Skip to main content
Log in

Efficient Spectral Methods for Some Singular Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and analyze some efficient spectral/spectral element methods to solve singular eigenvalue problems related to the Schrödinger operator with an inverse-power potential. For the Schrödinger eigenvalue problem \(-\Delta u +V(x)u=\lambda u\) with a regular potential \(V(x)=c_1|x|^{-1}\), we first design an efficient spectral method on a ball of any dimension by adopting the Sobloev-orthogonal basis functions with respect to the Laplacian operator to overwhelm the homogeneous inverse potential and to eliminate the singularity of the eigenfunctions. Then we extend this spectral method to arbitrary polygonal domains by the mortar element method with each corner covered by a circular sector and origin covered by a circular disc. Furthermore, for the Schrödinger eigenvalue problem with a singular potential \(V(x)=c_3|x|^{-3}\), we devise a novel spectral method by modifying the former Sobloev-orthogonal bases to fit the stronger singularity. As in the case of \(|x|^{-1}\) potential, this approach can be extended to arbitrary polygonal domains by the mortar element method as well. Finally, for the singular elliptic eigenvalue problem \(-\frac{\partial ^2}{\partial x^2}u-\frac{1}{x^2}\frac{\partial ^2}{\partial y^2}u =\lambda u\) on rectangles, we propose a novel spectral method by using tensorial bases composed of the \(L^2\)- and \(H^1\)-simultaneously orthogonal functions in the y-direction and the Sobolev-orthogonal functions with respect to the Schrödinger operator with an inverse-square potential in the x-direction. Numerical experiments indicate that all our methods possess exponential orders of convergence, and are superior to the existing polynomial based spectral/spectral element methods and hp-adaptive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Bernardi, C., Maday, Y., Patera, A.T.: Domain Decomposition by the Mortar Element Method. In: Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. Springer, Dordrecht, pp. 269–286 (1993)

  3. B\(\check{a}\)cut\(\check{a}\), C., Nistor, V., Zikatanov, L.T.: Improving the rate of convergence of ’high order finite elements’ on polygons and domains with cusps, Numer. Math. 100, 165–184 (2005)

  4. Babu\(\check{s}\)ka, I., Gui, W.: The \(h\), \(p\) and \(h\)-\(p\) versions of the finite element method in 1 dimension. Part II. The error analysis of the \(h\)- and \(h\)-\(p\) versions. Numer. Math. 49(6), 613–658 (1986)

  5. Babu\(\check{s}\)ka, I.M., Guo, B.: Approximation properties of the \(h\)-\(p\) version of finite element method. Comput. Methods Appl. Mech. Eng. 133, 319–346 (1996)

  6. Cao, D., Han, P.: Solutions to critical elliptic equations with multi-singular inverse square potentials. J. Differ. Equ. 224, 332–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cagliero, L., Koornwinder, T.H.: Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials. J. Approx. Theory 193, 20–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Case, K.M.: Singular potentials. Phys. Rev. 80(2), 797–806 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  10. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  11. Felli, V., Marchini, E.M., Terracini, S.: On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 250, 265–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Commun. Part. Differ. Equ. 31, 469–495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frank, W.M., Land, D.J., Spector, R.M.: Singular potentials. Rev. Mod. Phys. 43(1), 36–98 (1971)

    Article  MathSciNet  Google Scholar 

  14. Guo, B., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B., Sun, W.: The optimal convergence of the \(h\)-\(p\) version of the finite element method with quasi-uniform meshes. SIAM J. Numer. Anal. 45, 698–730 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, W., Wang, C., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells: part 2. Application to nickel–cadmium and nickel–metal hybrid cells. J. Electrochem. Soc. 145, 3418–3427 (1998)

    Article  Google Scholar 

  17. Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equaitons. Math. Comput. 78(266), 713–737 (2009)

    Article  MATH  Google Scholar 

  18. Li, H., Shen, J.: Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle. Math. Comput. 79, 1621–1646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, H., Zhang, Z.: Efficient spectral and spectral element methods for eigenvalue problems of Schrodinger equations with an inverse square potential. SIAM J. Sci. Comput. 39(1), A114–A140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Motreanu, D., Rădulescu, V.: Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media. Bound. Value Probl. 2005(2), 708605 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pao, C.V.: Eigenvalue problems of a degenerate quasilinear elliptic equation. Rocky Mt. J. Math. 40, 305–311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Redheffer, R.M., Straus, E.G.: Degenerate elliptic equations. Pac. J. Math. 7(8), 331–345 (2014)

