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APPROXIMATE HOMOGENIZATION OF FULLY NONLINEAR

ELLIPTIC PDES: ESTIMATES AND NUMERICAL RESULTS

FOR PUCCI TYPE EQUATIONS

CHRIS FINLAY AND ADAM M. OBERMAN

Abstract. We are interested in the shape of the homogenized operator F (Q)
for PDEs which have the structure of a nonlinear Pucci operator. A typical
operator isHa1,a2 (Q,x) = a1(x)λmin(Q)+a2(x)λmax(Q). Linearization of the
operator leads to a non-divergence form homogenization problem, which can
be solved by averaging against the invariant measure. We estimate the error
obtained by linearization based on semi-concavity estimates on the nonlinear
operator. These estimates show that away from high curvature regions, the
linearization can be accurate. Numerical results show that for many values of
Q, the linearization is highly accurate, and that even near corners, the error
can be small (a few percent) even for relatively wide ranges of the coefficients.

1. Introduction

In this article we consider fully nonlinear, uniformly elliptic PDEs F (Q, x). We
are interested in approximating the homogenized operator F (Q). We focus on
Pucci-type PDE operators in two dimensions. The restriction to two dimensions is
for computational simplicity and also for visualization purposes. We consider pe-
riodic coefficients, although in our numerical experiments we obtained very similar
results with random coefficients.

The approach we take is to linearize the operator about the value Q, and to
homogenize the linearized operator L(Q). The solution of the linear homogenization
problem can be expressed (and in some cases solved analytically) by averaging
against the invariant measure. The result is given by

LQ(Q) =

∫

F (Q, x)ρQ(x)dx

where ρQ is the invariant measure of the corresponding linear problem. We estimate
the linearization error

E(Q) ≡ F (Q)− LQ(Q),

For convex operators, the analysis gives a one sided bound on the error. In general,
we obtain upper or lower bounds on the error, which depend on generalized semi-
concavity/convexity estimates of F , as well as on the solution of the cell problem
uQ for the nonlinear problem. These results are stated in Theorem 2.4 below.

For theoretical results on nonlinear homogenization, we refer to the review [ES08]
as well as recent works on rates of convergence (for example [AS14]). There are
fewer works which aim to determine the values F (Q). Few analytical results are
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available. Numerical homogenizing results for Pucci type operators can be found
in [CG08] using a least-squares formulation. We also mention numerical work by
[GO04] and [OTV09] and [LYZ11] in the first order case, as well as [FO09] in the
second order linear non-divergence case.

The typical operator we consider herein is defined next. Below, we consider more
operators, including the usual convex Pucci Maximal operator.

Definition 1.1 (Fully nonlinear elliptic operator F (Q, x) and linearization). We
are given F : Sd × T

d → R which is uniformly elliptic, Lipschitz continuous in
the first variable and bounded in the second variable. Suppose for a given Q, that
∇QF (Q, x) exists for all x. Write

(1) LQ(M,x) = ∇QF (Q, x) · (M −Q) + F (Q, x)

for the affine approximation to F at Q.

Given Q ∈ Sd, write, for d = 2, λmin(Q) and λmax(Q) for the smaller, and larger
eigenvalues of Q, respectively.

Example 1.2 (Typical PDE operator). Given δ > 0, and periodic functions a1(y), a2(y) ≥
δ. Define the homogeneous order one PDE operator

(2) Ha1,a2(Q, x) = a1(x)λmin(Q) + a2(x)λmax(Q)

SupposeQ has unit eigenvectors v1, v2 corresponding to the eigenvalues λmin(Q), λmax(Q),
respectively. Then the linearization at Q, of Ha1,a2 is given by

(3) LQ(M,x) = a1(x)v
T
1 Mv1 + a2(x)v

T
2 Mv2

Remark 1.3 (Typical results). We consider the case of coefficients which are either
(i) periodic checkerboards or (ii) random checkerboards. We compute both the

nonlinear homogenization F (Q) and the homogenized linear operator LQ(Q). In
practice, the numerically computed error is insignificant, less than 1e−8 for values
of Q, away from regions of high curvature of F with respect to Q. Areas where
the error is significant correspond to regions where the semi-concavity constants
are large. A typical result is displayed in Figure 1. The solid line is a level set of

the homogenized linear operator LQ(Q). The dots are numerical computations of
F (Q). The error is very small, except at one point, which corresponds to a corner of
the operator. (Dashed lines indicate underlying operators which comprise F (Q, x).

