3 2.1191e-5 2.1191e-5

2
−6

2.5323e-3 0.0310 1.5017e-3 0.0781 9.6408e-6 1.1362 9.6408e-6 1.1362

2
−7

2.4750e-3 0.0330 1.4177e-3 0.0831 4.3479e-6 1.1488 4.3479e-6 1.1488

2
−8

2.4148e-3 0.0355 1.3338e-3 0.0880 1.9444e-6 1.1610 1.9444e-6 1.1610

2
−9

2.3516e-3 0.0383 1.2507e-3 0.0928 1.2279e-6 0.6631 8.6285e-7 1.1721

Table 5.4

The absolute error ∣en∣ of the method (5.2) at t = 40, Case I, σk = kα, α = 0.1, B = 5.

τ m = 0 Order m = 1 Order m = 3 Order m = 5 Order

2
−5

6.4561e-6 6.6140e-7 1.0065e-8 4.1985e-9

2
−6

3.2045e-6 1.0106 3.1760e-7 1.0583 3.8428e-9 1.3891 1.0230e-9 2.0371

2
−7

1.5919e-6 1.0094 1.5234e-7 1.0599 1.5471e-9 1.3126 2.5282e-10 2.0166

2
−8

7.9116e-7 1.0087 7.2987e-8 1.0616 6.4397e-10 1.2645 6.4081e-11 1.9801

2
−9

3.9331e-7 1.0083 3.4930e-8 1.0632 2.7313e-10 1.2374 1.6914e-11 1.9217
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Table 5.5 shows the difference η = max0≤n≤T/τ ∣Un
D − U

n
F ∣, where U

n
F are numeri-

cal solutions derived from the fast method under the precision ǫ, and U
n
D are numerical

solutions from the direct method. We can see that the difference η is independent of
the stepsize τ , which confirms (4.13). Table 5.5 also shows that the accuracy of the
present fast calculation outperforms the predicted accuracy ǫ, see (4.13).

Table 5.5

The difference of the numerical solutions between the fast method and the direct method, Case
I, m = 0, α = 0.1, T = 40, B = 5.

ǫ τ = 2
−5

τ = 2
−6

τ = 2
−7

τ = 2
−8

τ = 2
−9

10
−12

2.8255e-13 2.7850e-13 2.7167e-13 1.1102e-15 1.4988e-15

10
−10

2.8239e-13 2.7839e-13 2.7162e-13 5.6066e-15 2.1094e-15

10
−8

2.8116e-13 3.8219e-13 6.6397e-13 2.2093e-14 8.2682e-13

10
−6

7.5677e-11 7.2366e-11 8.0116e-10 2.6198e-11 8.0352e-12

10
−5

3.2916e-11 1.9709e-10 1.2477e-10 2.6461e-10 2.2769e-10

10
−4

3.0868e-09 9.4674e-09 2.4896e-09 1.5458e-08 4.3178e-08

In Table 5.6, we compare the present fast method (5.2) based on the linear inter-
polation with the graded mesh method in [33], in which the nonuniform grid points
are given by tj = (jτ)r , 0 ≤ j ≤ 1/τ . We can see that the fast method with correction
terms is competitive with the graded mesh method for α = 0.5. In [33], the authors

obtained the optimal grid mesh tj = (jτ)(2−α)/α to achieve the global (2 − α)-order
accuracy, which works well when α is relatively large and the expected convergence
rate is achieved. For the correction method, too many correction terms may harm the
accuracy, but a few number of correction terms can achieve highly accurate numerical
solutions, which is not investigated here, readers can refer to [9, 21, 44] for more dis-
cussion. Note that for values of α close to zero, the correction method is even more
effective than the optimal graded mesh approach in [33].

Table 5.6

Comparison of the present method with the graded mesh method in [33] based on linear inter-
polation, Case I, σk = kα, α = 0.5, B = 5. The errors ∥e∥∞ are displayed.

The graded mesh method [33] with grid points tj = (jτ)r.
τ r = 1 Order r = 3/2 Order r = 3 Order r = 6 Order

2
−5

3.6491e-2 1.6839e-2 2.6568e-3 2.5431e-3

2
−6

2.7048e-2 0.4320 1.0288e-2 0.7108 1.0077e-3 1.3986 9.2945e-4 1.4521

2
−7

1.9772e-2 0.4521 6.2162e-3 0.7268 3.7277e-4 1.4347 3.3644e-4 1.4660

2
−8

1.4312e-2 0.4663 3.7315e-3 0.7363 1.3582e-4 1.4566 1.2096e-4 1.4759

2
−9

1.0288e-2 0.4762 2.2313e-3 0.7419 4.9041e-5 1.4696 4.3280e-5 1.4827
The fast method based on linear interpolation with correction terms