    Google Scholar 

  23. Shu, C.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Szegö, G.: Orthogonal Polynomials, vol. XXIII, 4th edn. American Mathematical Society, Colloquium Publications, Providence (1975)

    MATH  Google Scholar 

  25. Shortley, G.H.: The inverse-cube central force field in quantum mechanics. Phys. Rev. 38(1), 120–127 (1931)

    Article  MATH  Google Scholar 

  26. Shen, J., Tao, T., Wang, L.: Spectral methods: algorithms, analysis and applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  27. Wang, C., Gu, W., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells: part 1. Model development. J. Electrochem. Soc. 145, 3407–3417 (1998)

    Article  Google Scholar 

  28. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comp. 83(289), 2101–2126 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ying, L.: Finite element approximations to the discrete spectrum of the Schrödinger operator with the Coulomb potential. SIAM J. Numer. Anal. 42(1), 49–74 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyuan Li.

Additional information

The research of the second author is partially supported by the National Natural Science Foundation of China (NSFC 91130014, 11471312 and 91430216). The research of the third author is supported in part by the U.S. National Science Foundation (DMS-1419040), the National Natural Science Foundation of China (NSFC 11471031 and 91430216), and the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF U1530401).

Appendix A. Entries of Stiffness and Mass Matrices Corresponding to (5.2)

Appendix A. Entries of Stiffness and Mass Matrices Corresponding to (5.2)

Lemma A.1

Denote \(\Phi _{k,\ell }^{n}(x)= \frac{2k+2\beta _n}{k+2\beta _n} \Phi _{k,\ell }^{-1,n}(x)\). For \(m,n,k,j\in \mathbb {N}_0, 1\le \ell \le a^d_n, 1\le \iota \le a^d_m \), it holds that

