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Abstract In this paper, we analyze the convergence of the alternating direction method of multipliers
(ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, φ(x0, . . . , xp, y), subject
to coupled linear equality constraints. Our ADMM updates each of the primal variables x0, . . . , xp, y, followed
by updating the dual variable. We separate the variable y from xi’s as it has a special role in our analysis.

The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear
functions, ℓq quasi-norm, Schatten-q quasi-norm (0 < q < 1), minimax concave penalty (MCP), and smoothly
clipped absolute deviation (SCAD) penalty. It also allows nonconvex constraints such as compact manifolds
(e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the x0-block
can be almost any lower semi-continuous function.

By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve
nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed
to converge.

Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic
programs with three or more blocks, as they are special cases of our model.

ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a
simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter β.
Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for
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some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely
to converge for the concerned scenarios.

Keywords ADMM, nonconvex optimization, augmented Lagrangian method, block coordinate descent,
sparse optimization

1 Introduction

In this paper, we consider the (possibly nonconvex and nonsmooth) optimization problem:

minimize
x0,x1,...,xp,y

φ(x0, x1, . . . , xp, y) (1)

subject to A0x0 +A1x1 + · · · +Apxp +By = b,

where φ : R
n0 × · · · × R

np × R
q → R ∪ {∞} is a continuous function, xi ∈ R

ni are variables with their
coefficient matrices Ai ∈ R

m×ni , i = 0, . . . , p, and y ∈ R
q is the last variable with its coefficient matrix

B ∈ R
m×q. The model remains as general without y and By; but we keep y and B to simplify the notation.

We set b = 0 throughout the paper to simplify our analysis. All of our results still hold if b 6= 0 is in the
image of the matrix B, i.e., b ∈ Im(B).

Besides the linear constraints in (1), any constraint on each variable x0, x1, . . . , xp and y can be treated
as an indicator function and included in the objective function φ. Therefore, we do not include constraints
like: x0 ∈ X0, x1 ∈ X1, . . . , xp ∈ Xp, y ∈ Y.

In spite of the success of ADMM on convex problems, the behavior of ADMM on nonconvex problems
has been largely a mystery, especially when there are also nonsmooth functions and nonconvex sets in the
problems. ADMM generally fails on nonconvexity problems, but it has found to not only work in some
applications but often exhibit great performance! Indeed, successful examples include: matrix completion
and separation [63,61,48,50], asset allocation [55], tensor factorization [36], phase retrieval [56], compressive
sensing [12], optimal power flow [64], direction fields correction [33], noisy color image restoration [33],
image registration [9], network inference [41], and global conformal mapping [33]. In these applications, the
objective function can be nonconvex, nonsmooth, or both. Examples include the piecewise linear function,
the ℓq quasi-norm for q ∈ (0, 1), the Schatten-q (0 < q < 1) [58] quasi-norm f(X) =

∑

i σi(X)q (where σi(X)
denotes the ith largest singular value of X), and the indicator function ιB, where B is a nonconvex set.

The success of these applications can be intriguing, since these applications are far beyond the scope
of the theoretical conditions that ADMM is proved to converge. In fact, even the three-block ADMM can
diverge on a simple convex problem [13]. Nonetheless, we still find that it works well in practice. This has
motivated us to explore in the paper and respond to this question: when will the ADMM type algorithms
converge if the objective function includes nonconvex nonsmooth functions?

We present our Algorithm 1, where Lβ denotes the augmented Lagrangian (2), and show that it converges
for a large class of problems. For simplicity, Algorithm 1 uses the standard ADMM subproblems, which
minimize the augmented Lagrangian Lβ with all but one variable fixed. It is possible to extend them to
inexact, linearized, and/or prox-gradient subproblems as long as a few key principles (cf. §3.1) are preserved.

In this paper, under some assumptions on the objective and matrices, Algorithm 1 is proved to con-
verge. Algorithm 1 is a generalization to the coordinate descent method. By setting A0, A1, . . . , Ap, B to 0,
Algorithm 1 reduces to the cyclic coordinate descent method.
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Algorithm 1 Nonconvex ADMM for (1)

Initialize x0
1, . . . , x

0
p, y

0, w0

while stopping criteria not satisfied do

for i = 0, . . . , p do

xk+1
i ← argminxi

Lβ(xk+1
<i , xi, x

k
>i, y

k , wk);
end for

yk+1 ← argminy Lβ(xk+1, y, wk);

wk+1 ← wk + β
(

Axk+1 + Byk+1
)

;

k ← k + 1;
end while

return xk
1 , . . . , x

k
p and yk.

1.1 Proposed algorithm

Our variable is x := [x0; . . . ;xp] ∈ R
n where n =

∑p
i=0 ni. Let A := [A0 · · · Ap] ∈ R

m×n and Ax :=
∑p

i=0Aixi ∈ R
m. To present our algorithm, we define the augmented Lagrangian:

Lβ(x, y, w) := φ(x, y) + 〈w,Ax +By〉 +
β

2
‖Ax +By‖2. (2)

The proposed Algorithm 1 extends the standard ADMM to multiple variable blocks. It also extends the
coordinate descent algorithms dealing with linear constraints. We let x<i := [x0; . . . ;xi−1] ∈ R

n0+n1+···+ni−1

and x>i := [xi+1; . . . ;xp] ∈ R
ni+1+···+np (clearly, x<0 and x>p are null variables, which may be used for

notational ease). Subvectors x≤i := [x<i, xi] and x≥i are defined similarly. The convergence of Algorithm 1
will be given in Theorems 1 and 2.

1.2 Relation to the augmented Lagrangian method (ALM)

ALM is a widely-used method for solving constrained optimization models [26,45]. It applies broadly to
nonconvex nonsmooth problems. ADMM is an approximation to ALM by sequentially updating each of the
primal variables.

ALM generally uses a sequence of penalty parameters {βk}, which is nondecreasing and possibly un-
bounded. When βk becomes large, the ALM subproblem becomes ill-conditioned. Therefore, using bounded
βk is practically desirable (see [15, Theorem 5.3], [6, Proposition 2.4], or [7, Chapter 7]). For general noncon-
vex and nonsmooth problems, it is well known that βk, k ∈ N is bounded is not enough for the convergence
of ALM [6, Section 2.1]. Proposition 2 below introduces a simple example on which ALM diverges with any
bounded βk. It is surprising, however, that ADMM converges in finite steps for any fixed β > 1 on this
example.

Proposition 1 Consider the problem

minimize
x,y∈R

x2 − y2 (3)

subject to x = y, x ∈ [−1, 1].

It holds that
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1. If {βk|k ∈ N} is bounded, ALM generates a divergent sequence;
2. for any fixed β > 4, ADMM generates a convergent and finite sequence to a solution.

The proof is straightforward and included in the Appendix. ALM diverges because Lβ(x, y, w) does not have
a saddle point, and there is a non-zero duality gap. ADMM, however, is unaffected. As the proof shows,
the ADMM sequence satisfies 2yk = −wk, ∀k. By substituting w ≡ −2y into Lβ(x, y, w), we get a convex
function in (x, y)! Indeed,

ρ(x, y) := Lβ(x, y, w)
∣

∣

w=−2y
= (x2 − y2) + ι[−1,1](x) − 2y(x− y) +

β

2

∣

∣x− y
∣

∣

2
=
β + 2

2
|x− y|2 + ι[−1,1](x),

where ιS is the indicator function of set S (that is, ιS(x) = 0 if x ∈ S; otherwise, equals infinity). It turns
out that ADMM solves (3) by performing the following coordinate descent iteration to ρ(x, y):

{

xk+1 = argminx ρ(x, yk),

yk+1 = yk − β
β2−4

d
dyρ(xk+1, yk).

Our analysis for the general case will show that the primal variable y somehow “controls” the dual variable
w and reduces ADMM to an iteration that is similar to coordinate descent.

1.3 Related literature

The original ADMM was proposed in [24,22]. For convex problems, its convergence was established firstly
in [23] and its convergence rates given in [25,18,19] in different settings. When the objective function is
nonconvex, the recent results [61,30,39] directly make assumptions on the iterates (xk, yk, wk). Hong et al.
[27] deals with the nonconvex separable objective functions for some specific Ai, which forms the sharing and
consensus problem. Li and Pong [34] studied the convergence of ADMM for some special nonconvex models,
where one of the matrices A and B is an identity matrix. Wang et al. [51,52] studied the convergence of the
nonconvex Bregman ADMM algorithm, which includes ADMM as a special case. We review their results
and compare to ours in §4 below.

1.4 Contribution and novelty

The main contribution of this paper is the establishment of the global convergence of Algorithm 1 under
certain assumptions given in Theorems 1 and 2 below. The assumptions apply to largely many nonconvex
and nonsmooth objective functions. The developed theoretical results can be extended to the case where
subproblems are solved inexactly with summable errors. We also allow the primal block variables x1, . . . , xp
to be updated in an arbitrary order as long as x0 is updated first and y is updated last (just before the
w-update). The novelty of this paper can be summarized as follows:

(1) Weaker assumptions. Compared to the related works [61,30,39,27,34,51,52], the convergence condi-
tions in this paper are weaker, extending the ADMM theory to significantly more nonconvex functions
and nonconvex sets. See Table 1. In addition, we allow the primal variables x1, . . . , xp to be updated in
an arbitrary order at each iteration1, which is new in the ADMM literature. We show that most of our

1 This is the best that one hope (except for very specific problems) since [62, Section 1] shows a convex 2-block problem,
which ADMM fails to converge.
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assumptions are necessary by providing counter examples. We also give the first example that causes
ADMM to converge but ALM to diverge.

(2) New examples. By applying our main theorems, we prove convergence for the nonconvex ADMM
applied to the following problems which could not be recovered from previous convergence theory:
– statistical regression based on nonconvex regularizer such as minimax concave penalty(MCP), smoothly

clipped absolute deviation (SCAD), and ℓq quasi-norm;
– minimizing smooth functions subject to norm or Stiefel/Grassmannian manifold constraints;
– matrix decomposition using nonconvex Schatten-q regularizer;
– smooth minimization subject to complementarity constraints.

(3) Novel techniques. We improve upon the existing analysis techniques and introduce new ones.
(a) An induction technique for nonconvex, nonsmooth case. The analysis uses the augmented Lagrangian

as the Lyapunov function: Algorithm 1 produces a sequence of points whose augmented Lagrangian
function values are decreasing and lower bounded. This technique appeared first in [27] and also in
[34,51]. However, it has trouble handling nonsmooth functions. An induction technique is introduced
to overcome this difficulty and extend the current framework to nonconvex, nonsmooth, multi-block
cases. The technique is used in the proof of Lemma 9.

(b) Restricted prox-regularity. Most of the convergence analysis of nonconvex optimization either assumes
or proves the sufficient descent and bounded subgradient properties (c.f., [1,27]). This property is
easily obtainable if the objective is smooth. However, some nonconvex and nonsmooth objectives (e.g.
nonconvex ℓq quasi-norm) violate these properties. We overcome this challenge with the introduced
restricted prox-regularity property (Definition 2). If the objective satisfies such a property, we prove
that the sequence enjoy sufficient descent and bounded subgradients after a finite number of iterations.