τ m = 1 Order m = 2 Order m = 3 Order m = 4 Order

2
−5

5.6366e-3 2.1893e-4 1.4976e-4 7.2351e-5

2
−6

3.1659e-3 0.8322 1.0737e-4 1.0279 6.9115e-5 1.1156 4.4890e-5 0.6886

2
−7

1.7231e-3 0.8777 4.9196e-5 1.1260 2.9276e-5 1.2393 2.2604e-5 0.9898

2
−8

9.1600e-4 0.9116 2.1427e-5 1.1991 1.1719e-5 1.3208 1.0105e-5 1.1614

2
−9

4.7862e-4 0.9364 8.9763e-6 1.2552 4.5167e-6 1.3756 4.1916e-6 1.2696

Next, we implement the present fast method for a longer time computation and
compare it with the direct convolution method. We show in Figure 5.1(a) numerical
solutions for t ∈ [0, T ], T = 10000, where we choose α = 0.1, 0.5, 0.9, and the time
stepsize τ = 0.01. In Figure 5.1(b), we plot the computational time of the fast
method and the direct method with two correction terms applied. It shows that the
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computational cost of the fast convolution almost achieves linear complexity, which
is much less than that of the direct convolution with O(n2

T ) operations when nT is
sufficiently large, where n0 = ∆T/τ and nT = T/τ .
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Fig. 5.1. Numerical solutions and the computational time of the two different convolutions for
Case II, τ = 0.01, B = 5,m = 2, σk = kα.

Next, we consider a system of FODEs each having a different fractional index.
Example 5.2. Consider the following system of fractional differential equations

each with different fractional index

(5.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
CD

α1

0,tu(t) = w + (v − c1)u,
CD

α2

0,tv(t) = 1 − c2v − u
2
,

CD
α3

0,tw(t) = −u − c3w,

where 0 < αk ≤ 1 (k = 1, 2, 3), c1, c2 and c3 are positive constants, c2 > 1/2.
Let Un, Vn and Wn be the approximate solutions of u(tn), v(tn) and w(tn), re-

spectively. Then the fully discrete scheme for the system (5.3) is given by:

(5.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

FD
(−α1,n,m)
∆T,τ U − u0t

−α1

n /Γ(1 − α1) = Wn + (Vn − c1)Un,

FD
(−α2,n,m)
∆T,τ V − v0t

−α2

n /Γ(1 − α2) = 1 − c2Vn − U
2

n,

FD
(−α3,n,m)
∆T,τ W − w0t

−α3

n /Γ(1 − α3) = −Un − c3Wn,

where n ≥ 2 and FD
(α,n,m)
∆T,τ U is defined by (3.22). Because we use quadratic inter-

polation, Uk, Vk,Wk for k = 1, 2 need to be known, which can be derived using the
known methods with smaller stepsize. Here we use the L1 method with one correction
term and smaller stepsize τ

2
to derive these values. We take ∆T = τ and B = 5 in

numerical simulations of this example.
If α1 = α2 = α3 = α, then (5.3) is just the fractional Lorenz system [36]. It

has been proved that the fractional Lorenz system (5.3) is dissipative [36] and has an

absorbing set defined by a ball B(0,√a/b + ǫ̂), where a = 1/2 and b = min{c1, c2 −
1/2, c3}. We take c1 = 1/4, c2 = 1, c3 = 1/4 and the initial conditions as those in
[36], i.e., U0 = u(0) = 2, V0 = v(0) = 0.9,W0 = w(0) = 0.2, the time stepsize is
taken as τ = 0.01. We compute numerical solutions for t ∈ [0, 1000], which is much
larger than that in [36]. Numerical solutions for α = 0.9 are shown in Figure 5.2.

We can easily find that U
2

n + V
2

n + W
2

n < 2, which means (Un, Vn,Wn) ∈ B(0,√2).
For other fractional orders αk = α, we have similar results, see also [36]. Next, we
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choose different α1, α2, and α3, and exhibit the numerical solutions in Figure 5.3 for(α1, α2, α3) = (0.9, 0.8, 0.7) and (α1, α2, α3) = (0.7, 0.8, 0.9). We can see that the
numerical solutions (Un, Vn,Wn) are also in a ball. For other choices of the fractional
orders, we have similar results, which are not provided here.

0 100 200 300 400 500 600 700 800 900 1000

t

-1

-0.5

0

0.5

1

1.5

2

2.5

u 425 430 435

-0.5

0

0.5

(a)

0 100 200 300 400 500 600 700 800 900 1000

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v

402 404 406 408

0.75

0.8

0.85

0.9

(b)

0 100 200 300 400 500 600 700 800 900 1000

t

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w

265 270 275

-0.5

0

0.5

(c) (d)

Fig. 5.2. Numerical solutions for Example 5.2, τ = 0.01,m = 2, σk = kα,α = 0.9.

-1
1

-0.5

3

w

0.5

0

2

v u

0.5

10
0

-0.5 -1

(a) (α1, α2, α3) = (0.9, 0.8, 0.7).