$$\begin{aligned}&(\nabla \Phi _{k,\ell }^{n}, \nabla \Phi _{j,\iota }^{m})_{\mathbb {B}^d} + c_2^2 (\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m})_{r^{-2},\mathbb {B}^d} =\omega _d \delta _{m,n}\delta _{\ell ,\iota }\nonumber \\&\quad \times {\left\{ \begin{array}{ll} \frac{2\beta _n^2-d\beta _n+4\beta _n-d+3}{2\beta _n+2}, &{} k=j=0,\\ \frac{(k+\beta _n)(8\beta ^4_n+16k\beta ^3_n+(20k^2-6)\beta ^2_n+(12k^3-8k)\beta _n+3k^4-4k^2+1)}{(k-1+\beta _n)(2k+1+2\beta _n)(2k-1+2\beta _n)(k+1+\beta _n)}, &{}k=j\ge 1,\\ \frac{(16k+8)\beta ^3_n+(24k^2+24k+4)\beta ^2_n+(16k^3+24k^2+4k-2)\beta _n+4k^4+8k^3+2k^2-2k-1}{(2k+3+2\beta _n)(2k+1+2\beta _n)(2k-1+2\beta _n)}, &{} j=k+1,\\ \frac{(k+1)^2(2\beta _n+k+1)^2}{2(2k+3+2\beta _n)(2k+1+2\beta _n)(k+1+\beta _n)}, &{} j=k+2,\\ \frac{(16j+8)\beta ^3_n+(24j^2+24j+4)\beta ^2_n+(16j^3+24j^2+4j-2)\beta _n+4j^4+8j^3+2j^2-2j-1}{(2j+3+2\beta _n)(2j+1+2\beta _n)(2j-1+2\beta _n)}, &{} k=j+1,\\ \frac{(j+1)^2(2\beta _n+j+1)^2}{2(2j+3+2\beta _n)(2j+1+2\beta _n)(j+1+\beta _n)}, &{} k=j+2,\\ 0, &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$
(A.1)
$$\begin{aligned}&(\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m})_{r^{-1},\mathbb {B}^d}=\omega _d \delta _{m,n}\delta _{\ell ,\iota }\nonumber \\&\quad \times {\left\{ \begin{array}{ll} \frac{1}{2k+2\beta _n+3 }, &{} k=j=0,\\ \frac{8(k+\beta _n)(2\beta _n(4\beta _n^3+4\beta _n^2k+4\beta _nk^2+2k^3-3k-5\beta _n)+k^4-3k^2+2)}{(2k+2\beta _n+1)_3(2k+2\beta _n-3)_3}, &{} k=j\ge 1, \\ \frac{-16\beta _n^4+(4k^2+4k+20)\beta _n^2+(4k^3+6k^2+2k)\beta _n+k^4+2k^3+k^2-4}{(2k+2\beta _n+1)(2k+2\beta _n+3)_2(2k+2\beta _n-2)_2}, &{} j=k+1,\\ -\frac{2(k+1)(k+2\beta _n+1)(4\beta _n^2+2\beta _nk+2\beta _n+k^2+2k-2)}{(2k+2\beta _n+1)_3(2k+2\beta _n+5)(2k+2\beta _n-1)}, &{} j = k+2, \\ -\frac{(k+2\beta _n+1)_2(k+1)_2}{(2k+2\beta _n+1)_5}, &{} j = k+3,\\ \frac{-16\beta _n^4+(4j^2+4j+20)\beta _n^2+(4j^3+6j^2+2j)\beta _n+j^4+2j^3+j^2-4}{(2j+2\beta _n+1)(2j+2\beta _n+3)_2(2j+2\beta _n-2)_2}, &{} k=j+1,\\ -\frac{2(j+1)(j+2\beta _n+1)(4\beta _n^2+2\beta _nj+2\beta _n+j^2+2j-2)}{(2j+2\beta _n+1)_3(2j+2\beta _n+5)(2j+2\beta _n-1)}, &{} k = j+2, \\ -\frac{(j+2\beta _n+1)_2(j+1)_2}{(2j+2\beta _n+1)_5}, &{} k = j+3,\\ 0, &{} \text {otherwise}, \end{array}\right. }\end{aligned}$$
(A.2)
$$\begin{aligned}&(\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m})_{\mathbb {B}^d}=(\Phi _{j,\iota }^{m}, \Phi _{k,\ell }^{n})_{\mathbb {B}^d}\nonumber \\&\quad = \omega _d \delta _{m,n}\delta _{\ell ,\iota }\times {\left\{ \begin{array}{ll} \frac{1}{2k+2\beta _n+4}, &{} k=j=0,\\ \frac{(\mathcal {C}^0_{n,k})^2}{2k+2\beta _n+4} + \frac{(\mathcal {C}^{-1}_{n,k})^2}{2k+2\beta _n+2} + \frac{(\mathcal {C}^{-2}_{n,k})^2}{2k+2\beta _n} + \frac{(\mathcal {C}^{-3}_{n,k})^2}{2k+2\beta _n-2} + \frac{(\mathcal {C}^{-4}_{n,k})^2}{2k+2\beta _n-4}, &{} k=j\ge 1,\\ \frac{ \mathcal {C}^0_{n,k}\mathcal {C}^{-1}_{n,k+1}}{2k+2\beta _n+4} + \frac{\mathcal {C}^{-1}_{n,k+1}\mathcal {C}^{-2}_{n,k+1}}{2k+2\beta _n+2} + \frac{\mathcal {C}^{-2}_{n,k+1}\mathcal {C}^{-3}_{n,k+1}}{2k+2\beta _n} + \frac{\mathcal {C}^{-3}_{n,k+1}\mathcal {C}^{-4}_{n,k+1}}{2k+2\beta _n-2}, &{} j=k+1,\\ \frac{ \mathcal {C}^0_{n,k}\mathcal {C}^{-2}_{n,k+2}}{2k+2\beta _n+4} + \frac{\mathcal {C}^{-1}_{n,k}\mathcal {C}^{-3}_{n,k+2}}{2k+2\beta _n+2} + \frac{\mathcal {C}^{-2}_{n,k}\mathcal {C}^{-4}_{n,k+2}}{2k+2\beta _n}, &{} j=k+2,\\ \frac{ \mathcal {C}^0_{n,k}\mathcal {C}^{-3}_{n,k+3}}{2k+2\beta _n+4} + \frac{\mathcal {C}^{-1}_{n,k}\mathcal {C}^{-4}_{n,k+3}}{2k+2\beta _n+2}, &{} j=k+3,\\ \frac{ \mathcal {C}^0_{n,k}\mathcal {C}^{-4}_{n,k+4}}{2k+2\beta _n+4}, &{} j=k+4,\\ 0, &{} |j-k|>4, \end{array}\right. } \end{aligned}$$
(A.3)

