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Preconditioning of a hybridized discontinuous Galerkin

finite element method for the Stokes equations

Sander Rhebergen · Garth N. Wells

Abstract We present optimal preconditioners for a recently introduced hybridized
discontinuous Galerkin finite element discretization of the Stokes equations. Typ-
ical of hybridized discontinuous Galerkin methods, the method has degrees-of-
freedom that can be eliminated locally (cell-wise), thereby significantly reducing
the size of the global problem. Although the linear system becomes more complex
to analyze after static condensation of these element degrees-of-freedom, the pres-
sure Schur complement of the original and reduced problem are the same. Using
this fact, we prove spectral equivalence of this Schur complement to two simple ma-
trices, which is then used to formulate optimal preconditioners for the statically
condensed problem. Numerical simulations in two and three spatial dimensions
demonstrate the good performance of the proposed preconditioners.

Keywords Stokes equations · preconditioning · hybridized methods · discontinu-
ous Galerkin · finite element methods

1 Introduction

Recently, many hybridized discontinuous Galerkin (HDG) methods have been in-
troduced for incompressible flows. For the Stokes problem these include [7, 8, 9, 18],
and for the Oseen and Navier–Stokes problems we refer to [5, 6, 15, 17, 19, 21, 22].
We consider the method developed in [15] for the Navier–Stokes equations, but
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with tighter restrictions on the ‘facet’ function spaces. The method is appealing
in its simplicity and the fact that it can be formulated such that the approximate
velocity field is automatically pointwise divergence-free. However, the implementa-
tion in [15] does not yield a H(div)-conforming velocity field and, as consequence,
cannot be simultaneously locally mass conserving, locally momentum conserving
and energy stable. This issue was resolved in [23, 24], in which the method was
modified for the Stokes and Navier–Stokes equations such that the approximate ve-
locity fields are both pointwise divergence-free and H(div)-conforming. This leads
to a method that is locally mass conserving, momentum conserving, energy stable,
and pressure-robust [14], as shown numerically in [24]. For the method in [23, 24]
to be useful in practice, it is helpful if the discrete system arising from the method
can be solved efficiently by iterative methods. In this work we introduce and ana-
lyze new preconditioners for the method applied to the Stokes problem, and show
that optimal preconditioners can be constructed.

A feature of the HDG approach is static condensation; element degrees of
freedom can be eliminated locally from the linear system, thereby significantly re-
ducing the size of the global problem. There are different ways to apply static con-
densation to the HDG method of [23]. One may choose, for example, to eliminate
both the element velocity and element pressure degrees-of-freedom. In this paper,
however, we choose to eliminate only the element velocity degrees-of-freedom. In
terms of reducing the global problem size, the effect of eliminating the element
pressure degrees-of-freedom is minimal, whereas the reduction in global system
size when eliminating the element velocity degrees-of-freedom is substantial. We
do not consider elimination of the pressure degrees-of-freedom on cells as retaining
the cell pressure field will lead to a formulation on which standard multigrid meth-
ods may be applied in the construction of optimal preconditioners. This would not
be possible if cell pressure degrees-of-freedom are also eliminated from the original
system.

The linear system obtained after static condensation of the cell-wise velocity
degrees-of-freedom is more complex to analyze than the original linear system.
However, the element/facet pressure Schur complement remains unchanged. Using
boundedness and stability results of [23], and a suitable inf-sup condition, we prove
spectral equivalence between the element/facet pressure Schur complement and an
element/facet pressure mass matrix. This allows the general theory of Pestana and
Wathen [20] for preconditioners for saddle point problems to be applied, which we
use to develop two new preconditioners for the condensed HDG discretization of
the Stokes equations. Optimality of the preconditioners for the HDG problem is
proved, and numerical examples demonstrate very good performance.

The remainder of this paper is structured as follows. In section 2 we describe
the HDG method for the Stokes equations and discuss and prove boundedness and
stability results. These results are then used to develop and analyze preconditioners
for the condensed form of the HDG discretization in section 3. We verify our
analysis by two- and three-dimensional numerical simulations in section 4 and
provide conclusions in section 5.



Preconditioning of an HDG method for the Stokes problem 3

2 Hybridizable discontinuous Galerkin method: formulation and analysis

We consider the Stokes system:

−∇2u+∇p = f in Ω, (1a)

∇ · u = 0 in Ω, (1b)

u = 0 on ∂Ω, (1c)
∫

Ω

p dx = 0, (1d)

where Ω ⊂ R
d is a polygonal (d = 2) or polyhedral (d = 3) domain, u : Ω → R

d is
the velocity, p : Ω → R is the pressure, and f : Ω → R

d is a prescribed body force.

2.1 Notation

To define the hybridizable discontinuous Galerkin method for the Stokes equations,
we introduce first a triangulation T := {K} ofΩ consisting of non-overlapping cells.
Each cell K of the triangulation has a length measure hK , and on the boundary
of an element, ∂K, the outward unit normal vector is denoted by n. Two adjacent
cells K+ and K− share an interior facet F , while a boundary facet is a facet of
∂K that lies on ∂Ω. The set and union of all facets are denoted by F = {F} and
Γ 0, respectively.

We will use the following finite element function spaces on Ω:

Vh :=

{

vh ∈
[

L2(Ω)
]d

: vh ∈
[
Pk(K)

]d
, ∀ K ∈ T

}

,

Qh :=
{

qh ∈ L2(Ω) : qh ∈ Pk−1(K), ∀ K ∈ T
}

,

(2)

and the following finite element spaces on Γ 0,

V̄h :=

{

v̄h ∈
[

L2(Γ 0)
]d

: v̄h ∈
[
Pk(F )

]d ∀ F ∈ F , v̄h = 0 on ∂Ω

}

,

Q̄h :=
{

q̄h ∈ L2(Γ 0) : q̄h ∈ Pk(F ) ∀ F ∈ F
}

,

(3)

where Pk(D) denotes the set of polynomials of degree at most k on a domain D.
For convenience, we introduce the spaces V ⋆

h := Vh × V̄h, Q⋆
h := Qh × Q̄h, and

X⋆
h := V ⋆

h × Q⋆
h. Function pairs in V ⋆

h and Q⋆
h will be denoted by boldface, e.g.,

vh := (vh, v̄h) ∈ V ⋆
h and qh := (qh, q̄h) ∈ Q⋆

h.

