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A time-spectral algorithm for fractional wave

problems ∗

Binjie Li †, Hao Luo ‡, Xiaoping Xie §

School of Mathematics, Sichuan University, Chengdu 610064, China

Abstract

This paper develops a high-accuracy algorithm for time fractional wave

problems, which employs a spectral method in the temporal discretiza-

tion and a finite element method in the spatial discretization. Moreover,

stability and convergence of this algorithm are derived, and numerical

experiments are performed, demonstrating the exponential decay in the

temporal discretization error provided the solution is sufficiently smooth.

Keywords: fractional wave problem, spectral method, finite element.

1 Introduction

Let 1 < γ < 2 and let Ω ⊂ R
d (d = 2, 3) be a polygon/polyhedron. This paper

considers the fractional wave problem



















Dγ
0+(u− u0 − tu1)−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω,

ut(·, 0) = u1 in Ω,

(1)

where u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), and f ∈ L2(ΩT ) with ΩT := Ω × (0, T ).

Here ut is the derivative of u with respect to the time variable t, and Dγ
0+ is a

Riemann-Liouville fractional differential operator.
The above problem is a particular case of time fractional diffusion-wave

problems, which have attracted a considerable amount of research in the field
of numerical analysis in the past twenty years. By now, most of the existing
numerical algorithms employ the L1 scheme ([16, 10, 5, 27, 26]), Grünwald-
Letnikov discretization ([2, 11, 18, 19, 23, 22]) or fractional linear multi-step
method ([8, 20, 25]) to discrete the fractional derivatives. Generally, for those
algorithms, the best temporal accuracy are O(τ2) for the fractional diffusion
problems and O(τ3−γ) for the fractional wave problems, where τ is the time
step size.
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Due to the nonlocal property of fractional differential operator, the memory
and computing cost of an accuracy approximation to a fractional diffusion-wave
problem is significantly more expensive than that to a corresponding normal
diffusion-wave problem. To reduce the cost, high-accuracy algorithms are of-
ten preferred, especially those of high accuracy in the time direction. This
motivates us to develop high-accuracy numerical algorithms for problem (1).
The efforts in this aspect are summarized as follows. Li and Xu [9] proposed
a space-time spectral algorithm for the fractional diffusion equation, and then
Zheng et. al [28] constructed a high order space-time spectral method for the
fractional Fokker-Planck equation. Gao et. al [7] proposed a new scheme to ap-
proximate Caputo fractional derivatives of order γ (0 < γ < 1). Zayernouri and
Karniadakis [24] developed an exponentially accurate fractional spectral collo-
cation method. Yang et. al [21] developed a spectral Jacobi collocation method
for the time fractional diffusion-wave equation. Recently, Ren et al. [13] inves-
tigated the superconvergence of finite element approximation to time fractional
wave problems; however, the temporal accuracy order is only O(τ3−γ).

In this paper, using a spectral method in the temporal discretization and a
finite element method in the spatial discretization, we design a high-accuracy
algorithm for problem (1) and establish its stability and convergence. Our nu-
merical experiments show the exponential decay in the temporal discretization
errors, provided the underlying solution is sufficiently smooth.

The rest of this paper is organized as follows. Section 2 introduces some
Sobolev spaces and the Riemann-Liouville fractional calculus operators. Sec-
tion 3 describes a time-spectral algorithm and constructs the basis functions
for the temporal discretization. Sections 4 and 5 establish the stability and
convergence of the proposed algorithm, and Section 6 performs some numerical
experiments to demonstrate its high accuracy. Finally, Section 7 provides some
concluding remarks.

2 Notation

Let us first introduce some Sobolev spaces. For 0 < α < ∞, as usual, Hα
0 (0, T ),

Hα(0, T ), Hα
0 (Ω) and Hα(Ω) are used to denote four standard Sobolev spaces;

see [17]. Let X be a separable Hilbert space with an inner product (·, ·)X and
an orthonormal basis {ek : k ∈ N}. For 0 < α < ∞, define

Hα(0, T ;X) :=

{

v ∈ L2(0, T ;X) :

∞
∑

k=0

‖(v, ek)X‖
2
Hα(0,T ) < ∞

}

and endow this space with the norm

‖·‖Hα(0,T ;X) :=

(

∞
∑

k=0

‖(·, ek)X‖2Hα(0,T )

)1/2

,

where L2(0, T ;X) is an X-valued Bochner L2 space. For v ∈ Hj(0, T ;X) with
j ∈ N>1, the symbol v(j) denotes its jth weak derivative:

v(j)(t) :=
∞
∑

k=0

c
(j)
k (t)ek, 0 < t < T,
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where ck(·) := (v(·), ek)X and c
(j)
k is its jth weak derivative. Conventionally,

v(1) and v(2) are also abbreviated to v′ and v′′, respectively.
Moreover, for j ∈ N we define

Bj(0, T ;X) :=

{

v ∈ L2(0, T ;X) :

∞
∑

k=0

‖(v, ek)X‖
2
Bj(0,T ) < ∞

}

and equip this space with the norm

‖·‖Bj(0,T ;X) :=

(

∞
∑

k=0

‖(·, ek)X‖
2
Bj(0,T )

)1/2

,

where the space Bj(0, T ) and its norm are respectively given by

Bj(0, T ) :=

{

v ∈ L2(0, T ) :

∫ T

0

ti(T − t)i
∣

∣

∣
v(i)(t)

∣

∣

∣

2

dt < ∞, 0 6 i 6 j

}

and

‖·‖Bj(0,T ) :=

(

j
∑

i=0

∫ T

0

ti(T − t)i
∣

∣

∣
(·)(i)(t)

∣

∣

∣

2

dt

)1/2

.