(c) More general linear mappings. Most nonconvex ADMM analysis is applied to the primal variables x
and y directly. This requires the matrices A0, A1, . . . , Ap, B to either identity or have full column/row
rank. In this paper, we introduce techniques to work with possibly rank-deficient A0, A1, . . . , Ap, B
(see, for example, Lemma 5). This allows us to ensure convergence of ADMM on some important
applications in signal processing and statistical learning (see §5).

In addition, we use several other techniques that are tailored to relax our convergence assumptions as
much as possible.

1.5 Notation and organization

We denote R as the real number set, R ∪ {+∞} as the extended real number set, R+ as the positive real
number set, and N as the natural number set. Given a matrix X , Im(X) denotes its image, σi(X) denotes
its ith largest singular value. ‖ · ‖ represents the Euclidean norm for a vector or the Frobenius norm for a
matrix. dom(f) denotes the domain of a function f . For any two square matrices A and B with the same
size, A � B means that A−B is positively semi-definite.

The remainder of this paper is organized as follows. Section 2 presents the main convergence analysis.
Section 3 gives the detailed proofs. Section 4 discusses the tightness of the assumptions, the primal variable
update order, and inexact minimization issues. Section 5 applies the developed theorems in some typical
applications and obtains novel convergence results. Finally, Section 6 concludes this paper.
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Table 1 Conditions for ADMM convergence (note: f0, f1, . . . , fp is not required to exist)

Scenario 1 Scenario 2

model
minimize

x=(x0,...,xp),y
φ(x, y) := g(x) +

∑p
i=0 fi(xi) + h(y)

subject to Ax + By = 0

minimize
x,y

φ(x, y)

subject to Ax + By = 0

φ coercive over the feasible set {(x, y) : Ax + By = 0}; see assumption A1

g, h Lipschitz differentiable

φ Lipschitz differentiable
Scenario 1a Scenario 1b

f0 lower semi-continuous ∂f bounded in any bounded set

f1, . . . , fp restricted prox-regular piecewise linear

A, B Im(A) ⊆ Im(B)

solution to each ADMM sub-problem is Lipschitz w.r.t. input (A3)

2 Main results

2.1 Definitions

In our definitions, ∂f denotes the set of general subgradients of f in [46, Definition 8.3]. We call a function
Lipschitz differentiable if it is differentiable and its gradient is Lipschitz continuous. The functions given in
the next two definitions are permitted in our model.

Definition 1 (Piecewise linear function) A function f : R
n → R is piecewise linear if there exist

polyhedra U1, . . . , UK ⊂ R
n, vectors a1, . . . , aK ∈ R

n, and points b1, . . . , bK ∈ R such that
⋃K

i=1 Ui = R
n,

Ui

⋂

Uj = ∅ (∀ i 6= j), and f(x) = aTi x+ bi when x ∈ Ui, i = 1, . . . ,K.

Definition 2 (Restricted prox-regularity) For a lower semi-continuous function f , let M ∈ R+, f :
R

N → R ∪ {∞}, and define the exclusion set

SM := {x ∈ dom(f) : ‖d‖ > M for all d ∈ ∂f(x)}.

f is called restricted prox-regular if, for any M > 0 and bounded set T ⊆ domf , there exists γ > 0 such that

f(y) +
γ

2
‖x− y‖2 ≥ f(x) + 〈d, y − x〉, ∀ x ∈ T \ SM , y ∈ T, d ∈ ∂f(x), ‖d‖ ≤M. (4)

(If T \ SM is empty, (4) is satisfied.)

Definition 2 is related to, but weaker than, the concepts prox-regularity [44], hypomonotonicity [46, Example
12.28] and semi-convexity [40,29,32,42], all of which impose global conditions. Definition 2 only requires (4)
to hold over a subset. As shown in Proposition 1, while prox-regular functions include any convex functions
and any C1 functions with Lipschitz continuous gradients, restricted prox-regular functions further include
a set of non-smooth non-convex functions such as ℓq quasi-norms (0 < q < 1), Schatten-q quasi-norms
(0 < q < 1), and indicator functions of compact smooth manifolds.
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Proposition 1 Examples of (restricted) prox-regular functions The following functions are prox-
regular functions:

(1) convex functions, including indicator functions of convex sets,
(2) C1 smooth functions with L-Lipschitz continuous gradient.

The following functions are restricted prox-regular functions:

(1) ℓq(x) := ‖x‖qq function for q ∈ (0, 1);
(2) Schatten-q quasi-norm: ‖A‖q =

∑n
i=1 σ

q
i , where q ∈ (0, 1) and σi is the ith largest singular value of A;

(3) Indicator functions ιS of a compact C2 manifold, such as the unit sphere in a finite Euclidean space.

Definition 2 introduces functions that do not satisfy (4) globally only because they are asymptotically
“steep” in the exclusion set SM . Such functions include |x|q (0 < q < 1), for which SM has the form
(−ǫM , 0) ∪ (0, ǫM ); the Schatten-q quasi-norm (0 < q < 1), for which SM = {X : ∃i, σi(X) < ǫM} as well
as log(x), for which SM = (0, ǫM ), where ǫM is a constant depending on M . We only need (4) because the
iterates xki of Algorithm 1, for all large k, never enter the exclusion set SM .

2.2 Main theorems

To ensure the boundedness of the sequence (xk, yk, wk), we only need the coercivity of the objective function
within the feasible set.

A1 (coercivity) Define the feasible set F := {(x, y) ∈ R
n+q : Ax+By = 0}. The objective function φ(x, y)

is coercive over this set, that is, φ(x, y) → ∞ if (x, y) ∈ F and ‖(x, y)‖ → ∞;

If the feasible set of (x, y) is bounded, then A1 holds trivially for any continuous objective function. Therefore,
A1 is much weaker than assuming that the objective function is coercive over the entire space R

n+q. The
assumption A1 can be dropped if the boundedness of the sequence can be deducted from other means.

Within the proof, Aix
k
i and Byk often appear in the first order conditions (e.g. see equations (12), (13)).

In order to have a reverse control, i.e., controlling xki , y
k based on Aix

k
i , By

k, we need the following two
assumptions on matrices Ai and B.

A2 (feasibility) Im(A) ⊆ Im(B), where Im(·) returns the image of a matrix;

A3 (Lipschitz sub-minimization paths)
(a) For any fixed x, argminy{φ(x, y) : By = u} has a unique minimizer. H : Im(B) → R

q defined by

H(u) , argminy{φ(x, y) : By = u} is a Lipschitz continuous map.
(b) For i = 0, . . . , p and any x<i, x>i and y, argminxi

{φ(x<i, xi, x>i, y) : Aixi = u} has a unique

minimizer and Fi : Im(Ai) → R
ni defined by Fi(u) , argminxi

{φ(x<i, xi, x>i, y) : Aixi = u} is a
Lipschitz continuous map.

Moreover, the above Fi and H have a universal Lipschitz constant M̄ > 0.

These two assumptions allow us to control xki , y
k by Aix

k
i , By

k as in Lemma 1.

Lemma 1 It holds that, ∀k1, k2 ∈ N,

‖yk1 − yk2‖ ≤ M̄‖Byk1 −Byk2‖, (5)

‖xk1

i − xk2

i ‖ ≤ M̄‖Aix
k1

i −Aix
k2

i ‖, i = 0, 1, . . . , p, (6)

where M̄ is given in A3.
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They weaken the full column rank assumption typically imposed on matrices Ai and B. When Ai and B
have full column rank, their null spaces are trivial and, therefore, Fi, H reduce to linear operators and satisfy
A3. However, the assumption A3 allows non-trivial null spaces and holds for more functions. For example,
if a function f is a C2 with its Hessian matrix H bounded everywhere σ1I � H � σ2I (σ1 > σ2 > 0), then
F satisfies A3 for any matrix A. If the uniqueness fails to hold, i.e., there exists y1, y2 such that By1 = By2
and φ(x, y1) = φ(x, y2), then the augmented Lagrangian cannot distinguish them, causing troubles to the
boundedness of the sequence.

H(u∗) + Null(B)

H(u∗)
H(u)

sub-minimization path

Fig. 1 Illustration of the assumption A3, which assumes that H(u) = argmin{h(y) : By = u} is Lipschitz [47].

As for the objective function, we consider two different scenarios:

– Theorem 1 considers the scenario where x and y are decoupled in the objective function;
– Theorem 2 considers the scenario where x and y are possibly coupled but their function φ(x, y) is Lipschitz

differentiable.

The model in the first scenario is

minimize
x0,x1,...,xp,y

f(x0, x1, . . . , xp) + h(y) (7)

subject to A0x0 +A1x1 + · · · +Apxp +By = b,

where the function f : Rn → R ∪ {∞} (n =
∑p

i=0 ni) is proper, continuous, and possibly nonsmooth, and
the function h : Rq → R is proper and differentiable. Both f and h can be nonconvex.

Theorem 1 Suppose that A1-A3 and the following assumptions hold.

A4 (objective-f regularity) f has the form

f(x) := g(x) +

p
∑

i=0

fi(xi)

where
(i) g(x) is Lipschitz differentiable with constant Lg,

(ii) Either
a. f0 is lower semi-continuous, fi(xi) is restricted prox-regular (Definition 2) for i = 1, . . . , p; Or,
b. The supremum sup{‖d‖ : x0 ∈ S, d ∈ ∂f0(x0)} is bounded for any bounded set S, fi(xi) is

continuous and piecewise linear (Definition 1) for i = 1, . . . , p;
A5 (objective-h regularity) h(y) is Lipschitz differentiable with constant Lh;
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Then, Algorithm 1 converges subsequently for any sufficiently large β (the lower bound is given in Lemma
9), that is, starting from any x01, . . . , x

0
p, y

0, w0, it generates a sequence that is bounded, has at least one limit
point, and that each limit point (x∗, y∗, w∗) is a stationary point of Lβ, namely, 0 ∈ ∂Lβ(x∗, y∗, w∗).

In addition, if Lβ is a Kurdyka- Lojasiewicz (K L) function [37,8,1], then (xk, yk, wk) converges globally2

to the unique limit point (x∗, y∗, w∗).

Assumptions A4 and A5 regulate the objective functions. None of the functions needs to be convex. f0 can
be any lower semi-continuous function, and the non-Lipschitz differentiable parts f1, . . . , fn of f shall satisfy
either Definition 1 or Definition 2. Under Assumptions A4 and A5, the augmented Lagrangian function Lβ

is lower semi-continuous.
It will be easy to see, from our proof in Section 3.3, that the Lipschitz differentiable assumption on g can

be relaxed to hold just in any bounded set, since the boundedness of {xk} is established before that property
is used in our proof. Consequently, g can be functions like ex, whose derivative is not globally Lipschitz.

Functions satisfying the K L inequality include real analytic functions, semi-algebraic functions and locally
strongly convex functions (more information can be referred to Sec. 2.2 in [60] and references therein).