On an element K ⊂ R
d, for scalar functions p, q ∈ L2(K), we denote the stan-

dard inner-product by (p, q)K :=
∫

K pq dx, and we define (p, q)T :=
∑

K∈T (p, q)K .

For scalar functions p, q ∈ L2(E), where E ⊂ R
d−1, we define the inner-product

〈p, q〉E :=
∫

E pq ds and 〈p, q〉∂T :=
∑

K〈p, q〉∂K . Similar inner-products hold for
vector-valued functions.
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We use various norms throughout, and which are defined now. On Vh and V ⋆
h

we define, respectively, the following ‘discrete’ H1-norms:

~vh~2
DG :=

∑

K∈T

‖∇vh‖2K +
∑

K∈T

αh−1
K ‖vh‖2∂K , (4)

~vh~2
v :=

∑

K∈T

‖∇vh‖2K +
∑

K∈T

αh−1
K ‖v̄h − vh‖2∂K , (5)

where α > 0 is a constant. For v̄h ∈ V̄h, we introduce the norm

~v̄h~2
h :=

∑

K∈Th

h−1
K

∥
∥v̄h −mK(v̄h)

∥
∥
2

∂K
, (6)

where

mK(v̄h) :=
1

|∂K|

∫

∂K

v̄h ds. (7)

On Q̄h and Q⋆
h we define, respectively, ‘discrete’ L2-norms,

‖q̄h‖2p :=
∑

K∈T

hK‖q̄h‖2∂K and ~qh~2
p :=‖qh‖2Ω +‖q̄h‖2p . (8)

2.2 Weak formulation

The weak formulation for the Stokes problem in eq. (1) is given in [15, 23], and

reads: given f ∈
[

L2(Ω)
]d
, find (uh,ph) ∈ X⋆

h such that

ah(uh,vh) + bh(ph,vh) = (vh, f)T ∀vh ∈ V ⋆
h , (9a)

bh(qh,uh) = 0 ∀qh ∈ Q⋆
h, (9b)

where

ah(wh,vh) := (∇wh,∇vh)T +
〈

αh−1(wh − w̄h), vh − v̄h

〉

∂T
(10a)

− 〈wh − w̄h, ∂nvh〉∂T − 〈∂nwh, vh − v̄h〉∂T ,

bh(qh,vh) :=− (qh,∇ · vh)T + 〈vh · n, q̄h〉∂T . (10b)

It is proven in [23, 25] that α can be chosen sufficiently large to ensure stability.
The formulation is a hybridized method in the sense that the facet function

p̄h acts as a Lagrange multiplier enforcing that the velocity field uh is H(div)-
conforming, and specifically lies in a Brezzi–Douglas–Marini (BDM) finite element
space [3].

The following results are from [23] and will be used in the analysis. For suffi-
ciently large α, the bilinear form ah(·, ·) is coercive and bounded, i.e., there exist
constants csa > 0 and cba > 0, independent of h, such that for all uh,vh ∈ V ⋆

h ,

ah(vh,vh) ≥ csa~vh~2
v and

∣
∣ah(uh,vh)

∣
∣ ≤ cba~uh~v~vh~v. (11)

(see [23, Lemmas 4.2 and 4.3]) An immediate consequence of eq. (11) is:

csa~vh~2
v ≤ ah(vh,vh) ≤ cba~vh~2

v . (12)

From [23, Lemma 4.8 and Eq. 102], there exists a constant cbb > 0, independent of
h, such that for all vh ∈ V ⋆

h and for all qh ∈ Q⋆
h

∣
∣bh(qh,vh)

∣
∣ ≤ cbb~vh~v~qh~p. (13)
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2.3 The inf-sup condition

We present in this section a proof of inf-sup stability that is simpler than that in
[23], and which better lends itself to the analysis of preconditioners.

The velocity–pressure coupling term in eq. (9) is

bh(ph,vh) := b1(ph,vh) + b2(p̄h,vh), (14)

where

b1(ph,vh) := −
∑

K∈T

∫

K

ph∇·vh dx and b2(p̄h,vh) :=
∑

K∈T

∫

∂K

vh ·np̄h ds, (15)

The main result of this section is stability of bh(·, ·) : Q⋆
h × V ⋆

h → R, which we first
state and then prove after some intermediate results.

Lemma 1 (Stability of bh) There exists a constant βp > 0, independent of h, such
that for all qh ∈ Q⋆

h

βp~qh~p ≤ sup
vh∈V ⋆

h

bh(qh,vh)

~vh~v

. (16)

Satisfaction of the stability condition does rely on a suitable combination of func-
tion spaces, as chosen in eqs. (2) and (3).

The following is a reduced version of [13, Theorem 3.1].

Theorem 1 Let U , P1, and P2 be reflexive Banach spaces, and let b1 : P1 × U → R,

and b2 : P2 × U → R be bilinear and continuous. Let

Zbi =
{
v ∈ U : bi(pi, v) = 0 ∀pi ∈ Pi

}
⊂ U, i = 1, 2, (17)

then the following are equivalent:

1. There exists c > 0 such that

sup
v∈U

b1(p1, v) + b2(p2, v)

‖v‖U
≥ c

(

‖p1‖P1
+‖p2‖P2

)

(p1, p2) ∈ P1 × P2.

2. There exists c > 0 such that

sup
v∈Zb2

b1(p1, v)

‖v‖U
≥ c‖p1‖P1

, p1 ∈ P1 and sup
v∈U

b2(p2, v)

‖v‖U
≥ c‖p2‖P2

, p2 ∈ P2.