Our analysis depends on the shape of F (Q, x) in Q, but not on the pattern
of the coefficients in x. We also considered the case of stripe coefficients. For
separable examples, the linear approximation is still effective. However, we also
found nonseparable examples where the linear approximation is poor, which we
will address in a companion paper [FO17] with a closer bound.

1.1. Background: cell problem and linear homogenization. In this section,
we review background material on the cell problem for the nonlinear PDE, and
on linear homogenization. We also give an exact formula in one dimension for a
separable operator.

Given a(y) : T → R, positive, a(y) > 0, write HM(a) =
(

∫

T

dy
a(y)

)−1

for the

harmonic mean of a.
In the linear case, L can be found by averaging against the invariant measure,

by solving the adjoint equation (see [BLP11] or [FO09]), which yields the following
formula.
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Figure 1. Plot of a single level set of LQ(Q) and F (Q). This
example is typical. In this case the coefficients are on a random
checkerboard. The error is only visible near the corner of the level
set of the operator. F (Q, y) a Pucci-type operator, see Defini-
tion 3.1 below. The details of the coefficients can be found in
Section 4.

Lemma 1.4 (Linear Homogenization Formula). The separable linear operator L(M,x) =
a(x)A0 : M + f(x) has invariant measure ρ(x) = HM(a)/a(x) and homogenizes to

L(Q) = HM(a)A0 : Q+ f , where f(x) =
∫

f(x) dρ(x).

For the nonlinear operator F , the homogenized operator is given by solving the
cell problem, see [Eva89].

Definition 1.5 (Solution of the cell problem). Given F uniformly elliptic, for each
Q ∈ Sd, there is a unique value F (Q) and a periodic function uQ(y) which is a
viscosity solution of the cell problem

(4) F (Q+D2uQ(y), y) = F (Q).

Lemma 1.6 (Homogenization of linearized operator). Consider the nonlinear el-

liptic operator F (Q, x), and suppose for a given Q, that ∇QF (Q, x) exists for all x.
The corresponding linearization at Q is given by (1). Let ρQ be the corresponding

unique invariant probability measure, which is the solution of the adjoint equation

(5) D2 : (∇QF (Q, y)ρQ(y)) = 0,

interpreted in the weak sense. Then LQ(Q), the homogenized linearized operator

evaluated at Q, is given by

(6) LQ(Q) =

∫

Td

F (Q, y) dρQ(y).

Proof. The invariant measure ρQ solves (5), see [BLP11] or [FO09]. Apply (1) at
M = Q and then integrate against ρQ to obtain the result. �
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2. Main Result

2.1. Generalized semiconcavity estimates on the operators. Consider the
uniformly elliptic operator F (Q, x), where Q ∈ Sd and x ∈ T

d. We assume the
following.

Assumption 2.1 (Quadratically dominated for F (Q, x)). Let F be as in Defini-
tion 1.1. Suppose for a given Q, that ∇QF (Q, x) exists for all x. Write ‖Q‖ for
the Frobenious norm of Q. We say that F is quadratically dominated above at Q if
there is a bounded function C+(Q, x) : Td → R such that

(7) F (M,x)− LQ(M,x) ≤ C+(Q, x)
‖M −Q‖2

2
, for all (M,x) ∈ Sd × T

d

and similarly, F is quadratically dominated below at Q if there is a bounded function
C−(Q, x) : Td → R such that

(8) F (M,x)− LQ(M,x) ≥ C−(Q, x)
‖M −Q‖2

2
, for all (M,x) ∈ Sd × T

d

Remark 2.2. If F is convex in Q, then C−(Q, y) = 0. Similarly if F is concave in Q,
C+(Q, y) = 0. More generally if F is semi-concave, or semi-convex in Q, then we
can set C±(Q, y) = C±(y), to be a constant independent of Q. However, we require
the definition above for when the semi-concavity or semi-convexity conditions in Q
do not hold, as is the case for the Pucci-type operators defined below.

Example 2.3. Let x ∈ R and set f(x) = max {ax, bx}. Since f is convex, we can
take C−(x) = 0 in (8). We claim that for x 6= 0, (7) holds with

(9) C+(x) =
|a− b|

2x
,

and this is the best constant. See Figure 2.