In the second scenario, x and y can be coupled in the objective as shown in (1), but the objective needs
to be smooth.

Theorem 2 Suppose that A1-A3 hold and φ in (1) is Lipschitz differentiable with constant Lφ. Then,
Algorithm 1 has the same subsequential and global convergence results as stated in Theorem 1.

Although Theorems 1 and 2 impose different conditions on the objective functions, their proofs are similar.
Hence, we will focus on proving Theorem 1 first and leave the proof of Theorem 2 to the Appendix.

3 Proof

3.1 Keystones

The following properties hold for Algorithm 1 under our assumptions. Here, we first list them and present
Proposition 2, which establishes convergence assuming these properties. Then in the next two subsections,
we prove these properties.

P1 (Boundedness) {xk, yk, wk} is bounded, and Lβ(xk, yk, wk) is lower bounded.
P2 (Sufficient descent) There is a constant C1(β) > 0 such that for all sufficiently large k, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1) ≥ C1(β)
(

‖B(yk+1 − yk)‖2 +

p
∑

i=1

‖Ai(x
k
i − xk+1

i )‖2
)

. (8)

P3 (Subgradient bound) There exists C2(β) > 0 and dk+1 ∈ ∂Lβ(xk+1, yk+1, wk+1) such that

‖dk+1‖ ≤ C2(β)
(

‖B(yk+1 − yk)‖ +

p
∑

i=1

‖Ai(x
k+1
i − xki )‖

)

. (9)

It is our intention to start i at 1, thus skipping the x0-block, in (8) and (9).

2 ”Globally” here means regardless of where the initial point is.
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P4 (Limiting continuity) If (x∗, y∗, w∗) is the limit point of a sub-sequence (xks , yks , wks) for s ∈ N, then
Lβ(x∗, y∗, w∗) = lims→∞ Lβ(xks , yks , wks).

The proposition below is standard and not new though it does not appear exactly in the literature.

Proposition 2 Suppose that when an algorithm is applied to the problem (7), its sequence (xk, yk, wk)
satisfies P1–P4. Then, the sequence has at least a limit point (x∗, y∗, w∗), and any limit point (x∗, y∗, w∗) is
a stationary point. That is, 0 ∈ ∂Lβ(x∗, y∗, w∗), or equivalently,

0 = Ax∗ +By∗, (10a)

0 ∈ ∂f(x∗) + ATw∗, (10b)

0 ∈ ∂h(y∗) +BTw∗. (10c)

Furthermore, the running best rates3 of the sequences {‖B(yk+1 − yk)‖2 +
∑p

i=1 ‖Ai(x
k
i − xk+1

i )‖2} and
{‖dk+1‖} are o( 1

k ) and o( 1√
k

), respectively. Moreover, if Lβ is a K L function, then (xk, yk, wk) converges

globally to the unique point (x∗, y∗, w∗).

Proof The proof is standard. Similar steps are found in, for example, [1,60].
By P1, the sequence (xk, yk, wk) is bounded, so there exist a convergent subsequence and a limit point,

denoted by (xks , yks , wks)s∈N → (x∗, y∗, w∗) as s → +∞. By P1 and P2, Lβ(xk, yk, wk) is monotonically
nonincreasing and lower bounded, and therefore ‖Aix

k
i −Aix

k+1
i ‖ → 0 and ‖Byk −Byk+1‖ → 0 as k → ∞.

Based on P3, there exists dk ∈ ∂Lβ(xk, yk, wk) such that ‖dk‖ → 0. In particular, ‖dks‖ → 0 as s → ∞.
Based on P4, Lβ(x∗, y∗, w∗) = lims Lβ(xks , yks , wks). By definition of general subgradient [46, Definition
8.3], we have 0 ∈ ∂Lβ(x∗, y∗, w∗).

The running best rate of the sequence {‖B(yk+1−yk)‖2+
∑p

i=1 ‖Ai(x
k
i −x

k+1
i )‖2} can be easily obtained

via taking advantage of [20, Lemma 1.2] or [31, Theorem 3.3.1]. By (9), it is obvious that the running best
rate of the sequence {‖dk+1‖} is o( 1√

k
).

Similar to the proof of Theorem 2.9 in [1], we can claim the global convergence of the considered sequence
(xk, yk, wk)k∈N under the K L assumption of Lβ . ⊓⊔

In P2, the sufficient descent inequality (8) is only required for any sufficiently large k, not all k. In our
analysis, P1 gives subsequence convergence, P2 measures the augmented Lagrangian descent, and P3 bounds
the subgradient by total point changes. The reader may still obtain P1–P4 when generalizing Algorithm 1,
for example, by replacing the direct minimization subproblems to prox-gradient or inexact subproblems and
by relaxing the ordering in which the primal variables are updated.

3.2 Preliminaries

In this subsection, we give some useful lemmas that will be used in the main proof. To save space, throughout
this section we assume assumptions A1–A5 hold, and let

(x+, y+, w+) := (xk+1, yk+1, wk+1). (11)

In addition, we let A<sx<s :=
∑

i<sAixi and, in a similar fashion, A>sx>s :=
∑

i>sAixi.

3 A nonnegative sequence ak induces its running best sequence bk = min{ai : i ≤ k}; therefore, ak has running best rate of
o(1/k) if bk = o(1/k).
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Lemma 2 If β > M̄2Lh (M̄ is defined in A3), all the subproblems in Algorithm 1 are well defined.

This lemma is on its own, so we leave its proof to the appendix.

Lemma 3 (bound dual by primal) Let λ++(BTB) be the smallest strictly-positive eigenvalue of BTB,

C , LhM̄λ
−1/2
++ (BTB). For all k ∈ N, it holds that

(a) BTwk = −∇h(yk).
(b) ‖w+ − wk‖ ≤ C‖By+ −Byk‖.

Proof Part (a) follows directly from the optimality condition of yk: 0 = ∇h(yk)+BTwk−1+βBT (Axk+Byk),
and wk = wk−1 + β

(

Axk +Byk
)

.
Then let us prove Part (b). Since w+ − wk = β(Ax+ +By+) ∈ Im(B), we get

‖w+ − wk‖ ≤ λ
−1/2
++ (BTB)‖BT (w+ − wk)‖ = λ

−1/2
++ (BTB)‖∇h(y+) −∇h(yk)‖ ≤ C‖By+ −Byk‖.

The last inequality follows from the Lipschitz property of ∇h and Lemma 1. ⊓⊔

3.3 Main proof

This subsection proves Theorem 1 for Algorithm 1 under Assumptions A1–A5. For all k ∈ N and i = 0, . . . , p,
because of the optimality of xki , we can introduce the following general subgradients dki and d̄ki ,

d̄ki := −(AT
i w

+ + βρki ) ∈ ∂if(x+<i, x
+
i , x

k
>i), (12)

dki := −∇ig(x+<i, x
+
i , x

k
>i) + d̄ki ∈ ∂fi(x

+
i ), (13)

where
ρki := AT

i (A>ix
k
>i −A>ix

+
>i) +AT

i (Byk −By+).

The next two lemmas estimate the descent of Lβ(x, y, w) at each iteration.

Lemma 4 (descent of Lβ during xi update) The iterates in Algorithm 1 satisfy

1. Lβ(x+<i,x
k
i , x

k
>i, y

k, wk) ≥ Lβ(x+<i,x
+
i , x

k
>i, y

k, wk), i = 0, . . . , p;

2. Lβ(xk, yk, wk) ≥ Lβ(x+, yk, wk);

3. Lβ(xk, yk, wk) − Lβ(x+, yk, wk) =
∑p

i=0 ri, where

ri := f(x+<i, x
k
i , x

k
>i) − f(x+<i, x

+
i , x

k
>i) − 〈d̄ki , x

k
i − x+i 〉 +

β

2
‖Aix

k
i −Aix

+
i ‖

2 ≥ 0, (14)

where d̄ki is defined in (12).
4. For i = 1, . . . , p (without the block i = 0), if

fi(x
k
i ) +

γi
2
‖xki − x+i ‖

2 ≥ fi(x
+
i ) + 〈dki , x

k
i − x+i 〉, (15)

holds with constant γi ≥ 0 (later, this condition will be shown to hold), then we have

ri ≥
β − γiM̄

2 − LgM̄
2

2
‖Aix

k
i −Aix

+
i ‖

2, (16)

where the constants Lg and M̄ are defined in Assumptions A4 and A3, respectively.
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Proof Part 1 follows directly from the minimization subproblems, which give x+i . Part 2 is a result of

Lβ(xk, yk, wk) − Lβ(x+, yk, wk) =

p
∑

i=0

(

Lβ(x+<i, x
k
i , x

k
>i, y

k, wk) − Lβ(x+<i, x
+
i , x

k
>i, y

k, wk)
)

,

and part 1. Part 3: Each term in the sum equals f(x+<i, x
k
i , x

k
>i) − f(x+<i, x

+
i , x

k
>i) plus

〈wk, Aix
k
i −Aix

+
i 〉 +

β

2
‖A<ix

+
<i +Aix

k
i +A>ix

k
>i +Byk‖2 −

β

2
‖A<ix

+
<i +Aix

+
i +A>ix

k
>i +Byk‖2

= 〈wk, Aix
k
i −Aix

+
i 〉 + 〈β

(

A<ix
+
<i +Aix

+
i +A>ix

k
>i +Byk

)

, Aix
k
i −Aix

+
i 〉 +

β

2
‖Aix

k
i −Aix

+
i ‖

2

= 〈AT
i w

+ + βρki , x
k
i − x+i 〉 +

β

2
‖Aix

k
i −Aix

+
i ‖

2

where the first equality follows from the cosine rule: ‖b + c‖2 − ‖a + c‖2 = ‖b − a‖2 + 2〈a + c, b − a〉 with
b = Aix

k
i , a = Aix

+
i , and c = A<ix

+
<i +A>ix

k
>i +Byk.

Part 4. Let dki be defined in (13). From the inequalities (6) and (15), we get

fi(x
k
i ) − fi(x

+
i ) − 〈dki , x

k
i − x+i 〉 ≥ −

γi
2
‖xki − x+i ‖

2 ≥ −
γiM̄

2

2
‖Axki −Ax+i ‖

2. (17)

By the assumption A4 part (i) and (6), we also get

g(x+<i, x
k
i , x

k
>i) − g(x+<i, x

+
i , x

k
>i) − 〈∇ig(x+<i, x

+
i , x

k
>i), x

k
i − x+i 〉 ≥ −

Lg

2
‖xki − x+i ‖

2 ≥ −
LgM̄

2

2
‖Axki −Ax+i ‖

2.

(18)

Finally, rewriting the expression of ri and applying (17) and (18) we obtain

ri =
(

g(x+<i, x
k
i , x

k
>i) − g(x+<i, x

+
i , x

k
>i) − 〈∇ig(x+<i, x

+
i , x

k
>i), x

k
i − x+i 〉

)

+
(

fi(x
k
i ) − fi(x

+
i ) − 〈dki , x

k
i − x+i 〉

)

+
β

2
‖Axki −Ax+i ‖

2

≥
β − γiM̄

2 − LgM̄
2

2
‖Aix

k
i −Aix

+
i ‖

2.