Theorem 1 allows b1 and b2 in eq. (14) to be analyzed separately.

Lemma 2 (Stability of b1) Let V BDM
h be a Brezzi–Douglas–Marini (BDM) finite

element space [3]:

V BDM
h (K) :=

{

vh ∈
[
Pk(K)

]d
: vh · n ∈ L2(∂K), vh · n|F ∈ Pk(F )

}

,

V BDM
h :=

{

vh ∈ H(div;Ω) : vh|K ∈ V BDM
h (K), ∀K ∈ T

}

.
(18)

There exists a constant β > 0, independent of h, such that for all qh ∈ Qh

β‖qh‖0,Ω ≤ sup
vh∈V ⋆BDM

h

b1(qh,vh)

~vh~v

. (19)
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Proof See [23, Lemma 4.4]. ⊓⊔

Definition 1 (BDM lifting operator) Let LBDM : Pk(∂K) →
[
Pk(K)

]d
be a

BDM local lifting of the normal trace defined via the BDM interpolant [3, Exam-
ple 2.5.1] with zero on the interior, which has the properties:
(

LBDMq̄h

)

· n = q̄h and
∥
∥
∥L

BDMq̄h

∥
∥
∥
K

≤ ch
1/2
K ‖q̄h‖∂K ∀q̄h ∈ Pk(∂K), (20)

where the inequality follows by a scaling argument.

It follows then by an inverse estimate that
∥
∥
∥∇LBDMq̄h

∥
∥
∥

2

K
≤ ch−2

K

∥
∥
∥L

BDMq̄h

∥
∥
∥

2

K
≤ ch−1

K ‖q̄h‖2∂K , (21)

and by the trace inequality that
∥
∥
∥L

BDMq̄h

∥
∥
∥

2

∂K
≤ ch−1

K

∥
∥
∥L

BDMq̄h

∥
∥
∥

2

K
≤ c‖q̄h‖2∂K . (22)

which yields
∥
∥
∥∇LBDMq̄h

∥
∥
∥

2

K
+

αv

hK

∥
∥
∥L

BDMq̄h

∥
∥
∥

2

∂K
≤ ch−1

K ‖q̄h‖2∂K . (23)

Lemma 3 (Stability of b2) There exists a constant β̄ > 0, independent of h, such

that for all q̄h ∈ Q̄h

β̄‖q̄h‖p ≤ sup
vh∈V ⋆

h

b2(q̄h,vh)

~vh~v

. (24)

Proof Summing over all cells and by definition of the norm
�

�(·, ·)
�

�

v
in eq. (5),

�

�

�

(LBDMq̄h, 0)
�

�

�

v
≤ c

∑

K∈T

h
−1/2
K ‖q̄h‖∂K . (25)

Using the above, we have:

sup
vh∈V ⋆

h

∑

K∈T

∫

∂K
vh · nq̄h ds

~vh~v

≥
∑

K∈T

∫

∂K
q̄2h ds

�

�(LBDMq̄h, 0)
�

�

v

≥ c

∑

K∈T ‖q̄h‖2∂K
∑

K∈T h
−1/2
K ‖q̄h‖∂K

≥ ch
1/2
min

∑

K∈T

‖q̄h‖∂K

≥ cc
1/2
∗ ‖q̄h‖p ,

(26)

where c∗ = hmin/hmax. ⊓⊔
We can now prove the main stability result.

Proof (Proof of lemma 1) Using theorem 1, let b1(·, ·) and b2(·, ·) be defined as
in eq. (15), let U = V ⋆

h , P1 = Qh and P2 = Q̄h. Furthermore, note that Zb2 =
V ⋆BDM
h ⊂ V ⋆

h . The conditions in item 2 were proven in lemmas 2 and 3, respectively.
By equivalence of items 1 and 2, we obtain

sup
vh∈V ⋆

h

b1(qh,vh) + b2(q̄h,vh)

~vh~v

≥ c
(

‖qh‖0,Ω +‖q̄h‖p
)

(qh, q̄h) ∈ Qh × Q̄h, (27)

from which eq. (16) follows. ⊓⊔
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2.4 Reduced problem

In practice, a reduced global problem is solved in which uh is eliminated cell-
wise. We present the reduced problem in a variational setting here for later use in
constructing preconditioners. To formulate a reduced problem, we first introduce
local solvers.

Definition 2 (Local solver) On an element K, consider the ‘local’ bilinear and
linear forms:

aK(vh, wh) := (∇vh,∇wh)K−〈∂nvh, wh〉∂K−〈vh, ∂nwh〉∂K+αh−1
K 〈vh, wh〉∂K (28)

and

LK(wh) := (s, wh)K − 〈∂nwh, m̄h〉∂K + αh−1
K 〈wh, m̄h〉∂K

+ (∇ · wh, rh)K − 〈wh · n, r̄h〉∂K . (29)

The function vLh (m̄h, rh, r̄h, s) ∈ Vh is such that its restriction to element K satisfies

the local problem: given s ∈
[

L2(Ω)
]d

and (m̄h, rh, r̄h) ∈ V̄h ×Qh × Q̄h

aK

(

vLh , wh

)

= LK (wh) ∀wh ∈ V (K). (30)

where V (K) :=
[
Pk(K)

]d
the polynomial space in which the velocity is approxi-

mated on a cell.

We next state the weak formulation of the Stokes problem in which uh is
eliminated from eq. (9) by using the local solver to express the velocity field and the
velocity test function on cells, and phrasing the problem in terms of the pressure
trial/test function on cells and the interface functions.