Then we introduce the Riemann-Liouville fractional operators. Let X be a
Banach space and let L1(0, T ;X) be an X-valued Bochner L1 space.

Definition 2.1. For 0 < α < ∞, define Iα,X0+ , Iα,XT−
: L1(0, T ;X) → L1(0, T ;X),

respectively, by

(

Iα,X0+ v
)

(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1v(s) ds, 0 < t < T,

(

Iα,XT−
v
)

(t) :=
1

Γ(α)

∫ T

t

(s− t)α−1v(s) ds, 0 < t < T,

for all v ∈ L1(0, T ;X).

Definition 2.2. For j − 1 < α < j with j ∈ N>0, define

Dα,X
0+ := DjIj−α,X

0+ ,

Dα,X
T−

:= (−1)jDjIj−α,X
T−

,

where D is the first-order differential operator in the distribution sense.

Above Γ(·) is the Gamma function, and, for convenience, we shall simply use Iα0+,
IαT−

, Dα
0+ and Dα

T−
, without indicating the underlying Banach space X . Each

v ∈ L1(ΩT ) also regarded as an element of L1(0, T ;X) with X = L1(Ω), and

thus Dα
0+v and Dα

T−
v mean Dα,X

0+ v and Dα,X
T−

v, respectively, for all 0 < α < ∞.

3 Algorithm Definition

Let Kh be a triangulation of Ω consisting of d-simplexes, and let h be the
maximum diameter of these simplexes in Kh. Define

Vh :=
{

vh ∈ H1(Ω) : vh|K ∈ Pm(K) for all K ∈ Kh

}

,

V̊h := Vh ∩H1
0 (Ω),

3



where m is a positive integer and Pm(K) is the set of all polynomials defined
on K of degree 6 m. For j ∈ N, define

Pj [0, T ]⊗ V̊h := span
{

qvh : vh ∈ V̊h, q ∈ Pj [0, T ]
}

,

where Pj [0, T ] is the set of all polynomials defined on [0, T ] of degree 6 j.

Moreover, we introduce a projection operator Rh : H1
0 (Ω) → V̊h by

(

∇(I −Rh)v,∇vh
)

L2(Ω)
= 0, ∀v ∈ H1

0 (Ω), ∀vh ∈ V̊h.

Now, let us describe a time-spectral algorithm for problem (1) as follows:
seek U ∈ PM [0, T ]⊗ V̊h with U(0) = Rhu0 such that

(

Dγ0

0+(U
′ − uh,1), D

γ0

T−
V
)

L2(ΩT )
+ (∇U,∇V )L2(ΩT ) = (f, V )L2(ΩT ) (2)

for all V ∈ PM−1[0, T ]⊗ V̊h, where M > 2 is an integer, γ0 := (γ − 1)/2, and
uh,1 is the L2(Ω)-projection of u1 onto Vh.

Remark 3.1. It is well known that the solution to problem (1) generally has
singularity in time, caused by the fractional derivative. However, in view of the
basic properties of the operator Dγ

0+, it is anticipated that we can improve the
performance of the above algorithm by enlarging PM [0, T ] and PM−1[0, T ] by
some singular functions, such as tγ for PM [0, T ] and correspondingly tγ−1 for
PM−1[0, T ].

The remainder of this section is devoted to the construction of the bases
of PM [0, T ] and PM−1[0, T ], which is crucial in the implementation of the pro-
posed algorithm. To this purpose, let us first introduce the well-known Jacobi
polynomials; see [1, 15] for more details. Given −1 < α, β < ∞, the Jacobi

polynomials {J
(α,β)
n : n ∈ N} are defined by

J (α,β)
n = w−α,−β (−1)n

2nn!

dn

dtn
wn+α,n+β , n ∈ N,

where
wr,s(t) := (1− t)r(1 + t)s, −1 < t < 1,

for all−∞ < r, s < +∞. They form a complete orthogonal basis of L2
wα,β(−1, 1),

the weighted L2 space with weight function wα,β .
Then we construct a basis {pi}

M
i=0 of PM [0, T ] and a basis {qj}

M−1
j=0 of

PM−1[0, T ], respectively, by







p0(t) := 1,

pi(t) :=
2t

T
J
(−γ0,0)
i−1 (2t/T − 1) , 1 6 i 6 M,

and
qj(t) = J

(0,−γ0)
j (2t/T − 1) , 0 6 j 6 M − 1.

The starting point of the construction of the above two bases is the calculation
of

∫ T

0

Dγ0

0+p
′

iD
γ0

T−
qj dt. (3)

4



To see this, let us first set

Cij :=

{

0, i = 0,
2
T

Γ(i)Γ(j+1)
Γ(j+1−γ0)Γ(i−γ0)

, i > 1,
Dij :=

{

0, 0 6 i 6 1,
Γ(i+1−γ0)
Γ(i−γ0)T

Cij , i > 2.

By [3, Lemma 2.5] a straightforward computing yields

Dγ0

0+p
′

i(t)D
γ0

T−
qj(t) = t−γ0(T − t)−γ0ζij(t) + t1−γ0(T − t)−γ0ςij(t),

where ζij(t) and ςij(t) are given respectively by

ζij(t) = Cij

(

J
(0,−γ0)
i−1 J

(−γ0,0)
j

)

(2t/T − 1),

ςij(t) = Dij

(

J
(1,1−γ0)
i−2 J

(−γ0,0)
j

)

(2t/T − 1).