⊓⊔

The assumption (15) in the part 4 of Lemma 4 is the same as (4) in Definition 2 except the latter holds for
more functions due to the exclusion set SM . In order to relax (15) to (4), we must find M and specify the
exclusion set SM . (This complicates our analysis but is necessary for many nonconvex functions such as the
ℓq quasi-norm.) We will finally achieve this relaxation in Lemma 9.

Lemma 5 (descent of Lβ due to y and w updates) If β > 2(LhM̄
2 + 1 + C), where C is the constant

specified in Lemma 3 and Lh is the Lipschitz constant in Assumption A5, then for any k ∈ N

Lβ(x+, yk, wk) − Lβ(x+, y+, w+) ≥ ‖By+ −Byk‖2. (19)
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Proof Because β/2 > LhM̄
2 + 1 + C and β−1 < 1/C, we know

β

2
−
C2

β
−
LhM̄

2

2
> LhM̄

2 + 1 + C − C −
LhM̄

2

2
> 1. (20)

From the assumption A5 and Lemma 3(b), it follows

Lβ(x+, yk, wk) − Lβ(x+, y+, w+)

= h(yk) − h(y+) + 〈w+, Byk −By+〉 +
β

2
‖By+ −Byk‖2 −

1

β
‖w+ − wk‖2 (21)

≥ −
LhM̄

2

2
‖By+ −Byk‖2 +

β

2
‖By+ −Byk‖2 −

C2

β
‖By+ −Byk‖2 (22)

≥ ‖By+ −Byk‖2,

The first inequality holds because

h(yk) − h(y+) +
〈

w+, Byk −By+
〉

=h(yk) − h(y+) +
〈

BTw+, yk − y+
〉

=h(yk) − h(y+) −
〈

∇h(y+), yk − y+
〉

= −
Lh

2
‖yk − y+‖2 (Lipschitz differentiable of −h)

= −
LhM̄

2
‖Byk −By+‖2.

The last inequality holds because of (20). ⊓⊔

Based on Lemma 4 and Lemma 5, we now establish the following results:

Lemma 6 (Monotone, lower–bounded Lβ and (P1) bounded sequence) If β > 2(LhM̄
2 + 1 + C)

as in Lemma 5, then the sequence (xk, yk, wk) generated by Algorithm 1 satisfies

1. Lβ(xk, yk, wk) ≥ Lβ(x+, y+, w+).
2. Lβ(xk, yk, wk) is lower bounded for all k ∈ N and converges as k → ∞.
3. {xk, yk, wk} is bounded.

Proof Part 1. It is a direct result of Lemma 4 part 2, and Lemma 5.
Part 2. By the assumption A2, there exists y′ such that Axk + By′ = 0 and y′ = H(By′). By the

assumptions A1–A2, we have

f(xk) + h(y′) ≥ min
x,y

{f(x) + h(y) : Ax +By = 0} > −∞.

Then we have

Lβ(xk, yk, wk) = f(xk) + h(yk) + 〈BTwk, yk − y′〉 +
β

2
‖Axk +Byk‖2

= f(xk) + h(yk) + 〈∇h(yk), y′ − yk〉 +
β

2
‖Axk +Byk‖2

(Lemma 1,∇h is Lipschitz) ≥ f(xk) + h(y′) +
β − LhM̄

2

2
‖Axk + Byk‖2

> −∞.
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Part 3. From parts 1 and 2, Lβ(xk, yk, wk) is upper bounded by Lβ(x0, y0, w0) and so are f(xk) + h(y′)
and ‖Axk + Byk‖2. By the assumption A1, {xk} is bounded and, therefore, {Byk} is also bounded. By
Lemma 1, we know that {yk} is bounded. By Lemma 3, {BTwk} is also bounded. Similar to the proof in
Lemma 3(b), wk − w0 ∈ Im(B). Therefore, the boundedness of BTwk implies the boundedness of wk. ⊓⊔

It is important to note that, once β is larger than the threshold, the constants and bounds in Lemmas 5
and 6 only rely on the objective f(x) + h(y), matrices A, B, and the initial point (x0, y0, w0) but will be
independent of β, which is essential to the proof of Lemma 9 below.

Lemma 7 (Asymptotic regularity) limk→∞ ‖Byk −By+‖ = 0 and limk→∞ ‖wk − w+‖ = 0.

Proof The first result follows directly from Lemmas 4, 5, and 6 (part 2), and the second result from Lemma
3 part (b).

The lemma below corresponds to the assumption A4, part(ii)-b.

Lemma 8 (Boundedness for piecewise linear fi’s) Consider the case that fi, i = 1, . . . , p, are piece-
wise linear. There exist constants M∗ > 0 (independent of β), M̄ and Lg defined in A3 and A4, respectively,
for any ǫ0 > 0, when β > max{2(M∗ + 1)/ǫ20, LhM̄

2 + 1 + C}, there exists kpl ∈ N such that the followings
hold for all k > kpl:

1. ‖Aix
+
i −Aix

k
i ‖ < ǫ0 and ‖x+i − xki ‖ < M̄ǫ0, i = 0, . . . , p;

2. ‖∇g(xk) −∇g(x+)‖ < (p+ 1)M̄Lgǫ0.

Proof Part 1. Since the number K of the linear pieces of fi is finite for i = 1, . . . , p, ∂f0 is bounded for x in
any bounded set S, and {xk, yk, wk} is bounded (see Lemma 6), ∂if(x+<i, x

+
i , x

k
>i) are uniformly bounded

for all k and i. Since d̄ki ∈ ∂if(x+<i, x
+
i , x

k
>i) (see (12)), the first three terms of ri (see (14)) are bounded by

a universal constant M∗ independent of β:

f(x+<i, x
k
i , x

k
>i) − f(x+<i, x

+
i , x

k
>i) − 〈d̄ki , x

k
i − x+i 〉 ∈ [−M∗,M∗].

Hence, as long as β > 2(M∗ + 1)/ǫ20,

‖Aix
+
i −Aix

k
i ‖ ≥ ǫ0 ⇒ ri ≥

β

2
ǫ20 −M∗ > 1 (23)

⇒ Lβ(x+<i,x
k
i , x

k
>i, y

k, wk) − 1 > Lβ(x+<i,x
+
i , x

k
>i, y

k, wk). (24)

By Lemmas 4, 5, and 6, this means Lβ(xk, yk, wk) − 1 > Lβ(x+, y+, w+). Since {Lβ(xk, yk, wk)} is lower
bounded, ‖Aix

+
i −Aix

k
i ‖ ≥ ǫ0 can only hold for finitely many k. Thus for i = 1, . . . , p, we have

‖Aix
+
i − Aix

k
i ‖ < ǫ0.

As for i = 0, because of Lemma 7, we know

lim sup
k

‖A0x
+
0 −A0x

k
0‖ ≤ lim sup

k
‖

p
∑

i=1

(Aix
+
i −Aix

k
i ) +By+ −Byk‖ ≤ pǫ0.

Thus for large k > kpl, ‖A0x
+
0 −A0x

k
0‖ ≤ (p+ 1)ǫ0 By Lemma 1, we know Part 1 is correct.

Part 2 follows from ‖∇g(xk) −∇g(x+)‖ ≤ Lg‖xk − x+‖, part 1 above, and Lemma 1. ⊓⊔
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Lemma 9 (Sufficient descent property P2) Suppose

β > max
{

2(M + 1)/ǫ20, LhM̄
2 + 1 + C,

p
∑

i=1

γiM̄
2 + LgM̄

2
}

,

where γi (i = 1, . . . , p) and ǫ0 are constants only depending on f , M > M∗ is a constant independent of β.
Then, Algorithm 1 satisfies the sufficient descent property P2.

It is worth noting that the proof below will be much simpler if there are only two blocks, instead of p + 2,
or if we assume prox-regular functions fi instead of the less restrictive restricted prox-regular functions.

Proof We will show the lower bound (16) for i = 1, . . . , p, which, along with Lemma 4 part 3 and Lemma 5,
establishes the sufficient descent property P2.

We shall obtain the lower bound (16) in the backward order i = p, (p− 1), . . . , 1. In light of Lemmas 4,
5, and 6, each lower bound (16) for ri gives us ‖Aix

k
i − Aix

+
i ‖ → 0 as k → ∞. We will first show (16) for

rp. Then, after we do the same for rp−1, . . . , ri+1, we will get ‖Ajx
k
j −Ajx

+
j ‖ → 0 for j = p, p− 1, . . . , i+ 1,

using which we will get the lower bound (16) for the next ri. We must take this backward order since ρki (see
(13)) includes the terms Ajx

k
j −Ajx

+
j for j = p, p− 1, . . . , i+ 1.

Our proof for each i is divided into two cases. In Case 1, fi’s are restricted prox-regular (cf. Definition
2), we will get (16) for ri by validating the condition (15) in Lemma 4 part 4 for fi. In Case 2, fi’s are
piecewise linear (cf. Definition 1), we will show that (15) holds for γi = 0 for k ≥ kpl, and following the proof
of Lemma 4 part 4, we directly get (16) with γi = 0.

Base step, take i = p.
Case 1) fp is restricted prox-regular. At i = p, the inclusion (13) simplifies to

dkp := −
(

∇pg(x+) +AT
p w

+
)

− βAT
p (Byk −By+) ∈ ∂fp(x+p ). (25)

By Lemma 6 part 3 and the Lipschitz continuity of ∇g, there exists a constant M > M∗ (independent of β)
such that

‖∇pg(x+) +AT
p w

+‖ ≤M − 1.

By Lemma 7, there exists kp ∈ N such that, for k > kp,

β‖AT
p (Byk −By+)‖ ≤ 1.

Then, we apply the triangle inequality to (25) to obtain

‖dkp‖ ≤ ‖∇pg(x+) +AT
p w

+‖ + β‖AT
p (Byk −By+)‖ ≤M.

Use this M to define SM in Definition 2, which qualifies fp for (4) and thus validates the assumption in
Lemma 4 part 4, proving the lower bound (16) for rp. As already argued, we get limk→∞ ‖Apx

k
p−Apx

+
p ‖ = 0.

Case 2): fi’s are piecewise linear (cf. Definition 1). From ‖Byk −By+‖ → 0 and ‖wk −w+‖ → 0 (Lemma 7)
and ‖∇g(xk) −∇g(x+)‖ < (p+ 1)M̄Lgǫ0 (Lemma 8). In light of (25), dkp ∈ ∂fp(x+p ), d+p ∈ ∂fp(xk+2

p ) such

that ‖d+p − dkp‖ < 2(p+ 1)M̄Lgǫ0 for all sufficiently large k.