Derivation of (9). Expand f(x + y) about the point x, for x 6= 0. To test (7),
replace the inequality with an equality to obtain a quadratic equation. By requiring
that there is only one root, we obtain an equation for the discriminant of the
quadratic, which can be solved to obtain the result. �

2.2. Main Theorem.

Theorem 2.4. Suppose F satisfies Assumptions 2.1 and uQ ∈ C2,α(Td) is a clas-

sical solution. Let F (Q) be the homogenized operator at Q and let uQ be the cor-

responding solution of the cell problem given by (4). Let the homogenization of

the linearization of the operator be given by (6) and let ρQ(y) be the corresponding

invariant measure of the linearized problem (1). Write

C±(Q) =
1

2

∫

C±(Q, y)‖D2uQ(y)‖2 dρQ(y)

Then

(10) C−(Q) ≤ F (Q)− LQ(Q) ≤ C+(Q)

Remark 2.5. In the examples we consider below, C±(Q, y) → 0 as dist(|Q|, S) → ∞,
for the singular set of the operator. This gives control over the homogenization error
for many values of Q. Another term in the error is ‖D2uQ‖. In the homogeneous
order one case, we have uQ = 0 for Q = 0, so a continuity argument suggests that
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Figure 2. For the simple example f(x) = max {ax, bx}, the semi-

concavity constant is C(x) = C+(x) = |a−b|
2x .

we may have control of ‖D2uQ‖ for small values of Q. This is the case in one
dimension in [FO17], where we obtain an analytical formula for uQ

xx through (16),
which gives |uQ

xx| ≤ C|Q|.
The main theorem is a formal result in the sense that it relies on the fact that

uQ is a classical solution, which does not hold in general. If F is convex (or
concave), then by a famous theorem of Krylov and Evans [Kry84, Eva82], or [CC95],
uQ ∈ C2(Td). However, in general we are only guaranteed uQ ∈ C1,α(Td) [Jen88].

Proof. Subtract the linearization of F at Q evaluated at Q + D2uQ(y) from the
equation for the cell problem (4), to obtain

(11) F (Q)− LQ(Q +D2uQ, y) = F (Q+D2uQ, y)− LQ(Q+D2uQ, y).

From Assumption (2.1),

(12) F (Q)− LQ(Q +D2uQ, y) ≤ C+(Q, y)
‖D2uQ‖2

2

and

(13) F (Q)− LQ(Q +D2uQ, y) ≥ C−(Q, y)
‖D2uQ‖2

2
.

Now integrate eqs. (12) and (13) against the invariant measure ρQ. This yields the
upper and lower bounds (10), where we have used the fact that for all φ ∈ C2(Td),

(14)

∫

Td

LQ(Q+D2φ, y) dρQ(y) =

∫

Td

F (Q, y) dρQ(y),

which follows from integration by parts, since ρQ solves the adjoint equation (5). �

2.3. Applications of the main result. We give two applications of the main
result. In the first example, where the operator is separable, we have an analytical

formula for LQ(Q). In this case the estimates also simplify. In the second, non-

separable example, we can find LQ(Q) by solving a single linear homogenization
problem, with coefficients given by the linearization (3).
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Corollary 2.6. Consider the separable, purely second order operator

F (Q, y) = a(y)F0(Q)

for y ∈ R
d. Suppose that F0 is quadratically dominated with constants C−(Q) and

C+(Q). Then,

(15) C−(Q) ≤ F (Q)−HM(a)F0(Q) ≤ C+(Q)

where

C±(Q) =
1

2
C±(Q)HM(a)

∫

Td

‖D2uQ(y)‖2
1

a(y)
dy.

Proof. 1. The formula for the linearization,

LQ(Q) = HM(a)F0(Q)

follows from the Linear Homogenization Formula (Lemma 1.4).
2. From linearization, we have that ρQ(y) = HM(a)/a(y). Using the definition,

then the generalized semiconvexity/concavity constants for F (Q, y) are given by

C+(Q, y) = a(y)C+(Q), and C−(Q, y) = a(y)C−(Q).

Passing the constants and the invariant measure into Theorem 2.4 gives the bounds
provided by (15), since the coefficients a(y) cancel.

�

Remark 2.7. In a companion paper [FO17], we show that for convex operators in
one dimension,

(16) F (Q) = LQ(Q) = HM(a)F0(Q).

Corollary 2.8. Consider the operator Ha1,a2 given by (2). Then
∣

∣

∣
Ha1,a2(Q)− LQ(Q)

∣

∣

∣

≤
1

2|λmin(Q)− λmax(Q)|

∫

|a1(y)− a2(y)| ‖D
2uQ(y)‖2 dρQ(y)

Proof. We apply Theorem 2.4 to Ha1,a2 given by (2). The linearization is given by
(3). The invariant measure of the linear problem is given by the solution of (5) and
the homogenized linear operator is given by (6) from Lemma 1.6.