Lemma 4 (Weak formulation of the reduced Stokes problem) Suppose (uh,ph) ∈
X⋆

h satisfy eq. (9) and f ∈
[

L2(Ω)
]d

. The velocity field uh is the sum of the local so-

lutions (from definition 2) l(ūh,ph) := vLh (ūh, ph, p̄h, 0) and ufh := vLh (0,0, 0, f):

uh = ufh + l(ūh,ph). (31)

Furthermore, (ūh,ph) ∈ V̄h ×Q⋆
h satisfies

Bh

(
(ūh,ph, ) , (w̄h,qh)

)
= Lh

(
(w̄h,qh)

)
∀ (w̄h,qh) ∈ V̄h ×Q⋆

h, (32)

where

Bh

(
(v̄h, rh) , (w̄h,qh)

)
:= ah

((
l(v̄h, rh), v̄h

)
,
(
l(w̄h,qh), w̄h

))

+ bh

(

rh,
(
l(w̄h,qh), w̄h

))

+ bh

(

qh,
(
l(v̄h, rh), v̄h

))

(33)

and

Lh((w̄h,qh)) := (l(w̄h,qh), f)T , (34)

where l(v̄h, rh) := l(v̄h)+l(rh), and l(v̄h) := vLh (v̄h, 0, 0,0) and l(rh) := vLh (0, rh, r̄h, 0)
(by definition 2).
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Proof Equation (31) follows by eq. (9a), linearity of the problem and definition 2
(local solver).

We next prove eq. (32). Note that l(w̄h,qh), restricted to the cell K, satisfies

a form of the local problem in eq. (30), and ufh, restricted to the cell K, satisfies a

form of the local problem. Combining the two local problems (the former with ufh
in the test function slot, and the latter with l(w̄h,qh) in the test function slot),
and summing over the cells in the triangulation,

−
〈

∂nu
f
h, w̄h

〉

∂T
+ αh−1

K

〈

ufh, w̄h

〉

∂T

=
(
f, l(w̄h,qh)

)

T
−
(

∇ · ufh, qh
)

T
+

〈

ufh · n, q̄h
〉

∂T
. (35)

The lifted function l(ūh,ph), restricted to the cell K, satisfies the local problem,
which with l(w̄h,qh) in the test function slot reads:

(
∇l(ūh,ph),∇l(w̄h,qh)

)

K
−
〈
∂nl(ūh,ph), l(w̄h,qh)

〉

∂K

−
〈
∂nl(w̄h,qh), l(ūh,ph)− ūh

〉

∂K
+ αh−1

K

〈
l(ūh,ph)− ūh, l(w̄h,qh)

〉

∂K

−
(
∇ · l(w̄h,qh), ph

)

K
+

〈
l(w̄h,qh) · n, p̄h

〉

∂K
= 0. (36)

Substituting eq. (31) into eq. (9), with vh = (0, w̄h) in eq. (9a),

〈
∂nl(ūh,ph), w̄h

〉

∂T
− αh−1

K

〈
l(ūh,ph)− ūh, w̄h

〉

∂T
= −

〈

∂nu
f
h, w̄h

〉

∂T
+ αh−1

K

〈

ufh, w̄h

〉

∂T
,

(37a)
(
qh,∇ · l(ūh,ph)

)

T
−
〈
l(ūh,ph) · n, q̄h

〉

∂T
= −

(

qh,∇ · ufh
)

T
+

〈

ufh · n, q̄h
〉

∂T
.

(37b)

Summing eq. (36) over all cells and adding to the left-hand side of eq. (37a), and
using eq. (35) to replace the right-hand side of eq. (37a), we have:

(
∇l(ūh,ph),∇l(w̄h,qh)

)

T
−
〈
∂nl(ūh,ph), l(w̄h,qh)− w̄h

〉

∂T

−
〈
∂nl(w̄h,qh), l(ūh,ph)− ūh

〉

∂T

+ αh−1
K

〈
l(ūh,ph)− ūh, l(w̄h,qh)− w̄h

〉

∂T
−
(
∇ · l(w̄h,qh), ph

)

T

+
〈
l(w̄h,qh) · n, p̄h

〉

∂T
+

(

∇ · ufh, qh
)

T
−
〈

ufh · n, q̄h
〉

∂T
=

(
f, l(w̄h,qh)

)

T
. (38)

Equation (32) follows after using eq. (37b). ⊓⊔

By definition 2, consider l(v̄h) := vLh (v̄h, 0, 0, 0) and l(rh) := vLh (0, rh, r̄h, 0). By
linearity, it follows that l(v̄h, rh) = l(v̄h) + l(rh). Note also

ah((l(v̄h, rh), v̄h), (l(w̄h,qh), w̄h)) = ah((l(v̄h), v̄h), (l(w̄h), w̄h))
︸ ︷︷ ︸

āh(v̄h,w̄h)

+ ah((l(v̄h), v̄h), (l(qh), w̄h)) + ah((l(rh), v̄h), (l(w̄h,qh), w̄h)), (39)

where l(w̄h) := vLh (w̄h, 0, 0, 0), l(qh) := vLh (0, qh, q̄h, 0) and l(w̄h,qh) := l(w̄h) +
l(qh). The following result for āh(·, ·) will be useful in analyzing preconditioners.
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Lemma 5 (Equivalence of norm induced by āh(·, ·)) There exist positive con-

stants C1 and C2 independent of hK such that

C1~w̄h~2
h ≤ āh(w̄h, w̄h) ≤ C2~w̄h~2

h ∀w̄h ∈ V̄h. (40)

Proof From boundedness and coercivity of ah(·, ·) (see eq. (12)), for sufficiently
large α,

csa
�

�(l(w̄h), w̄h)
�

�

2

v
≤ āh(w̄h, w̄h) ≤ cba

�

�(l(w̄h), w̄h)
�

�

2

v
. (41)

We therefore need to demonstrate the equivalence

c1~w̄h~h ≤
�

�(l(w̄h), w̄h)
�

�

v
≤ c2~w̄h~h. (42)

We first consider the lower bound in eq. (42). Note that

h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

≤ h
−1/2
K

∥
∥w̄h − l(w̄h)

∥
∥
∂K

+ h
−1/2
K

∥
∥l(w̄h)−mK(w̄h)

∥
∥
∂K

.