Note that ǫ0 > 0 can be arbitrarily small. Given dkp ∈ ∂fp(x+p ) and d+p ∈ ∂fp(xk+2
p ), when the following

two properties both hold: (i) ‖d+p − dkp‖ < 2(p + 1)M̄Lgǫ0 and (ii) ‖x+p − xkp‖ < M̄ǫ0 (Lemma 8 part 1),

we can conclude that x+p and xkp belongs to the same U j . Suppose x+p ∈ U j1 and xkp ∈ U j2 . Because of (ii),
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the polyhedron Uj1 is adjacent to the polyhedron Uj2 or j1 = j2. If U j1 and U j2 are adjacent (j1 6= j2) and
aj1 = aj2 , then we can concatenate U j1 and U j2 together and all the following analysis carries through. If
U j1 and U j2 are adjacent (j1 6= j2) and aj1 6= aj2 , then property (i) is only possible if at least one of x+p , x

k
p

belongs to their intersection U j1 ∩ U j2 so we can include both points in either U j1 or U j2 , again giving us
j1 = j2. Since x+p , x

k
p ∈ U j1 and dkp ∈ ∂fp(x+p ), from the convexity of the linear function, we have

fp(xkp) − fp(x+p ) − 〈dkp, x
k
p − x+p 〉 ≥ 0,

which strengthens the inequality (15) for i = p with γp = 0. By following the proof for Lemma 4 part 4, we
get the lower bound (16) for rp with γp = 0. As already argued, we get limk→∞ ‖Apx

k
p −Apx

+
p ‖ = 0.

Inductive step, let i ∈ {p − 1, . . . , 1} and make the inductive assumption: limk→∞ ‖Ajx
k
j − Ajx

+
j ‖ = 0,

j = p, . . . , i+ 1, which together with limk→∞ ‖Byk −By+‖ = 0 (Lemma 7) gives limk→∞ ρki = 0 (defined in
(13)).

Case 1) fi is restricted prox-regular. From (13), we have

dki = −
(

∇ig(x+<i, x
+
i , x

k
>i) +AT

p w
+
)

− βρki ∈ ∂fi(x
+
i ). (26)

Following a similar argument in the case i = p above, there exists ki ∈ N such that, for k > max{kp, kp−1, . . . , ki},
we have

‖dki ‖ ≤ ‖∇ig(x+<i, x
+
i , x

k
>i) +AT

p w
+‖ + β‖ρki ‖ ≤M.

Use this M to define SM in Definition 2 for fi and thus validates the assumption in Lemma 4 part 4 for fi.
Therefore, we get the lower bound (16) for ri and thus limk ‖Aix

k
i −Aix

+
i ‖ = 0.

Case 2): fi’s are piecewise linear (cf. Definition 1). The argument is the same as in the base step for case
2, except at its beginning we must use dki in (26) instead of dkp in (25). Therefore, we omit this part.

Finally, by combining ri ≥
β−γiM̄

2−LgM̄
2

2 ‖Aix
k
i − Aix

+
i ‖

2, for i = 1, . . . , p, with Lemmas 4 and 5, we
establish the sufficient descent property P2.

⊓⊔

Lemma 10 (Subgradient bound property P3) Algorithm 1 satisfies Property P3.

Proof Because f(x) = g(x) +
∑p

i=1 fi(xi), we know

∂Lβ(x+, y+, w+) =

({

∂Lβ

∂xi

}p

i=1

,∇yLβ ,∇wLβ

)

(x+, y+, w+).

In order to prove the lemma, we only need to show that each block of ∂Lβ can be controlled by some constant

depending on β. Therefore, it suffices to prove for s = 0, . . . , p, there exists ds ∈
∂Lβ

∂xs
(x+, y+, w+) such that

‖ds‖ ≤ (σmax(As)β + LhM̄ + σmax(As)C)

(

p
∑

i=1

‖Aix
+
i −Aix

k
i ‖ + ‖By+ −Byk‖

)

, (27)

and

‖∇wLβ(x+, y+, w+)‖ ≤
C

β
‖By+ −Byk‖, (28)

‖∇yLβ(x+, y+, w+)‖ ≤ LhM̄‖By+ −Byk‖. (29)
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In order to prove (28), we have ∇wLβ(x+, y+, w+) = Ax++By+ = 1
β (w+−wk). By Lemma 3, ‖∇wLβ(x+, y+, w+)‖ ≤

C
β ‖By

+ − Byk‖. In order to prove (29), notice that ∇yLβ(x+, y+, w+) = BT (w+ − wk) and apply Lemma

3. In order to prove (27), observe that for s = 0, . . . , p,

∂Lβ

∂xs
(x+, y+, w+)

= ∇sg(x+) + ∂fs(x
+
s ) +AT

s w
+ + βAT

s

(

Ax+ +By+
)

(30)

= ∇sg(x+≤s, x
k
>s) + ∂fs(x

+
s ) +AT

s w
k + βAT

s

(

A≤sx
+
≤s +A>sx

k
>s +Byk

)

(31)

+AT
s (w+ − wk) + βAT

s

(

A>sx
+
>s −A>sx

k
>s +By+ −Byk

)

+ ∇sg(x+) −∇sg(x+≤s, x
k
>s). (32)

For the parenthesized term in (31), the first order optimal condition for x+s yields

0 ∈ ∇sg(x+≤s, x
k
>s) + ∂fs(x

+
s ) +AT

s w
k + βAT

s

(

A≤sx
+
≤s +A>sx

k
>s +Byk

)

.

Thus for s = 0, . . . , p, we can have ds as in (33),

ds :=
(

AT
s (w+ − wk) + βAT

s

(

A>sx
+
>s −A>sx

k
>s +By+ −Byk

)

+ ∇sg(x+) −∇sg(x+≤s, x
k
>s)
)

(33)

∈
∂Lβ

∂xs
(x+, y+, w+).

Note that for any s, xk0 does not appear in any ds. w
+ −wk, A>sx

+
>s −A>sx

k
>s, By

+−Byk, and ∇sg(x+)−
∇sg(x+≤s, x

k
>s) can all be bounded by

(
∑p

i=1 ‖Aix
+
i −Aix

k
i ‖ + ‖By+ −Byk‖

)

. Therefore, if we define the
largest singular value of As to be σmax(As), we have the bound for ds:

‖ds‖ ≤
(

σmax(As)β + LhM̄ + σmax(As)C
)

(

p
∑

i=1

‖Aix
+
i −Aix

k
i ‖ + ‖By+ −Byk‖

)

.

That completes the proof. ⊓⊔

Proof (of Theorem 1) .

Lemmas 5, 9, and 10 establish the properties P1–P3. In order to show P4, we first note that Lβ(xks , yks , wks)
is monotonic nonincreasing due to Lemma 9, which implies the convergence of Lβ(xks , yks , wks). Since Lβ

is lower semicontinuous (l.s.c.), we have lims→∞ Lβ(xks , yks , wks) ≥ Lβ(x∗, y∗, w∗). Because the only poten-
tially discontinuous terms in Lβ are f0, . . . , fp, we have

lim
s→∞

Lβ(xks , yks , wks) − Lβ(x∗, y∗, w∗) ≤
∑

i

lim sup
s→∞

fi(x
ks

i ) − fi(x
∗
i ).

However, because xks

i is the optimal solution for the sub-problem minxi
Lβ(xks

<i, xi, x
ks−1
>i , yks−1, wks−1),

we know Lβ(xks+1
<i , x∗i , x

ks

>i, y
ks−1, wks−1) ≥ Lβ(xks

≤i, x
ks−1
>i , yks−1, wks−1). Taking the limit over their differ-

ence, we have lim sups→∞ fi(x
ks

i ) − fi(x
∗
i ) ≤ 0. That completes the proof for P4. Theorem 1 follows from

Proposition 2. ⊓⊔
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4 Discussion

4.1 Tightness of assumptions

In this section, we demonstrate the tightness of the assumptions in Theorem 1 and compare them with
related recent works. We only focus on results that do not make assumptions on the iterates themselves.

Hong et al. [27] uses ∇h(yk) to bound wk. This inspired our analysis. They studied ADMM for nonconvex
consensus and sharing problem. Their formulation is

minimize
x0,...,xp,y

p
∑

i=0

fi(xi) + h(y)

subject to

p
∑

i=0

Aixi − y = 0.

where h is Lipschitz differentiable, Ai has full column rank and fi is Lipschitz differentiable or convex for
i = 0, . . . , p. Moreover, dom(fi) is required to be a closed bounded set for i = 0, . . . , p.

The boundedness of dom(fi) implies the assumption A1. The requirement of Ai for i = 1, . . . , p and
B = −I implies A2 and A3. Moreover, f(x0, . . . , xp) =

∑

i fi(xi), which clearly implies A4. h satisfies A5,
too. This shows our theorem could fully cover their case.

Wang et al. [51] studies the so-called Bregman ADMM and includes the standard ADMM as a special
case. The following formulation is considered:

minimize
x0,...,xp,y

p
∑

i=0

fi(xi) + h(y)

subject to

p
∑

i=0

Aixi +By = 0.

By setting all the auxiliary functions in their algorithm to zero, their assumptions for the standard
ADMM reduce to

(a) B is invertible.
(b) h is Lipschitz differentiable and lower bounded. There exists β0 > 0 such that h−β0∇h is lower bounded.
(c) f =

∑p
i=0 fi(xi) where fi, i = 0, . . . , p is strongly convex.

It is easy to see that (a), (b) and (c) imply assumptions A1 and A3, (a) implies A2, (c) implies A4 and (b)
implies A5. Therefore, their assumptions are stronger than ours. We have much more relaxed conditions on
f , which can have a coupled Lipschitz differentiable term with separable restricted prox-regular or piecewise
linear parts. We also have a simpler assumption on the boundedness without using h−∇h.

Li and Pong [34] studies ADMM and its proximal version for nonconvex objectives. Their formulation is

minimize
x0,y

f0(x0) + h(y)

subject to x0 +By = 0.

Their assumptions for ADMM are
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(1) f0 is lower semi-continuous.
(2) h ∈ C2 with bounded Hessian matrix c2I � ∇2h � c1I where c2 > c1 > 0.
(3) B is full row rank.
(4) h is coercive and f0 is lower bounded.

The assumptions (3) and (4) imply our assumptions A1 and A4, (3) implies A2 and A3, and (2) implies A5.
Our assumptions on h and the matrices A,B are more general.

In summary, our convergence conditions for ADMM on nonconvex problems are the most general to the
best of our knowledge. It is natural to ask whether our assumptions can be further weakened. We will provide
some examples to demonstrate that, while A1, A4 and A3 can probably be further weakened, A5 and A2
are essential in the convergence of nonconvex ADMM and cannot be completely dropped in general. In [13],
their divergence example is

minimize
x1,x2,y

0 (34a)

subject to





1
1
1



 x1 +





1
1
2



x2 +





1
2
2



 y =





0
0
0



 . (34b)

Another related example is shown in [34, Example 7].

minimize
x1,x2,y

ιS1
(x1) + ιS2

(x2) (35a)

subject to x1 = y (35b)

x2 = y, (35c)

where S1 = {x = (x1, x2) | x2 = 0}, S2 = {(0, 0), (2, 1), (2,−1)}. These two examples satisfy A1 and A4-A5
but fail to satisfy A2. Without A2, for come cases ADMM is incapable to find a feasible point at all, let
alone a stationary point. Therefore, A2 is indispensable.