and

$$\begin{aligned} (\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m})_{r^{-3},\mathbb {B}^d}= \omega _d \delta _{m,n}\delta _{\ell ,\iota }\times {\left\{ \begin{array}{ll} \frac{1}{2k+2\beta _n+1}+\frac{1}{2k+2\beta _n-1}, &{} k=j\ge 1,\\ \frac{1}{2\beta _n+1}, &{} k=j=0,\\ -\frac{1}{2k+2\beta _n+1}, &{} j=k+1,\\ -\frac{1}{2j+2\beta _n+1}, &{} k=j+1,\\ 0, &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$
(A.4)

where

$$\begin{aligned}&\mathcal {C}^0_{n,k} = \frac{(k+2\beta _n+1)_3}{(2k+2\beta _n+1)_3}, \quad \mathcal {C}^{-1}_{n,k} = \frac{(k+2\beta _n+1)_2(2k-3-2\beta _n)}{(2k+2\beta _n-1)(2k+2\beta _n+1)(2k+2\beta _n+3)},\\&\mathcal {C}^{-2}_{n,k} = \frac{-12(k-1)(k+2\beta _n+1)(\beta _n+1)(k+\beta _n)}{(2k+2\beta _n-2)_2(2k+2\beta _n+1)_2}, \qquad \mathcal {C}^{-4}_{n,k} = \frac{-(k-3)_3}{(2k+2\beta _n-3)_3}, \\&\mathcal {C}^{-3}_{n,k} = \frac{-(k-2)_2(2k+6\beta _n+3)}{(2k+2\beta _n-1)(2k+2\beta _n+1)(2k+2\beta _n-3)}. \end{aligned}$$

Proof

To prove this lemma, we temporarily set \(\phi _{k,n}(r)= \frac{2k+2\beta _n}{k+2\beta _n}J^{-1,2\beta _n}_k(2r-1)r^{\beta _n+2-d/2}\).

It is readily obtained from “Appendix A” in [19] that

$$\begin{aligned} \begin{aligned}&(\nabla \Phi _{k,\ell }^{n}, \nabla \Phi _{j,\iota }^{m})_{\mathbb {B}^d} + c^2 (\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m})_{r^{-2},\mathbb {B}^d}\\&\quad =\omega _d \delta _{m,n}\delta _{\ell ,\iota } \int _0^1 \partial _r \big [ r^{d/2-1-\beta _n}\phi _{k,n}(r)\big ] \big [ r^{d/2-1-\beta _n}\phi _{j,n}(r)\big ]r^{2\beta _n+1} \mathrm {d}r \\&\qquad + \omega _d \delta _{m,n}\delta _{\ell ,\iota }(\beta _n+1-d/2)\delta _{k,0}\delta _{k,j}. \end{aligned} \end{aligned}$$
(A.5)

Before proceeding the proof of (A.1), we resort to the following identity on generalized Jacobi polynomials,

$$\begin{aligned} \begin{aligned} J_k^{\alpha ,\beta }(2r-1)r=&\frac{(k+1)(k+\alpha +\beta +1)}{(2k+\alpha +\beta +1)_2}J_{k+1}^{\alpha ,\beta }(2r-1)+ \frac{(k+\alpha )(k+\beta )}{(2k+\alpha +\beta )_2}J_{k}^{\alpha ,\beta }(2r-1) \\&+ \frac{2k^2+2(\alpha +\beta +1)k+(\alpha +\beta )(\beta +1)}{(2k+\alpha +\beta )(2k+\alpha +\beta +2)}J_{k-1}^{\alpha ,\beta }(2r-1), \end{aligned} \end{aligned}$$
(A.6)

which is derived from (2.7) by a simple calculation. Then (A.1) is an immediate consequence of (A.5), (2.8), (A.6) and (2.9).