(43)

Defining

MK(l(w̄h)) :=
1

|K|

∫

K

l(w̄h) ds, (44)

then

h
−1/2
K

∥
∥l(w̄h)−mK(w̄h)

∥
∥
∂K

≤ h
−1/2
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥
∂K

+ h
−1/2
K

∥
∥MK(l(w̄h))−mK(w̄h)

∥
∥
∂K

= h
−1/2
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥
∂K

+ h
−1/2
K

∥
∥mK(MK(l(w̄h))− w̄h)

∥
∥
∂K

≤ h
−1/2
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥
∂K

+ h
−1/2
K

∥
∥MK(l(w̄h))− w̄h

∥
∥
∂K

≤ 2h
−1/2
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥
∂K

+ h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

,

(45)

where the second inequality is by [4, Eq. (10.6.11)]. By a trace inequality and a
(scaled) Friedrich’s inequality [4, Lemma 4.3.14],

2h
−1/2
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥
∂K

≤ 2h−1
K

∥
∥l(w̄h)−MK(l(w̄h))

∥
∥ ≤ c

∥
∥∇l(w̄h)

∥
∥
K

.

(46)
Combining eqs. (43), (45) and (46),

h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

≤ c
(∥
∥∇l(w̄h)

∥
∥
K

+ h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

)

. (47)

The lower bound in eq. (42) follows after squaring, applying Young’s inequality,
and summing over all cells.

We next consider the upper bound in eq. (42). By definition of l(w̄h) and
considering that mK(w̄h) is constant on a cell,

(
∇l(w̄h),∇wh

)

K
−
〈
∂nl(w̄h), wh

〉

∂K
−
〈
l(w̄h)−mK(w̄h), ∂nwh

〉

∂K

+ αh−1
K

〈
l(w̄h)−mK(w̄h), wh

〉

∂K
= −

〈
∂nwh, w̄h −mK(w̄h)

〉

∂K

+ αh−1
K

〈
wh, w̄h −mK(w̄h)

〉

∂K
∀wh ∈ V (K), (48)
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Setting wh = l(w̄h)−mK(w̄h), then

∥
∥∇l(w̄h)

∥
∥
2

K
− 2

〈
∂nl(w̄h), l(w̄h)−mK(w̄h)

〉

∂K

+ αh−1
K

〈
l(w̄h)−mK(w̄h), l(w̄h)−mK(w̄h)

〉

∂K

= −
〈
∂nl(w̄h), w̄h −mK(w̄h)

〉

∂K

+ αh−1
K

〈
l(w̄h)−mK(w̄h), w̄h −mK(w̄h)

〉

∂K
, (49)

which can be manipulated into

∥
∥∇l(w̄h)

∥
∥
2

K
+ 2

〈

∂nl(w̄h), w̄h − ww̄
h

〉

∂K
+ αh−1

K

∥
∥l(w̄h)− w̄h

∥
∥
2

∂K

=
〈

∂nw
w̄
h , w̄h −mK(w̄h)

〉

∂K
+ αh−1

K

〈
w̄h −mK(w̄h), w̄h − l(w̄h)

〉

∂K
. (50)

Considering the left-hand side of eq. (50), by coercivity of ah(·, ·),

c1

(∥
∥∇l(w̄h)

∥
∥
2

K
+ αh−1

K

∥
∥l(w̄h)− w̄h

∥
∥
2

∂K

)

≤
∥
∥∇l(w̄h)

∥
∥
2

K
+ 2

〈
∂nl(w̄h), w̄h − l(w̄h)

〉

∂K
+ αh−1

K

∥
∥l(w̄h)− w̄h

∥
∥
2

∂K
. (51)

For the right-hand side of eq. (50), by Cauchy–Schwarz and a trace inequality,
〈
∂nl(w̄h), w̄h −mK(w̄h)

〉

∂K
+ αh−1

K

〈
w̄h −mK(w̄h), w̄h − l(w̄h)

〉

∂K

≤ h
1/2
K

∥
∥∂nl(w̄h)

∥
∥
∂K

h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

+ α1/2h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

α1/2h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

≤
∥
∥∇l(w̄h)

∥
∥
K

h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

+ α1/2h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

α1/2h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

≤
(∥
∥∇l(w̄h)

∥
∥
K

+ α1/2h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

)(

α1/2h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

)

.

(52)

Combining eqs. (50) to (52),
∥
∥∇l(w̄h)

∥
∥
K

+ α1/2h
−1/2
K

∥
∥l(w̄h)− w̄h

∥
∥
∂K

≤ cα1/2h
−1/2
K

∥
∥w̄h −mK(w̄h)

∥
∥
∂K

. (53)

The upper bound in eq. (42) follows after squaring, application of Young’s inequal-
ity, and summing over all elements. ⊓⊔

3 Preconditioning

We present now the main results, namely preconditioners for the hybridized dis-
continuous Galerkin discretization of the Stokes equations. We consider first a
preconditioner for the full problem (no static condensation), and then the system
with the cell-wise velocity degrees-of-freedom eliminated locally. As mentioned in
the introduction, we do not consider the case where the cell-wise pressure degrees-
of-freedom are also eliminated locally as this complicates preconditioning and the
reduction in size of the global systems through eliminating the pressure is modest.
Preconditioning a system with both the velocity and pressure degrees-of-freedom
eliminated cell-wise is an interesting technical question.
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3.1 The full discrete Stokes problem

Let u ∈ R
nu be the vector of discrete velocity with respect to the basis for Vh,

and p ∈ Nnp = {q ∈ R
np |q 6= 1} be the vector of the discrete pressure with respect

to the basis for Qh. Furthermore, let ū ∈ R
n̄u and p̄ ∈ R

n̄p be the vectors of
discrete velocity and pressure associated with the spaces V̄h and Q̄h, respectively.
The discrete problem in eq. (9) can be expressed as the system of linear equations:

[

A BT

B 0

][

U

P

]

=

[

L

0

]

, with U :=

[

u

ū

]

, P :=

[

p

p̄

]

, L :=

[

Lu

Lū

]

, (54)

and where A and B are the matrices obtained from the discretization of the bilinear
forms ah(·, ·) and bh(·, ·), defined by eq. (10). The matrices A and B are block
matrices:

A :=

[

Auu AT
ūu

Aūu Aūū

]

and B :=

[

Bpu 0
Bp̄u 0

]

, (55)

where Auu, Aūu and Aūū are the matrices obtained from the discretization of
ah((·,0), (·, 0)), ah((·,0), (0, ·)) and ah((0, ·), (0, ·)), respectively, and Bpu and Bp̄u

are the matrices obtained from the discretization of bh((·, 0), (·, 0)) and bh((0, ·), (·, 0)),
respectively.

We also introduce ‘cell’ and ‘facet’ pressure mass matrices, M and M̄ , which
are obtained from the discretization of

(qh, ph)T :=
∑

K∈T

∫

K

qhph dx and 〈q̄h, p̄h〉p :=
∑

K∈T

hK

∫

∂K

q̄hp̄h ds, (56)

respectively, and note that

‖qh‖2Ω = qTMq, ‖q̄h‖2p = q̄T M̄q̄. (57)

Defining M := bdiag(M,M̄) and Q := [qT q̄T ]T ,

~qh~2
p = QTMQ = qTMq + q̄T M̄q̄. (58)

Lemma 6 (Spectral equivalence between the mass matrix and the Schur

complement) Let A and B be the matrices given in eq. (55) and let M be defined as

in eq. (58). Let βp and cbb be the constants given in lemma 1 and eq. (13), respectively,
and let cba and csa be the constants given in eq. (12). The following holds:

βp
√

cba
≤ QTBA−1BTQ

QTMQ
≤ cbb√

csa
. (59)

Proof Stability of bh (see lemma 1) and equivalence of ah with ~·~v in eq. (12)
imply

βp
√

cba
≤ sup

vh∈V ⋆
h

bh(qh,vh)

ah(vh,vh)1/2~qh~p

. (60)

Letting V =
[

vT v̄T
]T

, with v ∈ R
nu and v̄ ∈ R

n̄u and Q =
[

qT q̄T
]T

, with

q ∈ Nnp and q̄ ∈ R
n̄q , we can express eq. (60) in matrix form:

βp
√

cba
≤ min

Q
max
V 6=0

QTBV
(
V TAV

)1/2 (
QTMQ

)1/2
, (61)
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which is equivalent to

βp
√

cba
≤ min

Q

QTBA−1BTQ

QTMQ
, (62)

(see [20, Section 3]), proving the lower bound in eq. (59).
For the upper bound, from eqs. (12) and (13) note that:

∣
∣bh(qh,vh)

∣
∣ ≤ cbb~vh~v~qh~p ≤ cbb√

csa
ah(vh,vh)

1/2~qh~p. (63)

The result follows after dividing both sides of eq. (63) by āh(vh,vh)
1/2~qh~p and

expressing in matrix form. ⊓⊔

Lemma 6 can be used to formulate a preconditioner for the discrete problem
in eq. (54).

Lemma 7 (An optimal preconditioner for the full discrete Stokes problem)

Let A and B be the matrices given in eq. (55) and let M be defined as in eq. (58). Let
R be an operator that is spectrally equivalent to A. For the preconditioned system

P
−1

AU = P
−1

F ↔
[

R 0
0 M

]−1 [

A BT

B 0

][

U

P

]

=

[

R 0
0 M

]−1 [

L

0

]

, (64)

there exist positive constants C1, C2, C3, C4, independent of h, such that the negative

and positive eigenvalues of P−1
A satisfy λ ∈ [−C1,−C2] and λ ∈ [C3, C4], respectively.

Proof By lemma 6, M is spectrally equivalent to the negative Schur complement
BA−1BT of A. Furthermore, since B is full rank (by the discrete inf-sup condition
lemma 1) and since A is symmetric positive definite, the result follows by direct
application of [20, Theorem 5.2]. ⊓⊔

3.2 Preconditioners for the statically condensed Stokes problem

The ‘full’ system considered in section 3.1 is not the system we wish to solve
in practice. We wish to eliminate locally the cell-wise velocity degrees-of-freedom
via static condensation and precondition the resulting reduced system. We now
consider the elimination of u in eq. (64) to obtain a linear system only for ū, p
and p̄.

Separating the degrees-of-freedom associated with Vh from those associated
with the Lagrange multipliers, V̄h ×Q⋆

h, we write eq. (54) as

[

Auu B
T

B C

][

u

U

]

=

[

Lu

L

]

, with U :=






ū

p

p̄




 L :=






Lū

0
0




 , (65)

and where

B :=






Aūu

Bpu

Bp̄u




 , C :=






Aūū 0 0
0 0 0
0 0 0




 . (66)
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Note that Auu is a block diagonal matrix (one block per cell). Using u = A−1
uu

(

Lu − B
T
U

)

,

we eliminate u from eq. (65). This results in a reduced system for U only,
[

Ā B̄T

B̄ C̄

][

ū

P

]

=

[

L̄

Ḡ

]

, (67)

where Ā = −AūuA
−1
uuA

T
ūu +Aūū and where

B̄ =

[

−BpuA
−1
uuA

T
ūu

−Bp̄uA
−1
uuA

T
ūu

]

, C̄ =

[

−BpuA
−1
uuB

T
pu −BpuA

−1
uuB

T
p̄u

−Bp̄uA
−1
uuB

T
pu −Bp̄uA

−1
uuB

T
p̄u

]

. (68)

The Schur complement of the block matrix in eq. (67) is given by S̄ = −B̄Ā−1B̄T +
C̄. It is easy to show (by direct computation) that S̄ = −BA−1BT , with A and B

the matrices given in eq. (55). An immediate consequence of lemma 6 therefore is
the following corollary.