Then we evaluate (3) precisely by a suitable Jacobi-Gauss quadrature rule.

Remark 3.2. It is natural to use
{

ti : 0 6 i 6 M
}

and
{

(T − t)j : 0 6 j 6 M − 1
}

as the bases of PM [0, T ] and PM−1[0, T ] respectively, and in this case integral
(3) is significantly easier to evaluate. However, as the polynomial degree M
increase, the conditioning of the system arising from the proposed algorithm
deteriorates dramatically, and thus the numerical solution becomes unreliable.

4 Main Results

Let us first introduce the following conventions: u is the solution to problem
(1) and U is its numerical approximation obtained by the proposed algorithm;
unless otherwise specified, C is a generic positive constant that is independent
of any function and is bounded as M → ∞ in each of its presence; a . b means
that there exists a positive constant c, depending only on γ, T , Ω, m or the
shape regular parameter of Kh, such that a 6 cb; the symbol a ∼ b means
a . b . a. The above shape regular parameter of Kh means

max {hK/ρK : K ∈ Kh} ,

where hK is the diameter of K, and ρK is the diameter of the circle (d = 2) or
ball (d = 3) inscribed in K.

Then we introduce an interpolation operator. Let X be a separable Hilbert
space and let PM [0, T ;X ] be the set of all X-valued polynomials defined on
[0, T ] of degree 6 M . Define the interpolation operator

QX
M : H1+γ0(0, T ;X) → PM [0, T ;X ]

as follows: for each v ∈ H1+γ0(0, T ;X), the interpolant QX
Mv fulfills











(

QX
Mv
)

(0) = v(0),
∫ T

0

Dγ0

0+

(

v −QX
Mv
)′

Dγ0

T−
q dt = 0, ∀q ∈ PM−1[0, T ].

For convenience, we shall use QM instead of QX
M when no confusion will arise.
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Remark 4.1. Let {ek : k ∈ N} be an orthonormal basis of X. For any v ∈
Hγ0(0, T ;X), the definition of Hγ0(0, T ;X) implies that

(v, ek)X ∈ Hγ0(0, T ) for each k ∈ N,

and hence, as Lemma 5.4 (in the next section) indicates

∥

∥

∥
Dγ0,R

0+ (v, ek)X

∥

∥

∥

L2(0,T )
∼ ‖(v, ek)X‖Hγ0 (0,T ) ,

it is evident that

∥

∥

∥
Dγ0,X

0+ v
∥

∥

∥

L2(0,T ;X)
=

(

∞
∑

k=0

∥

∥

∥
Dγ0,R

0+ (v, ek)X

∥

∥

∥

2

L2(0,T )

)
1
2

∼ ‖v‖Hγ0 (0,T ;X) .

Remark 4.2. Since QR

M is well-defined by Lemma 5.4, QX
M is evidently also

well-defined and

QX
Mv =

∞
∑

k=0

QR

M (v, ek)Xek, ∀v ∈ H1+γ0(0, T ;X).

Furthermore, we can redefine QX
M equivalently as follows: for each v ∈ H1+γ0(0, T ;X),

the interpolant QX
Mv fulfills











(

QX
Mv
)

(0) = v(0),
∫ T

0

(

Dγ0

0+

(

v −QX
Mv
)′

, Dγ0

T−
q
)

X
dt = 0, ∀q ∈ PM−1[0, T ;X ].

Finally, we are ready to state the main results of this paper as follows.

Theorem 4.1. Algorithm 1 has a unique solution U . Moreover,

‖U‖H1+γ0 (0,T ;L2(Ω)) + ‖U(T )‖H1
0 (Ω)

. ‖u0‖H1
0 (Ω) + ‖u1‖L2(Ω) + ‖f‖L2(ΩT ) .

(4)

Theorem 4.2. If u ∈ H2
(

0, T ;H1
0(Ω) ∩H2(Ω)

)

, then

‖u− U‖H1+γ0 (0,T ;L2(Ω)) . η1 + η2 + η3 + η4, (5)

‖(u− U)(T )‖H1
0 (Ω) . η1 + η2 + η3 + η5, (6)

where

η1 := ‖u1 − uh,1‖L2(Ω) ,

η2 := CM−1−2γ0 ‖(I −QM )∆u‖H1+γ0 (0,T ;L2(Ω)) ,

η3 := ‖(I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) ,

η4 := ‖(I −QMRh)u‖H1+γ0 (0,T ;L2(Ω)) ,

η5 := ‖(u−QMRhu)(T )‖H1
0 (Ω) .

6



Corollary 4.1. If

u ∈ H2(0, T ;H1
0(Ω) ∩H2(Ω)) ∩H1+γ0(0, T ;Hm+1(Ω)),

u′′ ∈ Br(0, T ;H1
0 (Ω) ∩H2(Ω)),

then

‖u− U‖H1+γ0 (0,T ;L2(Ω)) . ξ1 + ξ2 + ξ3 + ξ4, (7)

‖u(T )− U(T )‖H1
0 (Ω) . ξ1 + ξ2 + ξ3 + ξ5, (8)

where r ∈ N and

ξ1 := hm+1 ‖u1‖Hm+1(Ω) ,

ξ2 := CM−γ0−2−r ‖u′′‖Br(0,T ;H2(Ω)) ,

ξ3 := hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(Ω)) ,

ξ4 := CMγ0−1−r ‖u′′‖Br(0,T ;L2(Ω)) + hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(Ω)) ,

ξ5 := CM−1.5−r ‖u′′‖Br(0,T ;H1
0 (Ω)) + hm ‖u(T )‖Hm+1(Ω) .