To see the necessity of A5 (the smoothness of h), consider another divergence example

minimize
x,y

− |x| + |y| (36a)

subject to x = y, x ∈ [−1, 1]. (36b)

For any β > 0, with the initial point (x0, y0, w0) = (− 2
β , 0,−1), we get the sequence (x2k+1, y2k+1, w2k+1) =

( 2
β , 0, 1) and (x2k, y2k, w2k) = (− 2

β , 0,−1) for k ∈ N, which diverges. This problem satisfies all the assump-

tions except A5, without which wk cannot be controlled by yk anymore. Therefore, A5 is also indispensable.
Although the assumptions A2 and A5 seem essential for the convergence of ADMM, other assumptions,

especially the assumption A4, might be further relaxed. Moreover, our result requires the y-block to be
updated at last right before the update of multiplier. Further studies could be carried out to study the case
when a different order is used.

4.2 Primal variables’ update order in ADMM

We discuss about the update order of {xi}
p
i=0 and y in this subsection. Theorem 1 and Theorem 2 apply to

the ADMM in which the primal variables x0, . . . , xp are sequentially updated in a fixed order. With minor
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changes to the proof, both theorems still hold for arbitrary update orders of x1, . . . , xp, possibly different
between iterations, as long as x0 is always the first and y is always the last primal variable to update, just
before w. In particular, x1, . . . , xp could be updated using random scheme or greedy scheme, which may
help avoid low-quality local solutions. Recently, randomized ADMM is considered in papers such as [2,3,
69]. [69] considered the randomly permuted ADMM for solving linear systems, and proved its convergence
in the expectation sense. However, in general, permutation including the last block y could cause ADMM to
diverge (A convex example can be found in [4]). Consider

minimize
x,y∈R

x(1 + y)

subject to x− y = 0.

It is easy to check that, if we fix the update order to either x, y, w or y, x, w for all iterations, Algorithm 1
converges. However, if we alternate between the two update orders, we obtain (with α := 1/β) the diverging
sequence (x2k+1, y2k+1, w2k+1) = (2α(α− 1),−α, α− 1) and (x2k, y2k, w2k) = (−α, 2α(α− 1),−α). Another
divergent example when primal variables’ update order alternates is the following convex and nonsmooth
problem:

minimize
x,y

2|x− 1| + |y| (37a)

subject to x = y. (37b)

4.3 Inexact optimization of subproblems

Note that all subproblems in Algorithm 1 should be solved exactly. This might restrict the wide use of the
algorithm in real applications. Thus, the convergence of the inexact version of Algorithm 1 is discussed here.
We extend the developed convergence results to the following inexact version of Algorithm 1 under some
additional assumptions. More specifically, we assume that the sequence {xk, yk, wk} generated by the inexact
version of Algorithm 1 satisfies

P1’ (Boundedness) {xk, yk, wk} is bounded, and Lβ(xk, yk, wk) is lower bounded;
P2’ (Sufficient descent) there is a nonnegative sequence {ηk} and a constant C1 > 0 such that for all

sufficiently large k, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1) ≥ C1

(

‖B(yk+1 − yk)‖2 +

p
∑

i=1

‖Ai(x
k
i − xk+1

i )‖2
)

− ηk, (38)

P3’ (subgradient bound) and there exists dk+1 ∈ ∂Lβ(xk+1, yk+1, wk+1) such that

‖dk+1‖ ≤ C2

(

‖B(yk+1 − yk)‖ +

p
∑

i=1

‖Ai(x
k+1
i − xki )‖

)

+ ηk. (39)

When
∑

k ηk < ∞, the convergence results in Theorem 1 still hold for this sequence. This is because
Proposition 2 still holds when the error is summable. However, when a specific algorithm is applied to solve
these subproblems inexactly, it might require some additional conditions, and we leave this in the future
work.
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5 Applications

In this section, we apply the developed convergence results to several well-known applications. To the best
of our knowledge, all the obtained convergence results are novel and cannot be recovered from the previous
literature.

A) Statistical learning

Statistical learning models often involve two terms in the objective function. The first term is used to measure
the fitting error. The second term is a regularizer to control the model complexity. Generally speaking, it
can be written as

minimize
x∈Rn

p
∑

i=1

li(Aix− bi) + r(x), (40)

where Ai ∈ R
mi×n, bi ∈ R

mi and x ∈ R
n. Examples of the fitting measure li include least squares, logistic

functions, and other smooth functions. The regularizers can be some sparsity-inducing functions [5,17,63,
65,66,67,68] such as MCP, SCAD, ℓq quasi-norms for 0 < q ≤ 1. Take LASSO as an example,

minimize
x

1

2
‖y −Ax‖2 + λ‖x‖1.

The first term ‖y −Ax‖2 measures the difference between the linear model Ax and outcome y. The second
term ‖x‖1 measures the sparsity of x.

In order to solve (40) using ADMM, we reformulate it as

minimize
x,{zi}p

i=1

r(x) +

p
∑

i=1

li(Aizi − bi), (41)

subject to x = zi, ∀i = 1, . . . , p.

Algorithm 2 gives the standard ADMM algorithm for this problem.

Algorithm 2 ADMM for (41)

Denote z = [z1; z2; · · · ; zp], w = [w1;w2; · · · ;wp].

Initialize x0, z0,w0 arbitrarily;
while stopping criterion not satisfied do

xk+1 ← argminx r(x) + β
2

∑p
i=1(zki +

wk
i
β
− x)2;

for s = 1, . . . , p do

zk+1
s ← argminzs

ls(Aszs − bs) + β
2

(zs +
wk

s
β
− xk+1)2;

wk+1
s = wk

s + β(zk+1
s − xk+1);

end for

k ← k + 1;
end while

return xk.

Based on Theorem 1, we have the following corollary.
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Corollary 1 Let r(x) = ‖x‖qq =
∑

i |xi|
q, 0 < q ≤ 1, SCAD, MCP, or any piecewise linear function, if

i) (Coercivity) r(x) +
∑

i li(Aix+ bi) is coercive;
ii) (Smoothness) For each i = 1, . . . , p, li is Lipschitz differentiable.

then for sufficiently large β, the sequence (xk, zk,wk)generated by Algorithm 2 has limit points and all of its
limit points are stationary points of the augmented Lagrangian Lβ.

Proof Rewrite the optimization to a standard form, we have

minimize
x,{zi}p

i=1

r(x) +

p
∑

i=1

li(Aizi − bi), (42a)

subject to Ex+ Inpz = 0. (42b)

where E = −[In; . . . ; In] ∈ R
np×n, Inp ∈ R

np×np is the identity matrix, and z = [z1; . . . ; zp] ∈ R
np.

Fitting (42) to the standard form (7), there are two blocks (x, z) and B = Inp. f(x) = r(x) and h(z) =
∑p

i=1 li(Aizi − bi).
Now let us check A1–A5. A1 holds because of i). A2 holds because B = Inp. A5 holds because of ii). A3

holds because E and Inp both have full column ranks. If r(x) is piecewise linear, then A4 holds naturally.
If r(x) is MCP

Pγ,λ(x) ,

{

λ|x| − x2

2λ , if |x| ≤ γλ
1
2γλ

2, if |x| ≥ γλ
,

or SCAD

Qγ,λ(x) ,







λ|x|, if |x| ≤ λ

λ|x| − 2γλ|x|−x2−λ2

2γ−2 , if λ < |x| ≤ γλ
1
2 (γ + 1)λ2, if |x| ≥ γλ

.

we can verify that those functions are the maximum of a set of quadratic functions. Then by [59, Example
2.9], we know they are prox-regular. Hence, it remains to verify A4(ii)a that r(x) =

∑

i |xi|
q is restricted

prox-regular. When q = 1, this is trivial; when 0 < q < 1, it has been proved in Proposition 1. This verifies
A4 and completes the proof. ⊓⊔

B) Minimization on compact manifolds

Compact manifolds and their projection operators such as spherical manifolds Sn−1, Stiefel manifolds (the
set of p orthonormal vectors x1, . . . , xp ∈ R

n, p ≤ n) and Grassmann manifolds (the set of subspaces in R
n

of dimension p) often arise in optimization. Some recent studies and algorithms can be found in [57,33,38].
A simple example is:

minimize
x∈Rn

J(x), (43)

subject to ‖x‖2 = 1,

More generally, let S be any compact set. We consider the problem

minimize
x∈Rn

J(x), (44)

subject to x ∈ S,
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which can be rewritten to the following form:

minimize
x,y

ιS(x) + J(y), (45a)

subject to x− y = 0, (45b)

where ιS(·) is the indicator function: ιS(x) = 0 if x ∈ S or ∞ if x 6∈ S. Applying ADMM to solve this
problem, we get Algorithm 3.

Algorithm 3 ADMM for minimization on a compact set (45)

Initialize x0, y0, w0 arbitrarily;
while stopping criterion not satisfied do

xk+1 ← ProjS(yk − wk

β
);

yk+1 ← argminy J(y) + β
2
‖y − wk

β
− xk+1‖2;

wk+1 ← wk + β(yk+1 − xk+1);
k ← k + 1.

end while

return xk.

Based on Theorem 1, we have the following corollary.
Corollary 2 If J is Lipschitz differentiable, then for any sufficiently large β, the sequence (xk, yk, wk)
generated by Algorithm 3 has at least one limit point, and each limit point is a stationary point of the
augmented Lagrangian Lβ.

Proof To show this corollary, we shall verify assumptions A1–A5.
The assumption A1 holds because the feasible set is a bounded set and J is lower bounded on the

feasible set. A2 and A3 hold because both A and B are identity matrices. A5 holds because J is Lipschitz
differentiable. A4 holds because ιS is lower semi-continuous.

C) Smooth Optimization over complementarity constraints

We consider the following optimization problem over complementarity constraints.

minimize
{x,y}

h(x, y) (46)

subject to xT y = 0, x ≥ 0, y ≥ 0,

where h(x, y) is a smooth function with Lipschitz differentiable gradient. The considered problem is a special
case of the mathematical programming with equilibrium constraints (MPEC) [14], and includes the linear
complementarity problem (LCP) [16] as a special case. In order to apply the ADMM algorithm to solve this
problem, we introduce two auxiliary variables x′, y′ ∈ R

n and define the complementarity set S , {(x, y) :
xT y = 0, x ≥ 0, y ≥ 0}. With these notations, problem (46) can be reformulated as follows

minimize
{x′,y′,x,y}

ιS(x′, y′) + h(x, y) (47)

subject to x′ − x = 0, y′ − y = 0,
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where ιS(x′, y′) denotes the indicator function of the set S. Furthermore, let x0 =

(

x′

y′

)

and the second

block y =

(

x
y

)

. Then (47) becomes

minimize
x0,y

ιS(x0) + h(y) (48)

subject to x0 − y = 0.

Corollary 3 Assume that h is Lipschitz differentiable and coercive over the complementarity set, then for
sufficiently large β, the sequence (xk

0 ,y
k, wk) generated by Algorithm ADMM applied to (48) has limit points

and all of its limit points are stationary points of the augmented Lagrangian Lβ.