-1.5
1

-1

3

-0.5w

0.5
2

0

v u

0.5

10
0

-0.5 -1

(b) (α1, α2, α3) = (0.7, 0.8, 0.9).
Fig. 5.3. Numerical solutions for Example 5.2, t ∈ [0, 1000], τ = 0.01,m = 0.

6. Conclusion and discussion. We propose a unified fast memory-saving time-
stepping method for both fractional integral and derivative operators, which is applied
to solve FDEs. We generalize the fast convolution in [22] for fractional operators,
while we use the (truncated) LG quadrature to discretize the kernel in the fractional
operators instead of the trapezoidal rule in [22]. We also introduced correction terms
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in the fast method such that the non-smooth solutions of the considered FDEs can be
resolved accurately. The present fast method has O(n0 +∑L

ℓ qα(Nℓ)) active memory

and O(n0nT +(nT −n0)∑L

ℓ qα(Nℓ)) operations. If a suitable memory length ∆T and
a very large basis B are applied, then the present fast method is similar to that in
[14, 18], that is, the kernel kα(t) is approximated via the truncated LG quadrature
for all t ∈ [∆T, T ].

We present the error analysis of the present fast method. For a given precision, a
criteria on how to choose the parameters used in the fast method is given explicitly,
which works very well in numerical simulations.

We considered the fast method for the fractional operator of order α < 1. In fact,
our method can be extended to the fractional integral of order greater than one. For
example, for α ∈ [1, 2), Eq. (1.4) still holds in the sense of the finite part integral,

that is, Eq. (1.4) is equivalent to kα(t) =
t

Γ(α)Γ(2−α) ∫∞

0
λ
1−α

e
−tλ

dλ. In such a case,

a coupled ODEs are needed to be resolved instead of one for α < 1.
In the future, we will apply the fast method to solve a large system of time-

fractional PDEs, perhaps in three spatial dimensions. We will also explore how to
efficiently calculate the discrete convolution ∑n

k=0 ωn−ku(tk), where the quadrature
weights {ωn} are not from the interpolation as done in the present work, but from
the generating functions, see, [21].

Appendix A. Proofs. Proof of Theorem 4.1.

Proof. We follow the proof of Theorem 2.2 in [39]. We first expand g(λ) = e
−tλ

in terms of the Laguerre polynomials, i.e., g(λ) = ∑∞

n=0 anL
(α)
n (λ), where

an =
Γ(n + 1)

Γ(n + 1 + α) ∫
∞

0

λ
α
e
−λ

g(λ)dλ =
t
n

(t + 1)n+1+α .
The following property will be used, see [39],

∣Qα
N[L(α)

n ]∣ ≤ { 2Γ(1 + α), − 1 < α ≤ 0,

2
1+α

Γ(n + 1 + α)/Γ(n + 1), α > 0.

With the above two equations and I
α[e−tλ] −Q

α
N[e−tλ] = ∑∞

n=2N anQ
α
N[L(α)

n ] gives

(A.1) ∣Iα[e−tλ]−Q
α
N[e−tλ]∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2
1+α

Γ(1 + α) ∞

∑
n=2N

an, − 1 < α ≤ 0,

cα2
1+α

∞

∑
n=2N

n
α
an, α > 0.

Let q = t/(1+ t). Then we have ∑∞

n=2N an = (1+ t)−αq2N for −1 < α ≤ 0. For α > 0,
one hase

∞

∑
n=2N

n
α
an = (1 + t)−αq2N(2N)α ∞

∑
n=0

q
n(1+ n

2N
)α ≤ Cα,t2

α(1 + t)1−αq2NN
α
,

where Cα,t = ∑∞

n=0(n + 2)αq2Nn
is used. With the above equation and (A.1) yields

(4.4) for T = 1. Using the following relation

∣Iα[T, e−tλ]−Q
α
N[T, e−tλ]∣ = T

−α−1∣Iα[e−(t/T )λ] −Q
α
N[e−(t/T )λ]∣
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leads to (4.4) for any T > 0. The proof is complete.
Proof of Theorem 4.2.
Proof. The following results can be found in [12],

λj <
2j + α + 3

2N + α + 3
(2j + α + 3 +

√(2j + α + 3)2 + 0.25− α2),(A.2)

λj >
2(Jα,j/2)2
2N + α + 3

, Jα,j = π(j + 3/4+ α/2) +O(j−1),(A.3)

where (A.3) holds when j is sufficiently large. For a sufficiently large N , the Laguerre
polynomial satisfies (see (7.14) in [32])

(A.4) ∣L(α)
N (x)∣ ≈ π

−1/2(Nx)−1/4ex/2, ∀x ≥ 0.

With (A.2)–(A.4) and (4.3), we have the following estimate

(A.5) w
(α)
j ≤ Cα(N + 1)α ( j + 1

N + 1
)3 e−λj

≤ C(N + 1)αe−λj ,

for sufficiently large j, where λj = θj(j + 1)2/(N + 1) and θj is bounded and approx-

imately between π
2/4 and 4. The proof is completed.
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