5 Proofs

5.1 Preliminaries

Let us first summarize some standard results.

Lemma 5.1. If v ∈ H1
0 (Ω) ∩Hm+1(Ω), then

‖(I −Rh)v‖L2(Ω) + h ‖(I −Rh)v‖H1
0 (Ω) . hm+1 ‖v‖Hm+1(Ω) .

Lemma 5.2. If v ∈ Hα(0, T ) with α > γ0, then

inf
q∈PM−1[0,T ]

‖v − q‖Hγ0 (0,T ) 6 CMγ0−α ‖v‖Hα(0,T ) .

If v ∈ H2(0, T ) such that v′′ ∈ Bj(0, T ) with j ∈ N, then

inf
q∈PM−1[0,T ]

‖v − q‖H1+γ0 (0,T ) 6 CMγ0−1−j ‖v′′‖Bj(0,T ) .

Lemma 5.3. The following properties hold:

• If 0 < α, β < ∞, then

Iα0+I
β
0+ = Iα+β

0+ , IαT−
IβT−

= Iα+β
T−

.

• If 0 < α < ∞, then
∥

∥Iα0+v
∥

∥

L2(0,T )
6 C ‖v‖L2(0,T ) ,

∥

∥IαT−
v
∥

∥

L2(0,T )
6 C ‖v‖L2(0,T ) ,

where C is a positive constant that only depends on α and T .

• If 0 < α < ∞ and u, v ∈ L2(0, T ), then

(Iα0+u, v)L2(0,T ) = (u, IαT−
v)L2(0,T ).

7



Lemma 5.4. If v ∈ Hγ0(0, T ), then

‖v‖Hγ0 (0,T ) ∼
∥

∥Dγ0

0+v
∥

∥

L2(0,T )
∼
∥

∥Dγ0

T−
v
∥

∥

L2(0,T )
∼
√

(

Dγ0

0+v,D
γ0

T−
v
)

L2(0,T )
.

Lemma 5.5. Let X and Y be two separable Hilbert spaces, and let A : X → Y
be a bounded linear operator. If v ∈ H1+γ0(0, T ;X), then

AQX
Mv = QY

MAv.

Lemma 5.1 is standard [4], and, by [15, Theorems 3.35–3.37] and the basic prop-
erties of the interpolation spaces, Lemma 5.2 is trivial. The proof of Lemma 5.3
is included in [14, 12], and this lemma will be used implicitly in the forthcoming
analysis for convenience. Lemma 5.4 is a direct consequence of [6, Lemma 2.4,
Theorem 2.13 and Corollary 2.15]. Finally, by Lemma 5.4 and the basic prop-
erties of the interpolation spaces and the Bochner integrals, a rigorous proof of
Lemma 5.5 is tedious but straightforward, and so it is omitted here.

Then let us state three crucial lemmas as follows.

Lemma 5.6. If v ∈ H2(0, T ) and w ∈ H1(0, T ), then

(

Dγ
0+(v − v(0)− tv′(0), w

)

L2(0,T )
=
(

Dγ0

0+(v
′ − v′(0)), Dγ0

T−
w
)

L2(0,T )
. (9)

Lemma 5.7. If v ∈ H2(0, T ) and w ∈ Hγ0(0, T ), then

(

(I −QM )v, w
)

L2(0,T )
. CM−1−2γ0 ‖(I −QM )v‖H1+γ0 (0,T ) ‖w‖Hγ0 (0,T ) . (10)

Lemma 5.8. If v ∈ H2(0, T ) and v′′ ∈ Bj(0, T ) with j ∈ N, then

‖(I −QM )v‖H1+γ0 (0,T ) . CMγ0−1−j ‖v′′‖Bj(0,T ) , (11)

‖(I −QM )v‖L2(0,T ) . CM−2−j ‖v′′‖Bj(0,T ) , (12)

‖(I −QM )v‖C[0,T ] . CM−1.5−j ‖v′′‖Bj(0,T ) . (13)

Observing that if v ∈ H2(0, T ) then a direct calculation yields

Dγ
0+(v − v(0)− tv′(0)) = Dγ−1

0+ (v′ − v′(0)),

we easily see that Lemma 5.6 is a direct consequence of [9, Lemma 2.6]. It
remains, therefore, to prove Lemmas 5.7 and 5.8. To this purpose, let us first
prove the following lemma.

Lemma 5.9. If v ∈ L2(0, T ), then
∥

∥

∥
I2γ0

T−
v
∥

∥

∥

H2γ0 (0,T )
. ‖v‖L2(0,T ) . (14)

Proof. Define

w(t) :=
1

Γ(γ0)

∫

∞

t

(s− t)γ0−1v(s) ds, −∞ < t < ∞,

where v is extended to R \ (0, T ) by zero. Since 0 < γ0 < 0.5, a routine
calculation yields w ∈ L2(R), and then [14, Theorem 7.1] implies

Fw(ξ) = (−iξ)−γ0Fv(ξ), −∞ < ξ < ∞,

8



where F : L2(R) → L2(R) is the Fourier transform operator, and i is the
imaginary unit. Therefore, the well-known Plancherel Theorem yields

‖w‖Hγ0 (R) . ‖v‖L2(0,T )

and hence
∥

∥Iγ0

T−
v
∥

∥

Hγ0 (0,T )
. ‖v‖L2(0,T ) .