Corollary 1 (Spectral equivalence between the mass matrix and the Schur

complement of the statically condensed linear system) Let Ā, B̄ and C̄ be

the matrices given in eq. (67) and let M be defined as in eq. (58). Let βp and cbb be

the constants given in, lemma 1 and eq. (13), respectively, and let cba and csa be the

constants given in eq. (12). The following holds:

βp
√

cba
≤

QT
(

B̄Ā−1B̄T − C̄
)

Q

QTMQ
≤ cbb√

csa
. (69)

This corollary can now be used to develop a preconditioner for the statically
condensed linear system in eq. (67).

Theorem 2 (An optimal preconditioner for the statically condensed dis-

crete Stokes problem based on mass matrices) Let Ā and B̄ be the matrices

given in eq. (67) and let M be defined as in eq. (58). Let R̄ be an operator that is

spectrally equivalent to Ā. Consider the preconditioned system

P̄
−1
M ĀŪ = P̄

−1
M F̄ ↔

[

R̄ 0
0 M

]−1 [

Ā B̄T

B̄ C̄

][

ū

P

]

=

[

R̄ 0
0 M

]−1 [

L̄

Ḡ

]

. (70)

There exist positive constants C1, C2, C3, C4, independent of h, such that the negative

and positive eigenvalues of P̄−1
M Ā satisfy λ ∈ [−C1,−C2] and λ ∈ [C3, C4], respectively.

Proof By corollary 1, M is spectrally equivalent to the Schur complement S =
−B̄Ā−1B̄T + C̄ of Ā. Furthermore, the Schur complement is invertible. To see this,
note that S = −B̄Ā−1B̄T + C̄ = −BA−1BT , where A and B are the matrices given
in eq. (55). The operator A is symmetric positive definite, and B is full rank by
lemma 1, hence S is invertible. Since Ā is symmetric positive definite by lemma 5,
the result then follows by direct application of [20, Theorem 5.2]. ⊓⊔

The preconditioner in theorem 2 is constructed based on the fact that M is
spectrally equivalent to the Schur complement of the statically condensed linear
system, as described by corollary 1. In fact, M in eq. (70) can be replaced by any
spectrally equivalent operator C, since C would then also be spectrally equivalent
to the Schur complement of the statically condensed linear system. A particularly
interesting choice for C is discussed in the following.
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Theorem 3 (An optimal preconditioner for the statically condensed dis-

crete Stokes problem based on element matrices) Let Ā, B̄ and C̄ be the ma-

trices given in eq. (67) and let C be the negative block-diagonal of C̄:

C =

[

BpuA
−1
uuB

T
pu 0

0 Bp̄uA
−1
uuB

T
p̄u

]

. (71)

Let R̄ be an operator that is spectrally equivalent to Ā. Consider the preconditioned

system

P̄
−1
C ĀŪ = P̄

−1
C F̄ ↔

[

R̄ 0
0 C

]−1 [

Ā B̄T

B̄ C̄

][

ū

P

]

=

[

R̄ 0
0 C

]−1 [

L̄

Ḡ

]

. (72)

There exist positive constants C1, C2, C3, C4, independent of h, such that the negative

and positive eigenvalues of P̄−1
C Ā satisfy λ ∈ [−C1,−C2] and λ ∈ [C3, C4], respectively.

Proof It suffices to prove that C and M are spectrally equivalent. By minor modifi-
cation of the proof of lemma 6, by using the spectral equivalence of auuh (vh, vh) with
~vh~2

DG (see eq. (75)) and the inf-sup conditions (see eqs. (77) and (78)), it can by
shown that BpuA

−1
uuB

T
pu and M are spectrally equivalent and that Bp̄uA

−1
uuB

T
p̄u and

M̄ are spectrally equivalent. It follows that C and M are spectrally equivalent. ⊓⊔

3.3 Characterization of Ā

Theorems 2 and 3 define optimal preconditioners for the statically condensed dis-
crete Stokes problem provided we have an operator R̄ that is spectrally equivalent
to Ā. To help in finding a suitable R̄, we first consider the properties of Ā. The op-
erator Ā is obtained from the discretization of āh(ūh, v̄h) in eq. (39). By lemma 5
we know that Ā is spectrally equivalent to the norm ~·~2

h. As discussed, in for
example [16], ~·~h is a H1-like norm and the near-null space of Ā is spanned by
constant functions. This is a condition to successfully apply multigrid-type solvers
to Ā. This motivates the use of multigrid for the operator R̄ that appears in the-
orems 2 and 3.

3.4 Block symmetric Gauss–Seidel preconditioners

Theorems 2 and 3 introduce two block-diagonal preconditioners. In practice, we see
that the rates of convergence of preconditioned iterative methods using the block
Jacobi-type preconditioners is typically improved upon by adding off-diagonal
blocks to the preconditioner. We therefore also consider block symmetric Gauss–
Seidel type preconditioners.

Let Ā be the system matrix defined in eq. (67), PD the block-diagonal of Ā
and PL a strictly lower triangular block matrix such that

Ā = PL + PD + PT
L . (73)

Furthermore, let PM = bdiag(−AūuA
−1
uuA

T
ūu+Aūū,−M,−M̄). The block symmet-

ric Gauss–Seidel type preconditioners we consider in section 4 are:

P̄
SGS
C = (PL + PD)P−1

D (PT
L + PD), P̄

SGS
M = (PL + PM )P−1

M (PT
L +PM ). (74)
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In the numerical examples, the inverse of the first block of PD and PM will be
replaced by R̄−1.