Proof In order to prove this corollary, we only need to verify assumptions A1-A5. A1 holds for the coercivity
of h over S and the specific form of ιS . A2 is obvious due to in this case A = I and B = −I. A3 holds for
both I and −I being full column rank. A4 can be satisfied by setting f0 = ιS and g = 0. A5 holds due to
the Lipschitz differentiability of h. Thus, according to Theorem 1, we complete the proof. �

D) Matrix decomposition

ADMM has also been applied to solve matrix related problems, such as sparse principle component analysis
(PCA) [28], matrix decomposition [49,53], matrix completion [10], matrix recovery [43], non-negative matrix
factorization [61,50] and background/foreground extraction [11,63].

In the following, we take the video surveillance image-flow problem as an example. A video can be
formulated as a matrix V where each column is a vectorized image of a video frame. It can be generally
decomposed into three parts, background, foreground, and noise. The background has low rank since it does
not move. The derivative of the foreground is small because foreground (such as human beings, other moving
objectives) moves relatively slowly. The noise is generally assumed to be Gaussian and thus can be modeled
via Frobenius norm.

More specifically, consider the following matrix decomposition model:

minimize
X,Y,Z

p(X) +

m−1
∑

i=1

‖Yi − Yi+1‖ + ‖Z‖2F , (49)

subject to V = X + Y + Z, (50)

where X,Y, Z, V ∈ R
n×m, Yi is the ith column of Y , ‖ · ‖F is the Frobenius norm, and p(X) is any lower

bounded lower semi-continuous penalty function, for example, the Schatten-q quasi-norm ‖X‖q (0 < q ≤ 1):

‖A‖q =
n
∑

i=1

σq
i (A),

where σi(A) is the ith largest singular value of A.
The corresponding ADMM algorithm is given in Algorithm 4.

Corollary 4 For a sufficiently large β, the sequence (Xk, Y k, Zk,W k) generated by Algorithm 4 has at least
one limit point, and each limit point is a stationary point of the augmented Lagrangian function Lβ.
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Algorithm 4 ADMM for (49)

Initialize Y 0, Z0,W 0 arbitrarily;
while stopping criteria not satisfied do

Xk+1 ← argminX p(X) + β
2
‖X + Y k + Zk − V + W k/β‖

2
F ;

Y k+1 ← argminY

∑m
i=1 ‖Yi − Yj‖+ β

2
‖Xk+1 + Y + Zk − V + W k/β‖

2
F ;

Zk+1 ← argminZ ‖Z‖
2
F + β

2
‖Xk+1 + Y k+1 + Z − V + W k/β‖

2
F ;

W k+1 ←W k + β(Xk+1 + Y k+1 + Zk+1 − V );
k ← k + 1;

end while

return Xk , Y k, Zk.

Proof Let us verify assumptions A1–A5. The assumption A1 holds because of the coercivity of ‖ · ‖F and

‖ · ‖q. A2 and A3 hold because all the coefficient matrices are identity matrices. A5 holds because ‖ · ‖2F is
Lipschitz differentiable. A4 holds because p is lower semi-continuous.

6 Conclusion

This paper studied the convergence of ADMM, in its multi-block and original cyclic update form, for noncon-
vex and nonsmooth optimization. The objective can be certain nonconvex and nonsmooth functions while
the constraints are coupled linear equalities. Our results theoretically demonstrate that ADMM, as a variant
of ALM, may converge under weaker conditions than ALM. While ALM generally requires the objective
function to be smooth, ADMM only requires it to have a smooth part h(y) while the remaining part f(x)
can be coupled, nonconvex, and include separable nonsmooth functions and indicator functions of constraint
sets.

Our results relax the previous assumptions (e.g., semi-convexity) and allow the nonconvex functions such
as ℓq quasi-norm (0 < q < 1), Schatten-q quasi-norm, SCAD, and others that often appear in sparse optimiza-
tion. They also allow nonconvex constraint sets such as unit spheres, matrix manifolds, and complementarity
constraints.

The underlying proof technique identifies an exclusion set where the sequence does not enter after finitely
many iterations. We also manage to have a very general first block x0. We show that while the middle p
blocks x1, . . . , xp can be updated in an arbitrary order for different iterations, the first block x0 should be
updated at first and the last block y at last; otherwise, the concerned iterates may diverge according to the
existing example.

Our results can be applied to problems in matrix decomposition, sparse recovery, machine learning, and
optimization on compact smooth manifolds and lead to novel convergence guarantees.
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Appendix

Proof Proof of Proposition 1
The fact that convex functions and the C1 regular functions are prox-regular has been proved in the

previous literature, for example, see [59]. Here we only prove the second part of the proposition.
(1): For functions r(x) =

∑

i |xi|
q where 0 < q < 1, the set of general subgradient of r(·) is

∂r(x) =
{

d = [d1; . . . ; dn]
∣

∣di = q · sign(xi)|xi|
q−1 if xi 6= 0; di ∈ R if xi = 0

}

.

For any two positive constants C > 0 and M > 1, take γ = max
{

4(nCq+MC)
c2 , q(1 − q)cq−2

}

, where c ,

1
3 ( q

M )
1

1−q . The exclusion set SM contains the set {x|minxi 6=0 |xi| ≤ 3c}. For any point z ∈ B(0, C)/SM and

y ∈ B(0, C), if ‖z− y‖ ≤ c, then supp(z) ⊂ supp(y) and ‖z‖0 ≤ ‖y‖0, where B(0, C) , {x|‖x‖ < C}, supp(z)
denotes the index set of all non-zero elements of z and ‖z‖0 denotes the cardinality of supp(z). Define

y′i =

{

yi i ∈ supp(z)
0 i 6∈ supp(z)

, i = 1, . . . , p.

Then for any d ∈ ∂r(z), the following line of proof holds,

‖y‖qq − ‖z‖qq −
〈

d, y − z
〉

(a)

≥‖y′‖qq − ‖z‖qq −
〈

d, y′ − z
〉

(b)

≥ −
q(1 − q)

2
cq−2‖z − y′‖2

(c)

≥ −
q(1 − q)

2
cq−2‖z − y‖2, (51)

where (a) holds for ‖y‖qq = ‖y′‖qq+‖y−y′‖qq by the definition of y′, (b) holds because r(x) is twice differentiable
along the line segment connecting z and y′, and the second order derivative is no bigger than q(1 − q)cq−2,
and (c) holds because ‖z − y‖ ≥ ‖z − y′‖. While if ‖z − y‖ > c, then for any d ∈ ∂r(z), we have

‖y‖qq − ‖z‖qq −
〈

d, y − z
〉

≥ −(2nCq + 2MC) ≥ −
2nCq + 2MC

c2
‖y − z‖2. (52)

Combining (51) and (52) yields the result.
(2): We are going to verify that Schatten-q quasi-norm ‖ · ‖q is restricted prox-regular. Without loss of

generality, suppose A ∈ R
n×n is a square matrix.

Suppose the singular value decomposition (SVD) of A is

A = UΣV T = [U1, U2] ·

[

Σ1 0
0 0

]

·

[

V T
1

V T
2

]

, (53)

where U, V ∈ R
n×n are orthogonal matrices, and Σ1 ∈ R

K×K is diagonal whose diagonal elements are σi(A),
i = 1, . . . ,K. Then the general subgradient of ‖A‖qq [54] is

∂‖A‖qq = U1DV
T
1 + {U2ΓV

T
2

∣

∣Γ is an arbitrary matrix},

where D ∈ R
K×K is a diagonal matrix whose ith diagonal element is di = qσi(A)q−1.
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Now we are going to prove ‖ · ‖qq is restricted prox-regular, i.e., for any positive parameters M,P > 0,

there exists γ > 0 such that for any ‖B‖F < P , ‖A‖F < P , A 6∈ SM = {A|∀ X ∈ ∂‖A‖qq, ‖X‖F > M}, and

T = U1DV
T
1 + U2ΓV

T
2 ∈ ∂‖A‖qq, ‖T ‖F ≤M , we hope to show

‖B‖qq − ‖A‖qq −
〈

T,B −A
〉

≥ −
γ

2
‖A−B‖2F . (54)

Let ǫ0 = 1
3 (M/q)1/(q−1). If ‖B −A‖ > ǫ0, we have

‖B‖qq − ‖A‖qq −
〈

T,B −A
〉

≥− n2P q −M · ‖B −A‖F ≥ −(Mǫ−1
0 + n2P qǫ−2

0 )‖A−B‖2F . (55)

If ‖B −A‖F < ǫ0, consider the decomposition of B = UBΣ
BV T

B = B1 +B2 where B1 = UBΣ
B
1 V

T
B , ΣB

1

is the diagonal matrix preserving elements of ΣB bigger than 1
3 (M/q)1/(q−1), and B2 = UBΣ

B
2 V

T
B where

ΣB
2 = ΣB − ΣB

1 .
Define a set S′ , {T ∈ R

n×n|‖T ‖F ≤ P, minσi>0 σi(T ) ≥ ǫ0}. Let’s prove A,B1 ∈ S′. If minσi>0 σi(A) <
(M/q)1/(q−1), then for any X ∈ ∂‖A‖qq, X = U1DV

T
1 + U2ΓV

T
2 and

‖X‖F ≥ ‖U1DV
T
1 ‖F ≥ min

σi>0
qσq−1

i ≥M,

which contradicts with the face that A 6∈ SM . As for B1, because of ‖A−B‖F ≤ ǫ0 and minσi>0 σi(A) <
(M/q)1/(q−1), using Weyl inequalities will we get B1 ∈ S′.

Define the function F : S′ ⊂ R
n×n → R

n×n, for A = U1ΣV
T
1 , F (A) = U1DV

T
1 , where

D = diag(qσ1(A)q−1, . . . , qσ1(A)q−1)

and (0q−1 = 0). Based on [21, Theorem 4.1] and the compactness of S′, F (A) is Lipschitz continuous in S′,
i.e., there exists L > 0, for any two matrices A,B ∈ S′ , ‖F (A) − F (B)‖F ≤ L‖A−B‖F . This implies

‖B1‖
q
q − ‖A‖qq −

〈

U1DV
T
1 , B1 −A

〉

≥−
L

2
‖B1 −A‖2F . (56)

In addition, because ‖UT
2 UB‖F < ‖B1 −A‖F /ǫ0 and ‖V T

2 VB‖F < ‖B1 −A‖F /ǫ0 (see [35]),

〈

U2ΓV
T
2 , B1 −A

〉

=
〈

Γ,UT
2 UBΣBV

T
B V2

〉

≥ −
M2

ǫ20
‖B1 −A‖2F . (57)

Furthermore, ‖B2‖
q
q −

〈

T,B2

〉

≥ 0 and ‖B1 −A‖F ≤ ‖B −A‖F + ‖B −B1‖F ≤ 2‖B −A‖F , together with
(56) and (57) we have

‖B‖qq − ‖A‖qq −
〈

T,B −A
〉

=‖B1‖
q
q − ‖A‖qq −

〈

T,B1 −A
〉

+ ‖B2‖
q
q −

〈

T,B2

〉

≥−

(

L

2
+
M2

ǫ20

)

‖B1 −A‖2F ≥ −

(

2L+
4M2

ǫ20

)

‖B −A‖2F . (58)

Combining (55) and (58), we finally prove (54) with appropriate γ.
(3): We need to show that the indicator function ιS of a p-dimensional compact C2 manifold S is restricted

prox-regular. First of all, by definition, the exclusion set SM of ιS is empty for any M > 0. Since S is compact
and C2, there are a series of C2 homeomorphisms hη : Rp 7→ R

n, η ∈ {1, . . . ,m} and δ > 0 such that for any
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x, there exist an η and an αx satisfying x = hη(αx) ∈ S. Furthermore, for any ‖y − x‖ ≤ δ, we can find an
αy satisfying y = hη(αy).