Furthermore, if v ∈ H1
0 (0, T ) then

∥

∥Iγ0

T−
v
∥

∥

H1+γ0 (0,T )
. ‖v‖H1

0 (0,T ) ,

by the evident equality (Iγ0

T−
v)′ = Iγ0

T−
v′. Consequently, since Hγ0

0 (0, T ) coin-
cides with Hγ0(0, T ) with equivalent norms, applying [17, Lemma 22.3] gives

∥

∥

∥
I2γ0

T−
v
∥

∥

∥

H2γ0 (0,T )
=
∥

∥Iγ0

T−
Iγ0

T−
v
∥

∥

H2γ0 (0,T )
.
∥

∥Iγ0

T−
v
∥

∥

H
γ0
0 (0,T )

. ‖v‖L2(0,T ) .

This concludes the proof of the lemma. �

Proof of Lemma 5.7. Let g := (I−QM )v. Since a straightforward calculation
yields

(

I1−γ0

0+ g′
)

(t) =
g′(0)

Γ(2− γ0)
t1−γ0 +

(

I2−γ0

0+ g′′
)

(t), 0 < t < T,

the fact γ0 < 0.5 indicates that I1−γ0

0+ g′ ∈ H1(0, T ) with (I1−γ0

0+ g′)(0) = 0, and
then using integration by parts gives

(

Dγ0

0+g
′, I1+γ0

T−
w
)

L2(0,T )
=

(

(

I1−γ0

0+ g′
)′

, I1+γ0

T−
w

)

L2(0,T )

= −

(

I1−γ0

0+ g′,
(

I1+γ0

T−
w
)′
)

L2(0,T )

=
(

I1−γ0

0+ g′, Iγ0

T−
w
)

L2(0,T )

= (g′, IT−w)L2(0,T ) .

Hence, as the definition of QM implies g(0) = 0, we obtain

(

Dγ0

0+g
′, I1+γ0

T−
w
)

L2(0,T )
= (g′, IT−w)L2(0,T ) = (g, w)L2(0,T ),

which, combined with the evident equality

I1+γ0

T−
w = Dγ0

T−
I1+2γ0

T−
w,

gives
(

g, w
)

L2(0,T )
=
(

Dγ0

0+g
′, Dγ0

T−
I1+2γ0

T−
w
)

L2(0,T )
.

Therefore, Lemma 5.4, the definition of QM and the Cauchy-Schwarz inequality
indicate

(

g, w
)

L2(0,T )
. ‖g‖H1+γ0 (0,T ) inf

q∈PM−1[0,T ]

∥

∥

∥
I1+2γ0

T−
w − q

∥

∥

∥

Hγ0 (0,T )
.
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Clearly, to prove (10), by Lemma 5.2 it suffices to prove

∥

∥

∥
I1+2γ0

T−
w
∥

∥

∥

H1+3γ0 (0,T )
. ‖w‖Hγ0 (0,T ) ,

but since
∥

∥

∥
I1+2γ0

T−
w
∥

∥

∥

H1+3γ0 (0,T )
.
∥

∥

∥
I2γ0

T−
w
∥

∥

∥

H3γ0 (0,T )
,

we only need to show

∥

∥

∥
I2γ0

T−
w
∥

∥

∥

H3γ0 (0,T )
. ‖w‖Hγ0 (0,T ) . (15)

To this end, observe that Lemma 5.9 gives

∥

∥

∥
I2γ0

T−
w
∥

∥

∥

H2γ0 (0,T )
. ‖w‖L2(0,T )

and that if w ∈ H1
0 (0, T ) then, due to

(

I2γ0

T−
w
)′

=
(

−I1+2γ0

T−
w′

)′

= I2γ0

T−
w′,

again Lemma 5.9 gives

∥

∥

∥
I2γ0

T−
w
∥

∥

∥

H1+2γ0 (0,T )
. ‖w‖H1

0 (0,T ) .

Consequently, using [17, Lemma 22.3] yields (15) and thus proves Lemma 5.7.
�

Proof of Lemma 5.8. Let us first consider (11). For each p ∈ PM−1[0, T ], by
Lemma 5.4, the definition of QM and the Cauchy-Schwarz inequality, we obtain

‖(QMv)′ − p‖
2
Hγ0 (0,T )

∼
(

Dγ0

0+

(

(QMv)′ − p
)

, Dγ0

T−

(

(QMv)′ − p
)

)

L2(0,T )

=
(

Dγ0

0+(v
′ − p), Dγ0

T−

(

(QMv)′ − p
)

)

L2(0,T )

. ‖v′ − p‖Hγ0 (0,T ) ‖(QMv)′ − p‖Hγ0 (0,T ) ,

which indicates

‖(QMv)′ − p‖Hγ0 (0,T ) . ‖v′ − p‖Hγ0 (0,T )

and hence
‖(v −QMv)′‖Hγ0 (0,T ) . ‖v′ − p‖Hγ0 (0,T ) .

Therefore, since the fact (v −QMv)(0) = 0 implies

‖(I −QM )v‖H1+γ0 (0,T ) ∼ ‖(v −QMv)′‖Hγ0 (0,T ) ,

using Lemma 5.2 proves (11).