4 Numerical example

We now verify numerically the performance of the preconditioners introduced in
theorems 2 and 3, and the symmetric block Gauss–Seidel preconditioner in eq. (74).
We use a preconditioned MINRES solver, with AMG (four multigrid V-cycles) for
the operator R̄−1. The inverse of the pressure mass-matrix M, and the spectrally
equivalent operator C, are also approximated by four AMG V-cycles. In both cases
one application, pre and post, of a Gauss–Seidel smoother is used. The MINRES it-
erations are terminated once the relative true residual reaches a tolerance of 10−8.
We consider unstructured simplicial meshes and unstructured quadrilateral and
hexahedral meshes. For simplex cells, we use a quadratic polynomial approxima-
tion for uh, ūh and p̄h, and a linear polynomial approximation for ph. For meshes
with quadrilateral cells, we use a bi-quadratic polynomial approximation for uh,
quadratic approximation of ūh and p̄h, and a bilinear polynomial approximation
for ph. For meshes with hexahedral cells, we use a tri-quadratic polynomial ap-
proximation for uh, bi-quadratic approximation of ūh and p̄h, and a tri-linear
polynomial approximation for ph. The stabilization parameter is taken as α = 24
in 2D and α = 40 in 3D. The formulation has been implemented in MFEM [10]
with solver support from PETSc [1, 2]. We use classical algebraic multigrid via
the BoomerAMG library [12].

We consider lid-driven cavity flow in a square, Ω = [−1,1]2, and a cube,
Ω = [0,1]3. Dirichlet boundary conditions are imposed on ∂Ω. In two dimensions,
u = (1 − x4

1, 0) on the boundary x2 = 1 and the zero velocity vector on remain-
ing boundaries. In three dimensions we impose u = (1 − τ41 , (1 − τ42 )/10,0), with
τi = 2xi − 1, on the boundary x3 = 1 and the zero velocity vector on remaining
boundaries.

Table 1 presents the iteration counts for MINRES to converge for different
levels of refinement on simplicial meshes, and table 2 presents the iteration counts
for the quadrilateral and hexahedral mesh cases. It is clear that the iteration count
does not grow with problem size in all cases. Note that the diagonal preconditioners
based on C, i.e., using only the blocks available from the system matrix Ā in
eq. (67), outperform the preconditioners based on M consisting of the element
pressure mass-matrix M and the scaled facet pressure mass-matrix M̄ . In the case
of the symmetric block Gauss-Seidel preconditioners, there is no gain in using C
over M.

We have observed that switching from left-preconditioned MINRES to right-
preconditioned GMRES can improve the iteration count substantially. For exam-
ple, in the case of the P̄

SGS
C preconditioner for a three-dimensional simplicial grid

with 1789952 DOFs, the iteration count for right-preconditioned GMRES is only
37 (compared with 153 iterations for left-preconditioned MINRES).
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Two dimensions

DOFs P̄M P̄SGS
M

P̄C P̄SGS
C

12012 136 73 94 89
47256 131 72 96 98
187440 134 69 96 102
746592 128 63 97 96

Three dimensions

DOFs P̄M P̄SGS
M

P̄C P̄SGS
C

30128 230 150 122 139
229504 259 159 145 151
1789952 258 138 166 153

Table 1: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem in two and three
dimensions using unstructured simplicial meshes.

Two dimensions

DOFs P̄M P̄SGS
M

P̄C P̄SGS
C

10956 109 56 84 79
43032 104 52 80 73
170544 104 47 80 68
679008 98 42 81 75

Three dimensions

DOFs P̄M P̄SGS
M

P̄C P̄SGS
C

9152 130 79 88 82
66304 123 70 87 93
502784 114 57 85 78

Table 2: Iteration counts for preconditioned MINRES for the relative true residual
to reach a tolerance of 10−8 for the lid-driven cavity problem in two and three
dimensions using unstructured quadrilateral and structured hexahedral meshes.

5 Conclusions

We have developed, analyzed and numerically tested two new block-diagonal pre-
conditioners for the statically condensed linear system for a hybridized discon-
tinuous Galerkin method for the Stokes equations. In particular, we proved and
showed numerically that the preconditioners are optimal in that preconditioned
systems can be solved to a specified tolerance in an iteration count that is in-
dependent of the problem size. This makes the preconditioner suitable for very
large systems, and especially for problems in which pointwise satisfaction of the
continuity equation is important since the considered method has this valuable
property. Discretizations of the Stokes problem using a hybridized discontinu-
ous Galerkin method permit static condensation; cell degrees-of-freedom can be
eliminated locally, resulting in significantly reduced number of globally coupled
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degrees-of-freedom. This does however complicate the analysis, and our analysis
addresses the form and structure of a condensed problem.

A Auxiliary results

We provide here some auxiliary results used in analyzing the preconditioners.
Defining auu

h
(uh, vh) := ah((uh, 0), (vh, 0)), since ~vh~DG = ~(vh, 0)~v, a consequence of

eq. (12) is:

csa~vh~2
DG ≤ auuh (vh, vh) ≤ cba~vh~2

DG. (75)

Applying [11, Proposition 10] to a single cell K, the following inf-sup condition holds:

βK
DG‖qh‖K ≤ sup

vh∈Vh(K)

(qh,∇ · vh)K

~vh~DG(K)

∀qh ∈ Pk−1(K), (76)

where βK
DG

> 0 is a constant independent of h, Vh(K) :=
[

Pk(K)
]d

and ~vh~2
DG(K) :=

‖∇vh‖
2
K + αh

−1
K

‖vh‖
2
∂K . It follows that

βDG‖qh‖Ω ≤ sup
vh∈Vh

(qh,∇ · vh)T

~vh~DG

, (77)

where βDG := minK∈T βK
DG

. Since ~vh~DG = ~(vh, 0)~v, it is easy to see from eq. (26) that

β̄DG‖q̄h‖p ≤ sup
vh∈Vh

〈vh · n, q̄h〉∂T

~vh~DG

, (78)

where β̄DG > 0 is a constant independent of h.
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