Next, it is easy to show that

$$\begin{aligned} \Big (\Phi _{k,\ell }^{n}, \Phi _{j,\iota }^{m}\Big )_{r^{-1},\mathbb {B}^d}= & {} \frac{(2k+2\beta _n)(2j+2\beta _m)}{(k+\beta _n)(j+2\beta _m)}\int _{\mathbb {S}^{d-1}}Y^n_{\ell }(\xi )Y^m_{\iota }(\xi )\mathrm {d}\sigma (\xi )\nonumber \\&\times \int _0^1J_k^{-1,2\beta _n}(2r-1)J_j^{-1,2\beta _m}(2r-1)r^{\beta _n+\beta _m+2}\mathrm {d}r\nonumber \\= & {} \omega _d\delta _{m,n}\delta _{\ell ,\iota }\frac{(2k+2\beta _n)(2j+2\beta _m)}{(k+\beta _n)(j+2\beta _m)}\nonumber \\&\times \int _0^1J_k^{-1,2\beta _n}(2r-1)J_j^{-1,2\beta _m}(2r-1)r^{\beta _n+\beta _m+2}\mathrm {d}r\nonumber \\= & {} \frac{1}{2^{2\beta _n+3}}\omega _d\delta _{m,n}\delta _{\ell ,\iota }\frac{(2k+2\beta _n)(2j+2\beta _m)}{(k+\beta _n) (j+2\beta _m)}\nonumber \\&\times \int _{-1}^1J_k^{-1,2\beta _n}(\rho )J_j^{-1,2\beta _m}(\rho )(\rho +1)^{2\beta _n+2}\mathrm {d}\rho , \end{aligned}$$
(A.7)

where the last equality sign is derived from variable substitution \(\rho =2r-1\). Using (3.6) repeatedly together with (2.6) yields

$$\begin{aligned} J_k^{\alpha ,\beta }(x)= & {} \frac{(k+\alpha +\beta +1)_2}{(2k+\alpha +\beta +1)_2}J_k^{\alpha +1,\beta +1}(x)\\&+\frac{(\alpha -\beta )(k+\alpha +\beta +1)}{(2k+\alpha +\beta )(2k+\alpha +\beta +2)}J_{k-1}^{\alpha +1,\beta +1}(x) - \frac{(k+\alpha )(k+\beta )}{(2k+\alpha +\beta )_2}J_{k-2}^{\alpha +1,\beta +1}(x)\\= & {} \frac{(k+\alpha +\beta +1)_3}{(2k+\alpha +\beta +1)_3}J_k^{\alpha +1,\beta +2}(x)+\frac{(k+\alpha +\beta +1)_2(k+2\alpha -\beta )}{(2k+\alpha +\beta )_2(2k+\alpha +\beta +3)}J_{k-1}^{\alpha +1,\beta +2}(x)\\&- \frac{(k+\alpha )(k+\alpha +\beta +1)(k-\alpha +2\beta +1)}{(2k+\alpha +\beta -1)(2k+\alpha +\beta +1)_2}J_{k-2}^{\alpha +1,\beta +2}(x)\\&-\frac{(k+\alpha -1)_2(k+\beta )}{(2k+\alpha +\beta -1)_3}J_{k-3}^{\alpha +1,\beta +2}(x)\\= & {} \frac{(k+\alpha +\beta +1)_4}{(2k+\alpha +\beta +1)_4}J_k^{\alpha +1,\beta +3}(x)+\frac{(k+\alpha +\beta +1)_3(2k+3\alpha -\beta )}{(2k+\alpha +\beta )_3(2k+\alpha +\beta +4)}J_{k-1}^{\alpha +1,\beta +3}(x)\\&+ \frac{3(k+\alpha )(k+\alpha +\beta +1)_2(\alpha -\beta -1)}{(2k+\alpha +\beta -1)_2(2k+\alpha +\beta +2)_2}J_{k-2}^{\alpha +1,\beta +3}(x)\\&-\frac{(k+\alpha -1)_2(k+\alpha +\beta +1)(2k-\alpha +3\beta +2)}{(2k+\alpha +\beta -2)(2k+\alpha +\beta )_3}J_{k-3}^{\alpha +1,\beta +3}\\&-\frac{(k+\alpha -2)_3(k+\beta )}{(2k+\alpha +\beta -2)_4}J_{k-4}^{\alpha +1,\beta +3} \end{aligned}$$

which implies (A.2) together with (A.7) and (2.9).

At last, (A.3) and (A.4) can be readily obtained by using similar arguments as (A.2), we omit the details here. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Li, H. & Zhang, Z. Efficient Spectral Methods for Some Singular Eigenvalue Problems. J Sci Comput 77, 657–688 (2018). https://doi.org/10.1007/s10915-018-0721-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0721-y

Keywords

Mathematics Subject Classification

Navigation