10



Next let us consider (12) and (13). Proceeding as in the proof of Lemma 5.7
gives

‖(I −QM )v‖
2
L2(0,T )

. ‖(I −QM )v‖H1+γ0 (0,T ) inf
q∈PM−1[0,T ]

∥

∥

∥
I1+2γ0

T−
(I −QM )v − q

∥

∥

∥

Hγ0 (0,T )

. CM−1−γ0 ‖(I −QM )v‖H1+γ0 (0,T ) ‖(I −QM )v‖L2(0,T ) ,

which proves (12) by (11). Then, combining (11) and (12) and applying [17,
Lemma 22.3] yield

‖(I −QM )v‖H1(0,T ) . CM−1−j ‖v′′‖Bj(0,T ) ,

so that, by (12), the estimate (13) follows from the Gagliardo-Nirenberg inter-
polation inequality, namely,

‖w‖C[0,T ] . ‖w‖
1
2

L2(0,T ) ‖w‖
1
2

H1(0,T ) , ∀w ∈ H1(0, T ).

This concludes the proof of Lemma 5.8.
�

Remark 5.1. Assume that PM [0, T ] and PM−1[0, T ] are respectively replaced
by

PM [0, T ] +
{

cw1+2γ0 : c ∈ R
}

and PM−1[0, T ] +
{

cw2γ0 : c ∈ R
}

,

where w(t) := T − t, 0 < t < T . For each v ∈ H1+γ0(0, T ), the definition of
QM implies

∫ T

0

Dγ0

0+(v −QMv)′Dγ0

T−
w2γ0 dt = 0,

and then, as in the previous remark, a straightforward computing yields

(v −QMv)(T ) = 0.

Correspondingly, we can improve Corollary 4.1 by

ξ5 := hm ‖u(T )‖Hm+1(Ω) .

5.2 Proofs of Theorems 3.1 and 3.2 and Corollary 3.1

Proof of Theorem 4.1. Since (4) contains the unique existence of U , it suffices
to prove the former. Observe first that integration by parts yields

2(∇U,∇U ′)L2(ΩT ) = ‖U(T )‖
2
H1

0 (Ω) − ‖U(0)‖
2
H1

0 (Ω)

and that Lemma 5.4 implies

∥

∥Dγ0

0+uh,1

∥

∥

L2(ΩT )
∼ ‖uh,1‖Hγ0 (0,T ;L2(Ω) ∼ ‖uh,1‖L2(Ω) ,

(

Dγ0

0+U
′, Dγ0

T−
U ′
)

L2(ΩT )
∼ ‖U ′‖

2
Hγ0 (0,T ;L2(Ω)) ∼

∥

∥Dγ0

T−
U ′
∥

∥

2

L2(ΩT )
.
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Moreover, the fact that uh,1 is the L2(Ω)-projection of u1 onto Vh gives

‖uh,1‖L2(Ω) 6 ‖u1‖L2(Ω) .

Consequently, by the Cauchy-Schwarz inequality and the Young’s inequality
with ǫ, inserting V := U ′ into (2) yields

‖U ′‖Hγ0 (0,T ;L2(Ω)) + ‖U(T )‖H1
0 (Ω)

. ‖U(0)‖H1
0 (Ω) + ‖u1‖L2(Ω) + ‖f‖L2(ΩT ) ,

which, combined with the estimate

‖U‖H1+γ0 (0,T ;L2(Ω)) ∼ ‖U(0)‖L2(Ω) + ‖U ′‖Hγ0 (0,T ;L2(Ω)) ,

indicates

‖U‖H1+γ0 (0,T ;L2(Ω)) + ‖U(T )‖H1
0 (Ω)

. ‖U(0)‖H1
0 (Ω) + ‖u1‖L2(Ω) + ‖f‖L2(ΩT ) .

As the definition of Rh and the fact U(0) = Rhu0 imply

‖U(0)‖H1
0 (Ω) 6 ‖u0‖H1

0 (Ω) ,

this proves (4) and thus concludes the proof of Theorem 4.1. �

Proof of Theorem 4.2. Set ρ := (I − QMRh)u and θ := U − QMRhu. By
Lemma 5.6 and integration by parts, using (1) gives

(

Dγ0

0+(u
′ − u1), D

γ0

T−
θ′
)

L2(ΩT )
+ (∇u, θ′)L2(ΩT ) = (f, θ′)L2(ΩT ),

which, together with (2), yields

(

Dγ0

0+θ
′, Dγ0

T−
θ′
)

L2(ΩT )
+ (∇θ,∇θ′)L2(ΩT ) = I1 + I2 + I3,

where

I1 := (∇ρ,∇θ′)L2(ΩT ),

I2 :=
(

Dγ0

0+ρ
′, Dγ0

T−
θ′
)

L2(ΩT )
,

I3 := −
(

Dγ0

0+(u1 − uh,1), D
γ0

T−
θ′
)

L2(ΩT )
.