The main step is to work out the generalized semi-concavity constants. We
claim.

(17) C+(Q, x) =
(a2(x) − a1(x))

+

|λmin − λmax|
, and C−(Q, x) =

(a1(x) − a2(x))
−

|λmin − λmax|
.

To prove this we proceed in steps.
1. First, take q ∈ R

2 and set f(q) = max(q1, q2). Then Lq(y) = ∇f(q) · y away
from the singular set q1 = q2, since the function is homogeneous of order one. The
constant C−(q) = 0, since f is convex. We claim the optimal choice for C+(q) is
given by

C+(q) =
1

|q2 − q1|

for q1 6= q2. To see this, we require

max(y1, y2) ≤ ∇f(q) · y +
C+(q)

2
|y − q|2.
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It is easily verified that the extremal case for the inequality occurs when (y1, y2) =
(q2, q1), which leads to the condition

|q1 − q2| ≤ C+(q)|q1 − q2|
2.

giving the result.
2. Let f(q1, q2) = a1 min(q1, q2)+a2 max(q1, q2). Rewrite f(q1, q2) = a1(q1+q2)+

(a2 − a1)max(q1, q2). We can always subtract an affine function when computing
the constants. So the constants for f are the same as the constants for (a2 −
a1)max(q1, q2). In this case, using the result of step 1, we obtain

C+(x) =
(a2 − a1)

+

|q1 − q2|
, C−(x) =

(a1 − a2)
−

|q1 − q2|

3. Next consider for the two by two matrix Q, h(Q, x) = a1(x)min(q11, q22) +
a2(x)max(q11, q22). Then the previous step shows that the constants for h are
given by the previous ones (with q11 replacing q1 and q22 replacing q2. Finally,
since Ha1,a2 depends only on the eigenvalues of Q, without loss of generality, we
can choose a coordinate system whereQ is diagonal when computing the generalized
semiconcavity constants. It remains to show that the generalized semi-concavity
condition holds for a matrix, M . If M is diagonal the condition holds. But if M
is not diagonal, then the change in the norm ‖M − Q‖2 can be controlled by a
constant, or absorbed into the definition of the norm. �

3. Computational Setting

For our numerical experiments, we consider a wider class of separable and non-
separable operators.

3.1. PDE Operators.

Definition 3.1 (Pucci-type operators). For δ > 0 and given functions 0 < δ ≤
a(y) ≤ A(y). Write b(y) = A(y) − a(y). Also write t+ = max(t, 0). Define, for
d = 2, the standard Pucci maximal operator, the Pucci-type operator, the smoothed
Pucci-type operator, and a Monge-Ampere type operator respectively as

PA,a(Q, y) = a(y)TrQ+ b(y)
(

λ+
min(Q) + λ+

max(Q)
)

(18)

FA,a(Q, y) = a(y)TrQ+ b(y)λ+
max(Q).(19)

FA,a
k (Q, y) = a(y)TrQ+ b(y)Sk(λmin(Q), λmax(Q), 0)(20)

M(Q, y) = a(y)
(

Tr(Q) + λ+
min(Q)λ+

max(Q)
)

.(21)

Here, for x ∈ R
m, Sk(x) is the smoothed maximum function,

(22) Sk(x) =

∑m
i=1 xi exp(kxi)

∑m
i=1 exp(kxi)

.

The function Sk goes to the max as k → ∞, and to the average as k → 0.

Definition 3.2 (Periodic checkerboard, stripes, and random checkerboard coeffi-
cients). Define

(23) a0(y) =

{

1, y ∈ B

r, y ∈ W,
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Figure 3. Figure 3a: level set plot of several operators as func-
tion of the eigenvalues of Q. Figure 3b: Level sets of an example

Pucci operator, P
5

4
, 2
3 (Q). Points indicate values of Q that were

homogenized.

with r > 1. The sets B and W are either black and white squares of a checkerboard;
alternating black and white stripes of equal width; or a ‘random’ checkerboard, with
black and white squares distributed with equal probability, uniformly.

Remark 3.3 (Representation and visualization of the operators). The definition
above agrees with the usual definition of the Pucci operator,

(24) PA,a(Q, y) = sup{M : Q | a(y)I ≪ M ≪ A(y)I}.