Note that ∂ιS(x) = Im(Jhη
(x))⊥, where Jhη

is the Jacobian of hη. For any d ∈ ∂ιS(x), ‖d‖ ≤ M and
‖x− y‖ ≤ δ,

ιS(y) − ιS(x) −
〈

d, y − x
〉

= −
〈

d, hη(αy) − hη(αx)
〉

= −
〈

d, hη(αy) − hη(αx) − Jhη
(αy − αx)

〉

≥− ‖d‖ · γ‖αy − αx‖
2

≥−MγC2‖x− y‖2, (59)

where γ and C are the Lipschitz constants of ∇hη and h−1
η , respectively. For any ‖y − x‖ ≥ δ,

ιS(y) − ιS(x) −
〈

d, y − x
〉

= −
〈

d, y − x
〉

≥− ‖d‖ · ‖y − x‖

≥ −
M

δ
‖y − x‖2, (60)

where M is the maximum of ‖d‖ over ∂ιS(x). Combining (59) and (60) shows that ιS is restricted prox-
regular.

Proof (Lemma 1) By the definitions of H in A3(a) and yk, we have yk = H(Byk). Therefore, ‖yk1 −yk2‖ =
‖H(Byk1) − H(Byk2)‖ ≤ M̄‖Byk1 − Byk2‖. Similarly, by the optimality of xki , we have xki = Fi(Aix

k
i ).

Therefore, ‖xk1

i − xk2

i ‖ = ‖Fi(Aix
k1

i ) − Fi(Aix
k2

i )‖ ≤ M̄‖Aix
k1

i −Aix
k2

i ‖. ⊓⊔

Proof (Lemma 2) Let us first show that the y-subproblem is well defined. To begin with, we will show that
h(y) is lower bounded by a quadratic function of By:

h(y) ≥ h(H(0)) −
(

M̄‖∇h(H(0))‖
)

· ‖By‖ −
LhM̄

2

2
‖By‖2.

By A3, we know h(y) is lower bounded by h(H(By)):

h(y) ≥ h(H(By)).

Because of A5 and A3, h(H(By)) is lower bounded by a quadratic function of By:

h(H(By)) ≥h(H(0)) +
〈

∇h(H(0)), H(By) −H(0)
〉

−
Lh

2
‖H(By) −H(0)‖2 (61)

≥h(H(0)) − ‖∇h(H(0))‖ · M̄ · ‖By‖ −
LhM̄

2

2
‖By‖2 (62)

Therefore h(y) is also bounded by the quadratic function:

h(y) ≥ h(H(0)) − ‖∇h(H(0))‖ · M̄ · ‖By‖ −
LhM̄

2

2
‖By‖2.

Recall that y-subproblem is to minimize the Lagrangian function w.r.t. y, by neglecting other constants, it
is equivalent to minimize:

argmin P (y) := h(y) +
〈

wk + βAx+, By
〉

+
β

2
‖By‖2. (63)
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Because h(y) is lower bounded by −LhM̄
2

2 ‖By‖2, when β > LhM̄ , P (y) → ∞ as ‖By‖ → ∞. This shows that
y-subproblem is coercive with respect to By. Because P (y) is lower semi-continuous and argminh(y) s.t. By =
u has a unique solution for each u, the minimal point of P (y) must exist and the y-subproblem is well defined.

As for the xi-subproblem, i = 0, . . . , p, ignoring the constants yields

argmin Lβ(x+<i, xi, x
k
>i, y

k, wk) = argmin f(x+<i, xi, x
k
>i) +

β

2
‖

1

β
wk +A<ix

+
<i +A>ix

k
>i +Aixi +Byk‖2

(64)

= argmin f(x+<i, xi, x
k
>i) + h(u) − h(u) +

β

2
‖Bu−Byk −

1

β
wk‖2. (65)

where u = H(−A<ix
+
<i − A>ix

k
>i − Aixi). The first two terms are coercive bounded because A<ix

+
<i +

A>ix
k
>i + Aixi + Bu = 0 and A1. The third and fourth terms are lower bounded because h is Lipschitz

differentiable. Because the function is lower semi-continuous, all the subproblems are well defined. ⊓⊔

Proof (Proposition 1) Define the augmented Lagrangian function to be

Lβ(x, y, w) = x2 − y2 + w(x − y) +
β

2
‖x− y‖2.

It is clear that when β = 0, Lβ is not lower bounded for any w. We are going to show that for any β > 2,
the duality gap is not zero.

inf
x∈[−1,1],y∈R

sup
w∈R

Lβ(x, y, w) > sup
w∈R

inf
x∈[−1,1],y∈R

Lβ(x, y, w).

On one hand, because supw∈R
Lβ(x, y, w) = +∞ when x 6= y and supw∈R

Lβ(x, y, w) = 0 when x = y, we
have

inf
x∈[−1,1],y∈R

sup
w∈R

Lβ(x, y, w) = 0.

On the other hand, let t = x− y,

sup
w∈R

inf
x∈[−1,1],y∈R

Lβ(x, y, w) = sup
w∈R

inf
x∈[−1,1],t∈R

t(2x− t) + wt+
β

2
t2 = sup

w∈R

inf
x∈[−1,1],t∈R

(w + 2x)t+
β − 2

2
t2

(66)

= sup
w∈R

inf
x∈[−1,1]

−
(w + 2x)2

2(β − 2)
= sup

w∈R

−
max{(w − 2)2, (w + 2)2}

2(β − 2)
= −

2

β − 2
. (67)

This shows the duality gap is not zero (but it goes to 0 as β tends to ∞).

Then let us show that ALM does not converge if βk is bounded, i.e., there exists β > 0 such that βk ≤ β
for any k ∈ N. Without loss of generality, we assume that βk equals to the constant β for all k ∈ N. This
will not affect the proof. ALM consists of two steps

1) (xk+1, yk+1) = argminx,yLβ(x, y, wk),

2) wk+1 = wk + τ(xk+1 − yk+1).
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Since (xk+1 − yk+1) ∈ ∂ψ(wk) where ψ(w) = infx,y Lβ(x, y, w), and we already know

inf
x,y

Lβ(x, y, w) = −
max((w − 2)2, (w + 2)2)

2(β − 2)
,

we have

wk+1 =

{

(1 − τ
β−2)wk − 2τ

β−2 if wk ≥ 0

(1 − τ
β−2)wk + 2τ

β−2 if wk ≤ 0
.

Note that when wk = 0, the optimization problem infx,y L(x, y, 0) has two distinct minimal points which lead
to two different values. This shows no matter how small τ is, wk will oscillate around 0 and never converge.

However, although the duality gap is not zero, ADMM still converges in this case. There are two ways
to prove it. The first way is to check all the conditions in Theorem 1. Another way is to check the iterates
directly. The ADMM iterates are

xk+1 = max

(

−1,min(1,
β

β + 2
(yk −

wk

β
))

)

, yk+1 =
β

β − 2

(

xk+1 +
wk

β

)

, wk+1 = wk + β(xk+1 − yk+1).

(68)

The second equality shows that wk = −2yk, substituting it into the first and second equalities, we have

xk+1 = max{−1,min{1, yk}}, yk+1 =
1

β − 2

(

βxk+1 − 2yk
)

. (69)

Here |yk+1| ≤ β
β−2 + 2

β−2 |y
k|. Thus after finite iterations, |yk| ≤ 2 (assume β > 4). If |yk| ≤ 1, the ADMM

sequence converges obviously. If |yk| > 1, without loss of generality, we could assume 2 > yk > 1. Then
xk+1 = 1. It means 0 < yk+1 < 1, so the ADMM sequence converges. Thus, we know for any initial point y0

and w0, ADMM converges.

Proof (Theorem 2) Similar to the proof of Theorem 1, we only need to verify P1-P4 in Proposition 2. Proof
of P2: Similar to Lemma 4 and Lemma 5, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥−
1

β
‖wk − wk+1‖2 +

p
∑

i=1

β − LφM̄

2
‖Aix

k
i −Aix

k+1
i ‖2 +

β − LφM̄

2
‖Byk −Byk+1‖2. (70)

Since BTwk = −∂yφ(xk, yk) for any k ∈ N, we have

‖wk − wk+1‖ ≤ C1Lφ

(

p
∑

i=0

‖xki − xk+1
i ‖ + ‖yk − yk+1‖

)

,

where C1 = σmin(B), σmin(B) is the smallest positive singular value of B, and Lφ is the Lipschitz constant
for φ. Therefore, we have

Lβ(xk, yk, wk) − Lβ(xk+1, yk+1, wk+1)

≥

(

β − LφM̄

2
−
CLφM̄

β

) p
∑

i=0

‖Aix
k
i −Aix

k+1
i ‖2 +

(

β − LφM̄

2
−
C1LφM̄

β

)

‖Byk −Byk+1‖2. (71)
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When β > max{1, LφM̄ + 2C1LφM̄}, P2 holds.
Proof of P1: First of all, we have already shown Lβ(xk, yk, wk) ≥ Lβ(xk+1, yk+1, wk+1), which means

Lβ(xk, yk, wk) decreases monotonically. There exists y′ such that Axk +By′ = 0 and y′ = H(By′). In order
to show Lβ(xk, yk, wk) is lower bounded, we apply A1-A3 to get

Lβ(xk, yk, wk) = φ(xk, yk) +
〈

wk,

p
∑

i=0

Aix
k
i +Byk

〉

+
β

2
‖

p
∑

i=0

Aix
k
i +Byk‖2 (72)

= φ(xk, yk) +
〈

dky , y
′ − yk

〉

+
β

2
‖Byk −By′‖2 ≥ φ(xk, y′) +

β

4
‖

p
∑

i=0

Aix
k
i +Byk‖2 > −∞,

for some dky ∈ ∂yφ(xk, yk). This shows that Lβ(xk, yk, wk) is lower bounded. If we view (72) from the opposite
direction, it can be observed that

φ(xk, y′) +
β

4
‖

p
∑

i=1

Aix
k
i +Byk‖2

is upper bounded by Lβ(x0, y0, w0). Then A1 ensures that {xk, yk} is bounded. Therefore, wk is bounded
too.

Proof of P3, P4: This part is trivial as φ is Lipschitz differentiable. Hence we omit it.
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