Moreover, the fact θ(0) = 0 gives

(∇θ,∇θ′)L2(ΩT ) =
1

2
‖θ(T )‖

2
H1

0 (Ω)

by integration by parts, and Lemma 5.4 implies

(

Dγ0

0+θ
′, Dγ0

T−
θ′
)

L2(ΩT )
∼ ‖θ′‖

2
Hγ0 (0,T ;L2(Ω)) .

Therefore, it follows

‖θ′‖
2
Hγ0 (0,T ;L2(Ω)) + ‖θ(T )‖

2
H1

0 (Ω) . I1 + I2 + I3. (16)
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Let us first estimate I1. Since Rh : H1
0 (Ω) → V̊h and −∆ : H2(Ω) → L2(Ω)

are two bounded linear operators, Lemma 5.5 implies

QMRhu = RhQMu and QM (−∆u) = −∆QMu,

so that, by integration by parts and the definition of Rh, a straightforward
calculation gives

I1 =

∫ T

0

(

∇(I −RhQM )u,∇θ′
)

L2(Ω)
dt

=

∫ T

0

(

∇(I −QM )u,∇θ′
)

L2(Ω)
dt

=

∫ T

0

(

−∆(I −QM )u, θ′
)

L2(Ω)

=

∫ T

0

(

(I −QM )(−∆u), θ′
)

L2(Ω)
dt,

Therefore, Lemma 5.7 leads to

I1 . CM−1−2γ0 ‖(I −QM )∆u‖H1+γ0 (0,T ;L2(Ω)) ‖θ
′‖Hγ0 (0,T ;L2(Ω)) . (17)

Next let us estimate I2 and I3. The definition of QM gives

I2 =
(

Dγ0

0+(u−QMRhu)
′, Dγ0

T−
θ′
)

L2(ΩT )
=
(

Dγ0

0+(u−Rhu)
′, Dγ0

T−
θ′
)

L2(ΩT )
,

so that the Cauchy-Schwarz inequality and Lemma 5.4 indicate

I2 . ‖(I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) ‖θ
′‖Hγ0 (0,T ;L2(Ω)) . (18)

By the evident estimate

‖u1 − uh,1‖Hγ0 (0,T ;ΩT ) ∼ ‖u1 − uh,1‖L2(Ω) ,

the Cauchy-Schwarz inequality and Lemma 5.4 also yield

I3 . ‖u1 − uh,1‖L2(Ω) ‖θ
′‖Hγ0 (0,T ;L2(Ω)) . (19)

Finally, by the Young’s inequality with ǫ, combining (16), (17), (18) and (19)
gives

‖θ′‖Hγ0 (0,T ;L2(Ω)) + ‖θ(T )‖H1
0 (Ω) . η1 + η2 + η3.

Since θ(0) = 0 implies

‖θ‖H1+γ0 (0,T ;L2(Ω)) ∼ ‖θ′‖Hγ00,T ;L2(Ω)) ,

it follows
‖θ‖H1+γ0 (0,T ;L2(Ω)) + ‖θ(T )‖H1

0 (Ω) . η1 + η2 + η3.

As (5) and (6) are evident from the above estimate, this concludes the proof of
Theorem 4.2. �

Proof of Corollary 4.1. It suffices to prove ηi . ξi for all 1 6 i 6 5, where
{ηi}

5
i=1 are defined in Theorem 4.2. Observing that η1 . ξ1 is a standard
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result [4], that η2 . ξ2 follows from Lemma 5.8, and that η3 . ξ3 follows from
Lemma 5.1, we only need to prove η4 . ξ4 and η5 . ξ5.

Let us first consider η4 . ξ4. By Lemma 5.4, the definition of QM implies

‖QM (I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) . ‖(I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) ,

so that Lemma 5.1 and [17, Lemma 22.3] yield

‖QM (I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) . hm+1 ‖u‖H1+γ0 (0,T ;Hm+1(Ω)) .

Moreover, Lemma 5.8 gives

‖(I −QM )u‖H1+γ0 (0,T ;L2(Ω)) . CMγ0−1−r ‖u′′‖Br(0,T ;L2(Ω)) .

Consequently, η4 . ξ4 is a direct consequence of the inequality

‖(I −QMRh)u‖H1+γ0 (0,T ;L2(Ω))

6 ‖(I −QM )u‖H1+γ0 (0,T ;L2(Ω)) + ‖QM (I −Rh)u‖H1+γ0 (0,T ;L2(Ω)) .

Then let us consider η5 . ξ5. Since Lemma 5.5 gives RhQMu = QMRhu,
the definition of Rh yields

‖(Rhu−QMRhu)(T )‖H1
0 (Ω) 6 ‖(u−QMu)(T )‖H1

0 (Ω) ,

and hence Lemma 5.8 indicates

‖(Rhu−QMRhu)(T )‖H1
0 (Ω) . CM−1.5−r ‖u′′‖Br(0,T ;H1

0 (Ω)) .

Therefore, as Lemma 5.1 implies

‖(I −Rh)u(T )‖H1
0 (Ω) . hm ‖u(T )‖Hm+1(Ω) ,

the estimate η5 . ξ5 follows from the inequality

‖(u−QMRhu)(T )‖H1
0 (Ω)

6 ‖(I −Rh)u(T )‖H1
0 (Ω) + ‖(Rhu−QMRhu)(T )‖H1

0 (Ω) .

This concludes the proof of Corollary 4.1. �

6 Numerical Experiments

This section performs some numerical experiments to demonstrate the high
order accuracy of the proposed algorithm in two dimensional case. Throughout
this section we set γ := 1.5, T := 1 and Ω := (0, 1)2.