We can also rewrite

FA,a(Q, y) =

{

a(y)TrQ Q negative definite

HA,a(Q, x), otherwise.

Example 3.4. For the Pucci operator PA,a(Q, x) given by (18), by convexity, C−(Q, x) =
0 and

(25) C+(Q, x) =

{

max
{

b(x)
Tr(Q) ,

A(x)
2λmin

}

, if λmin, λmax > 0
b(x)

2min(|λmin|,|λmax|)
, otherwise.

3.2. Numerical Method details. In order to compute the errors, as a function
of Q, we used a grid in the λ1 − λ2 plane, and computed the linear and nonlinear
homogenization at the grid points. Typical values can be see in Figure 3b, where
black points indicate the grid values of Q tested.

We remark on the numerical methods used throughout. To compute F (Q)
directly, we discretized with finite differences and solved the parabolic equation
ut+F (Q+D2u, y) using an explicit Euler method, to iteratively compute a steady
state solution. We discretized using a convergent monotone scheme [Obe06] and
also using standard finite differences. The accuracy of the monotone scheme was less
than the standard finite differences, so we implemented a filtered scheme [FO13].
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(b) maxy C
+(Q,y)

Figure 4. Homogenization of a separable Pucci example opera-
tor, a(y)P 3,1, on a periodic checker board, with coefficients of 1 or

2 (r = 2). 4a: Error F (Q)− L
Q
(Q). Figure 4b: An upper bound

of the semi-concavity constant C+(Q, y). The error is 1e−6 or less
in the blue part of the domain. In the yellow region it goes from
0.01 up to 0.15. The regions where the error is small coincide with
smaller values of the semi-concavity constant.

In practice, the filtered scheme always selected the accurate scheme, so in this
instance, perhaps because the solutions are C2 and periodic, standard finite differ-
ences appear to converge.

For all the computations, to avoid trivial solutions, we solved with a right hand
side function equal to a constant, and then subtracted the same constant from
F (Q).

The computational domain was the torus [0, 1]2, divided into 20 × 20 equal
squares, each with 16 grid points per square.

Remark 3.5 (Comparison with [CG08]). The problem of homogenizing a0(y)F
A,a(Q),

was considered in [CG08]. In their case, the spatial coefficient a0(y) varies period-
ically and smoothly between 2 and 3, and their homogenized value for a0 was 2.5
(which was the average of the coefficient a0(x, y) = cos(πx) cos(πy)). Our results
using these coefficients was a0 = 2.486, which is very close to the average. However
with coefficients which are more spread out, we obtain values far from the average.

4. Numerical results

4.1. Numerical Results: separable operators. Here we check the homoge-
nization error of the bound for separable operators in two dimensions, from Corol-
lory 2.6. We are in the convex case, so the lower bound is zero.

We performed numerical simulations on four operators, see Definition 3.1.

• a0(y)P
3,1(Q)

• a0(y)F
3,1(Q)

• a0(y)F
3,1
k (Q), with k = 10 and k = 0.1
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0.1 (Q), r = 2

Figure 5. Homogenization error for a smoothed Pucci type op-
erator. The coefficients a(y) are on a checker board with r = 2
(i.e. a = 1 or 2). The operators are defined in Section 4. Figure
5a: error on a Pucci like operator. Figures 5b and 5c: error on a
smoothed Pucci like operator.

• a0(y)M(Q)

In Figure 4 we compare the error F (Q)− L
Q
(Q) for a separable Pucci operator

on a checkerboard, we also illustrate the constant C+(Q, y). In this case we have

an analytical formula for L
Q
(Q)). This figure illustrates the Main Theorem: when

the constant is large the error from the linearization is high. The error is less than
1e−6 outside of a small region about the axis, and on the order of 0.1 near the axis.

In Figure 5, we show how the error F (Q)−L
Q
(Q) decreases as the operator be-

comes smoother. The operator with the smallest maximum curvature (Figure 5c)
exhibits the smallest error. As the operator becomes less smooth, the error in-
creases. For the smoothest operator the global error is at most one percent (in
the range of values shown in the figure). For the two sharper operators, there is
still very high accuracy away from the highest curvature regions. We see that error
of the smooth operator, F 3,1

10 (Q), is slightly smaller than the non smooth opera-
tor’s error near the line λ1 = λ2 (this is where the non smooth operator is not
differentiable). As the smoothing constant k → 0, the error of the linearized ho-
mogenization decreases. For example, setting k = 0.1, as in Figure 5c, results in
an error on the order of 0.01. In all cases, the error is near zero in a large part of
the domain. It concentrates near the positive diagonal, where it is .1 to .4 for the
non-smooth operator, and similar for the operator with a small smoothing param-
eter. A larger smoothing parameter sends the error in a similar region to the range
.002 to 0.01. A small amount of smoothing has a small effect on the error. More
smoothing leads to errors going from .1 to .002 in a similar part of the domain.