Example 1. In this example the solution to problem (1) is

u(x, t) := t20x1x2(1− x1)(1− x2), (x, t) ∈ ΩT ,

where x = (x1, x2). Let us first consider the spatial discretization errors of
the proposed algorithm, and, to this end, we set M := 20 to ensure that the
temporal discretization errors are negligible compared with the former. The
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corresponding numerical results, presented in Table 1, illustrate that the con-
vergence orders of

‖(u − U)(T )‖H1
0 (Ω) and ‖u− U‖H1+γ0 (0,T ;L2(Ω))

are m and m + 1 respectively, which agrees well with Corollary 4.1. Then
let us consider the temporal discretization errors and hence set m := 4 and
h := 1/32 to ensure that the temporal discretization error is dominant. We
present the corresponding numerical results in Table 2 and plot the log-linear
relationship between the errors and the polynomial degree M in Fig. 1. As
indicated by Corollary 4.1, these numerical results demonstrate that the errors
reduce exponentially as M increases.

m 1/h
‖u(T )− U(T )‖H1

0 (Ω) ‖u− U‖H1+γ0 (0,T ;L2(Ω))

Error Order Error Order

1

2 1.19e-01 – 8.68e-02 –
4 6.12e-02 0.95 1.94e-02 2.17
8 3.06e-02 1.01 4.52e-03 2.10
16 1.52e-02 1.01 1.10e-03 2.03
32 7.61e-03 1.00 2.74e-04 2.01

2

2 3.12e-02 – 1.18e-02 –
4 8.28e-03 1.91 1.63e-03 2.86
8 2.11e-03 1.97 2.12e-04 2.95
16 5.31e-04 1.99 2.67e-05 2.98
32 1.33e-04 2.00 3.35e-06 3.00

3

2 4.92e-03 – 1.50e-03 –
4 5.94e-04 3.05 9.13e-05 4.04
8 7.28e-05 3.03 5.51e-06 4.05
16 9.01e-06 3.02 3.36e-07 4.04
32 1.12e-06 3.01 2.07e-08 4.02

Table 1. The errors for Example 1 with M = 20.

M
‖u(T )− U(T )‖H1

0 (Ω) ‖u− U‖H1+γ0 (0,T ;L2(Ω))

Error Order Error Order
9 7.05e-05 – 4.13e-03 –
11 4.48e-06 13.74 4.47e-04 11.08
13 1.64e-07 19.80 2.63e-05 16.97
15 3.06e-09 27.83 7.28e-07 25.06
17 2.10e-11 39.80 7.16e-09 36.92

Table 2. The errors for Example 1 with m = 4 and h = 1/32.
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Fig. 1. The log-linear relationship between the errors and the polynomial degree M for

Example 1 with m = 4 and h = 1/32.

Example 2. This example adopts

u(x, t) := t2 |1− 2t|
β
x1(1− x1) sin(πx2), (x, t) ∈ ΩT

as the solution to problem (1), where β is a positive constant. Here we only
consider the temporal discretization errors and hence setm := 6 and h := 2−4 to
ensure that the temporal discretization errors are dominant. The corresponding
numerical results are presented in Tables 3 and 4. Observing that

|1− 2t|
β
∈ Hβ+0.5−ǫ(0, T ) for all ǫ > 0 ,

by Corollary 4.1 and [17, Lemma 22.3] we have

‖u(T )− U(T )‖H1
0 (Ω) . C(ǫ)M−β+ǫ,

‖u− U‖H1+γ0 (0,T ;L2(Ω)) . C(ǫ)M0.75−β+ǫ,

where C(ǫ) is a constant that depends on ǫ. Evidently, for the convergence
order of ‖u− U‖H1+γ0 (0,T ;L2(Ω)), the numerical results are in agreement with

Corollary 4.1. However, in this case, ‖(u− U)(T )‖H1
0 (Ω) reduces significantly

faster than that predicted by Corollary 4.1.

M
‖u(T )− U(T )‖H1

0 (Ω) ‖u− U‖H1+γ0 (0,T ;L2(Ω))

Error Order Error Order
7 3.80e-5 – 3.00e-03 –
9 1.60e-5 3.44 1.94e-03 1.73
11 6.32e-6 4.63 1.35e-03 1.81
13 2.77e-6 4.93 9.94e-04 1.84
15 1.38e-6 4.86 7.64e-04 1.85
17 7.40e-7 4.99 6.06e-04 1.84

Table 3. The errors for Example 2 with β = 2.5.
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M
‖u(T )− U(T )‖H1

0 (Ω) ‖u− U‖H1+γ0 (0,T ;L2(Ω))

Error Order Error Order
7 1.24e-5 – 1.05e-03 –
9 5.48e-6 3.24 7.49e-03 1.36
11 2.32e-6 4.28 5.64e-04 1.41
13 1.08e-6 4.56 4.45e-04 1.42
15 5.72e-7 4.46 3.63e-04 1.43
17 3.22e-7 4.59 3.03e-04 1.42

Table 4. The errors for Example 2 with β = 2.1.

7 Conclusions

In this paper, a high accuracy algorithm for time fractional wave problems is
developed, which adopts a spectral method to approximate the fractional deriva-
tive and uses a finite element method in the spatial discretization. Stability and
a priori error estimates of this algorithm are derived, and numerical experiments
are also performed to verify its high accuracy.

In future work, we shall consider the following issues. Firstly, the optimal er-
ror estimates of ‖(u− U)(T )‖L∞(Ω) and ‖(u− U)(T )‖L2(Ω) are not established.
Secondly, it is worth applying the idea of approximating fractional differential
operators of order γ (1 < γ < 2) by spectral methods to other fractional dif-
ferential equations, such as nonlinear fractional ordinary differential equations
and nonlinear time fractional wave equations.
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