Figure 6 presents the error for a0(y)F
3,1(Q) on stripes. On stripes, the regions

with large error are much smaller than the operators on checkerboard. We hypoth-
esize that this is because stripes have a smoothing effect. The location where the
large error is located depends on the interplay between the operator and the direc-
tion of the stripes. Given that in this example the homogenized operator is O(1),
the error here is particularly large. In a companion paper, we will derive a closer
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Figure 6. Error for a0(y)F
3,1 on stripes, with different ratios r.
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Figure 7. Error for M(Q, y) with r = 2, on a periodic checker-
board and on stripes.

lower bound for FA,a(Q), using the optimal invariant measure of the nonlinear
operator.

Figure 7 shows error for a0(y)(Tr(Q) + MA(Q)) on both stripes and a periodic
checkerboard. For the Monge Ampere type operator on checkerboard, error is on
the order of 1e−2 in the first quadrant, where the curvature is bounded. Elsewhere
the error is negligible.

As r (the scaling coefficient of a0(y)) grows, so does the error. As expected,
for the two Pucci type operators on checkerboard, away from the regions where
the curvature is unbounded, the error is negligible: this is where the operators are
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Figure 8. Error for the non-separable operator on a periodic
checkerboard. Left: alternating between F 1,1 and F 4,1. Right:

alternating between F 2,1 and F 1, 4
3

linear. Although we do not show it, for all figures, the error profile on the random
checkerboard is nearly identical to the periodic checkerboard.

4.2. Numerical Results: non-separable operators. Now we consider nonsep-
arable coefficients for FA,a(Q, y), refer to Definition 3.1.

For both periodic and random checkerboard coefficients, the numerically com-

puted values of FA,a(Q) depend only on the eigenvalues of Q, not on the eigen-

vectors. In addition, FA,a(Q) is homogeneous order one. So the entire function

FA,a(Q) is determined by the 1-level set of FA,a(Q) for diagonal matrices Q.
We write

(26) LQ(Q) = Aλ+(Q) + aλ−(Q)

where the coefficients are obtained by numerical homogenization of the linearized
operator (3) when Q had at least one positive eigenvalue. (In the negative definite
case the operator is linear and the error was insignificant).

We found that error was within 5% for a range of values of A and a with coeffi-
cients which vary by a factor of 10.

In Figure 8 we show the error on a periodic checkerboard, with

FA,a(Q, y) =

{

Tr(Q), y ∈ B

F 4,1, y ∈ W.

The error is on the order of 1e−1 near the line λ+ = λ− in the first quadrant; on
the order of 1e−2 in the second and fourth quadrants; and negligible otherwise. In
Figure 8 we plot the error against the numerically homogenized value for an the
nonconvex operator alternating between F 2,1 and F 1, 4

3 on a periodic checkerboard.

4.2.1. Further experiments. We let A and a each take two positive values in periodic
checkerboard pattern. In the second, we let A and a each take two positive values in
a random checkerboard, drawn randomly from a Bernoulli trial with probability p.
We checked both when p = 1

2 and other values of p. When p = 1
2 the homogenized
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operator on the random checkerboard is identical to the homogenization on the
periodic checkerboard. Finally, we also checked the case when A and a are each
drawn from a uniform distribution with positive support. In all of these cases, the
numerically homogenized operator is (numerically) isotropic, homogeneous order
one, and agrees closely with F in the approximate formula (26).

5. Conclusions

We studied the error between the homogenization of the linearized operator and
the fully nonlinear homogenization. We obtained upper and lower bounds on the
error in terms of the generalized semiconvavity constants of the operator.

We also performed numerical calculations. For the class of operators we studied,
linearization was very accurate for a wide range of values of Q, with negligible error
in some cases. The numerically computed errors were small, and concentrated
around regions of high curvature in Q of the operator F (Q, x). Errors grew with
the degree of nonlinearity and with the range of the coefficients.

The numerical results are consistent with the bounds, although in some cases
the error was smaller than was predicted by the bounds.
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